SECTION 2 ENGINE

Group	1	Structure and Function	2-1
Group	2	Engine speed and Stall rpm	2-12
Group	3	Fuel warmer system ·····	2-13

SECTION 2 ENGINE

GROUP 1 STRUCTURE AND FUNCTION

760F2EG05

• Direct 4-stroke, 6-cylinders, water-cooling and charge air cooled diesel engine in installed, cylinder block and cylinder head are made of case iron and turbocharger is attached.

2. SYSTEM DIAGRAMS

The following drawings show the flow through the engine systems.

1) FUEL SYSTEM

1 Fuel from supply tank

- 2 Water/fuel separator filter
- 3 Priming pump
- 4 Fuel supply to fuel gear pump
- 5 Fuel gear pump
- 6 To pressure side fuel filter
- 7 Pressure side fuel filter
- 8 To high-pressure fuel pump
- 9 High-pressure fuel pump
- 10 To fuel rail

- 11 Fuel rail
- 12 Fuel rail pressure relief valve
- 13 Common rail fuel return
- 14 High-pressure fuel line to injector
- 15 High-pressure connector
- 16 Injector
- 17 Fuel return from injectors
- 18 Combined fuel return
- 19 Fuel return to fuel supply tank

2) LUBRICATING OIL SYSTEM

7609A2EG11

- 1 Lubricating oil pump
- 2 Pressure regulating valve closed
- 3 Pressure regulating valve open
- 4 From lubricating oil pump
- 5 To lubricating oil cooler
- 6 To lubricating oil pan
- 7 Lubricating oil cooler

- 8 Filter bypass valve
- 9 Filter bypass valve closed
- 10 Filter bypass valve open
- 11 To lubricating oil filter
- 12 Full-flow lubricating oil filter
- 13 From lubricating oil filter
- 14 To main lubricating oil rifle(s)

- 1 Turbocharger lubricating oil supply
- 2 Turbocharger lubricating oil drain

(1) Lubrication for the turbocharger

(2) Lubrication for the power components

7609A2EG13

- 1 From lubricating oil cooler
- 2 Main lubricating oil rifle
- 3 To overhead components
- 4 To upper main bearing
- 5 To camshaft journal

- 6 Oil supply to rod bearings
- 7 Crankshaft cross drilling from the main bearing journal
- 8 J-jet piston-cooling nozzle
- 9 To accessory drive oil feed

7609A2EG14

- 1 Main lubricating oil rifle
- 2 Rocker lever support
- 3 Transfer slot

- 4 Rocker lever shaft
- 5 Rocker lever bore
- 6 Rocker lever

(4) Lubrication for the accessory drive

1 Oil supply to accessory drive

- 2 Oil feed from block
- st Oil returns to pan through the gear housing.

3) COOLING SYSTEM

7609A2EG16

- 1 Coolant inlet from radiator and aftertreatment diesel exhaust fluid (DEF) dosing valve and DEF tank
- 2 Water pump Impeller
- 3 Coolant flow past lubricating oil cooler
- 4 Coolant flow past cylinders
- 5 Coolant flow from cylinder block to cylinder head
- 6 Coolant flow between cylinders

- 7 Coolant flow to thermostat housing
- 8 Thermostat open bypass passage closed
- 9 Coolant flow back to radiator
- 10 Thermostat closed bypass passage open
- 11 Coolant bypass passage in cylinder head
- 12 Coolant flow to water pump inlet

- 1 Air compressor coolant supply line
- 2 Air compressor coolant return to coolant inlet connection

COOLING SYSTEM

760F2EG18

- 1 Coolant supply to variable geometry turbocharger from the cylinder block
- 2 Variable geometry turbocharger coolant return to the EGR cooler outlet tube
- 3 Coolant supply to the EGR cooler from the rear of the cylinder block
- 4 EGR cooler coolant return to the coolant inlet connection
- 5 De-aeration port (to coolant top tank)

- 1 Coolant supply to aftertreatment DEF dosing valve and DEF tank
- 2 Coolant supply to cab heater
- 3 De-aeration port (to coolant top tank)

4) AIR INTAKE SYSTEM

- 1 Air cleaner
- 2 Turbocharger compressor inlet
- 3 Turbocharger compressor outlet
- 4 Charge air cooler inlet
- 5 Charge air cooler outlet
- 6 Air intake connection adapter
- 7 Air intake connection
- 8 Intake manifold

- 9 Intake port
- 10 Intake valves
- 11 EGR connection tube
- 12 EGR cooled exhaust gases
- 13 Charge air cooled intake air
- 14 EGR valve
- 15 Air mixture to combustion cylinder

