MH6.6 MH8.6

HYDRAULIC EXCAVATOR

Workshop Manual

Print No. 604.13.562 English III-2005

THIS ALERT SYMBOL SIGNALS IMPORTANT MESSAGES INVOLVING YOUR SAFETY.

Read and heed carefully the safety instructions listed and follow the precautions recommended to avoid potential risks and to safeguard your health and your safety.

You will find this symbol in the text of this Manual referred to the following key words:

WARNING - Cautions directed to avoid improper repair interventions involving potential consequences for the safety of the personnel performing the repairs.

DANGER - These warnings qualify specifically potential dangers for the safety of the operator or other persons directly or indirectly involved.

IMPORTANT NOTICE

All maintenance and repair interventions explained in this Manual **must be performed exclusively by the Service Organisation of the Manufacturer**, observing strictly the instructions explained using, whenever necessary, the recommended specific tools.

Whoever performs the operations reported without following exactly the precautions is responsible on his own, for the damages that may result.

Neither the Factory nor any Organisations in its Distribution Network, including but not limited to national, regional or local distributors, are responsible for any liability arising from any damage resulting from defects caused by parts and/or components not approved by the Factory for use in maintaining and/or repairing products manufactured or merchandised by the Factory.

In any case, no warranty of any kind is made or shall be imposed with respect to products manufactured or merchandised by the Factory, when failures are caused by the use of parts and/or components not approved by the Factory.

AVOID ACCIDENTS

Most accidents, whether they occur in industry, on the farm, at home or on the road, are caused by the failure of some individuals to follow simple and fundamental safety rules and precautions. For this reason MOST ACCIDENTS CAN BE PREVENTED by recognising the real cause and doing something about it before the accident occurs.

Regardless of the care used in the design and construction of any type of equipment, there are many conditions that cannot be completely safeguarded against without interfering in the reasonable accessibility and efficient operation.

A carefull operator is the best insurance against an accident. The complete observance of one simple rule would prevent many serious accidents.

The rule is simple: never attempt to clean, lubricate or maintain a machine while it is in motion.

Prior to engaging in any maintenance, adjustment or repair operation on machines having hydraulically, mechanically, and/or cable controlled equipment (such as shovels, loaders, dozers, excavators etc.) be certain the equipment is lowered to the ground.

If it is necessary to have the equipment partially or fully raised to gain access to certain items, be sure the equipment is suitably supported by means other than the devices used for controlling the equipment.

PREFACE

To the reader

This Workshop Manual is written for the **Repair-Technician**. It provides important information on how to perform skilful repairs.

We recommend to consult the **Workshop Manual** and also the Hydraulic Excavator Operation and Maintenance Instruction Manual before initiating any repair-work operation. Utilize the **Workshop Manual** as well as the **Operation and Maintenance Instruction Manual** and the **Parts Catalog** as a prompt-book and adviser, even if the Hydraulic Excavator technique is become familiar. By means of the Workshop Manual the expert technician will be able to carry out a skilful repairwork operation.

Use

The Workshop Manual refers to the initial Machine configuration. Structural changes or rebuilding operations are not described in this Handbook. In this Workshop Manual the following information can be found:

- Safety Instructions;
- Technical Data and Special Tools;
- Functional Description;
- Performance Testing;
- Troubleshooting and Failure Correction;
- Repair Instructions.

In the Section **Safety Instructions** the recommended procedures are described, so that through the relevant compliance with, a risk of accident for the User and for the personnel responsible of the maintenance operations on the machine can be avoided.

In the Section **Technical Data** the Service Data, the change tables and lists of the needed Special Tools and Maintenance materials are indicated.

In other Sections, for each mechanical group, when available can be found:

 a functional description with information concerning the operation of the essential devices and equipments;

- information for carrying out the performance tests on the machine;
- troubleshooting, information concerning the recognition and correction of failures on the machine,
- technical information necessary for carrying out the Service and Repair operations on the Machine, the equipment necessary for the maintenance operations, the information concerning the Standards to be applied in the Maintenance operations, the Procedures for the Removal and Installation operations as well as for Disassembly and Assembly operations.

By means of the index contents a desired information can be easily achieved.

For a better understanding the illustration of the part will be displayed.

Therefore differences in arrangement of the Hydraulic Excavator are possible, whenever the latter involves the univocal capability of the information.

Repair operations

Carry out the necessary repair works as soon as possible. This procedure will avoid the maintenance costs while increasing the availability of your Hydraulic Excavator.

Pay always attention during all works to the Workshop Manual warnings and cautions and to the Operation and Maintenance Instruction Manual.

The Service Assistance will gladly carry out for you the works not described in the Workshop Manual.

Always utilize the **Original Spare Parts** only.

Further information material

Please notice the supplementary information consulting the following Handbooks:

- Operation and Maintenance Instruction Manual;
- Parts Catalog.

Warnings and symbols

The following signs are used in the Workshop Manual to designate exceptionally important information:

Precautionary rules and measures designed to protect the operator and other persons from lifethreatening hazards or injury and to prevent extensive damage to property.

Information and precautionary measures designed to prevent damage to the machine and other property.

Risks resulting from failure to observe the safety instructions

This hydraulic excavator has been built in accordance with state-ofthe-art standards and recognized safety regulations.

Nevertheless, its use may constitute a risk if it continues to be operated despite damage being suspected or having occurred, or if it is inexpertly repaired.

There is then a risk of

- life-threatening injury
- irreparable damage to the machine and other assets.

The hydraulic excavator must be stopped immediately if suspected damage or damage that has occurred affects the safety of the operator, other persons at the excavator deployment site, or other assets. All components are carefully coordinated. Trouble-free operation and a long service life are assured only if original spare parts are used.

SUMMARY

SAFETY INSTRUCTIONS	SECT. 0
TECHNICAL DATA AND SPECIAL TOOLS	SECT. 1
MACHINE STRUCTURE	SECT. 2
ELECTRICAL SYSTEM	SECT. 3
ELECTRONICS	SECT. 4
HYDRAULICS	SECT. 5
CALIBRATION	SECT. 6
TROUBLESHOOTING	SECT. 7
REPAIR INSTRUCTIONS	SECT. 8

SECTION 0

INDEX

SAFETY INSTRUCTIONS	0-1
Personal safety instructions	0-1
Observe the safety instructions	
Protection from noise	0-1
Preparing for emergencies	
Wearing protective clothing	
Safety instructions before starting work	0-3
Checking the machine	