5) EXHAUST SYSTEM

7609A2EG21

- 1 Exhaust valves
- 2 Exhaust port
- 3 Exhaust manifold
- 4 Turbocharger
- 5 Turbocharger exhaust outlet

- 6 Exhaust inlet to EGR cooler
- 7 EGR cooler
- 8 Cooled exhaust outlet to EGR valve
- 9 EGR valve
- 10 EGR valve differential pressure sensor

- 1 Exhaust from turbocharger
- 2 Aftertreatment diesel oxidation catalyst (DOC) intake temperature sensor probe
- 3 Aftertreatment DOC
- 4 Aftertreatment DOC outlet temperature sensor probe
- 5 Diesel exhaust fluid (DEF) supply to aftertreatment DEF dosing valve
- 6 Aftertreatment DEF dosing valve
- 7 Decomposion reactor
- 8 Exhaust DEF mixture
- 9 Aftertreatment selective catalyst reduction (SCR) intake temperature sensor probe
- 10 Aftertreatment SCR catalyst
- 11 Aftertreatment SCR outlet temperature sensor probe
- 12 Exhaust flow exiting aftertreatment system
- 13 Aftertreatment DEF dosing valve coolant fittings
- 14 Aftertreatment inlet mono-nitrogen oxides (NOx) sensor probe
- 15 Aftertreatment outlet NOx sensor probe

EXHAUST SYSTEM

- 1 Coolant flow from engine to aftertreatment DEF
- 2 Aftertreatment DEF tank coolant valve
- 3 Coolant flow to aftertreatment DEF tank (only when aftertreatment DEF tank coolant valve is open)
- 4 Aftertreatment DEF tank
- 5 Coolant return to engine
- 6 Aftertreatment DEF supply from aftertreatment DEF tank
- 7 Aftertreatment DEF flow to aftertreatment DEF dosing unit
- 8 Aftertreatment DEF dosing unit
- 9 Aftertreatment DEF return to aftertreatment DEF tank
- 10 Aftertreatment DEF flow to aftertreatment DEF dosing valve

GROUP 2 ENGINE SPEED & STALL RPM

1. TEST CONDITION

1) Normal temperature of the whole system

- Coolant : Approx 80°C (176°F)
- ⁻ Hydraulic oil $: 45 \pm 5^{\circ}C (113 \pm 10^{\circ}F)$
- Transmission oil : 75 \pm 5°C (167 \pm 10°F)

2) Normal operating pressure : See page 6-57.

2. SPECIFICATION

Engine speed, rpm (P mode)								
Low idle	High idle	Pump stall	Converter stall	Full stall	Fan motor	Remark		
800±25	2230±50	2220±70	2000±70	$1940\!\pm\!100$	950 ± 50			

3. ENGINE RPM CHECK

Remark : If the checked data is not normal, it indicates that the related system is not working properly. Therefore, it is required to check the related system pressure : See page 6-57.

1) Pump stall rpm

- Start the engine and raise the bucket approx 45 cm (1.5 ft) as the figure.
- Press the accelerator pedal fully and operate the bucket control lever to the retract position fully.
- Check the engine rpm at the above condition.

2) Convertor stall rpm

- Start the engine and lower the bucket on the ground as the figure.
- Set the clutch cut off mode at the OFF position.
- Press the brake pedal and accelerator pedal fully.
- Shift the transmission lever to the 4th forward position.
- Check the engine rpm at the above condition.

3) Full stall rpm

- Start the engine and raise the bucket approx 45 cm (1.5 ft) as the figure.
- Set the clutch cut off mode at the OFF position.
- Press the brake pedal and accelerator pedal fully .
- Shift the transmission lever to the 4th forward position and operate the bucket lever to the retract position fully.
- Check the engine rpm at the above condition.

GROUP 3 FUEL WARMER SYSTEM

1. SPECIFICATION

- 1) Operating voltage : $24 \pm 4V$
- 2) Power: 350±50W
- 3) Current: 15A

2. OPERATION

- 1) The current of fuel warmer system is automatically controlled without thermostat according to fuel temperature.
- 2) At the first state, the 15A current flows to the fuel warmer and engine may be started in 1~2 minutes.
- 3) If the fuel starts to flow, ceramic-disk in the fuel warmer heater senses the fuel temperature to reduce the current as low as 1.5A.

So, fuel is protected from overheating by this mechanism.

3. ELECTRIC CIRCUIT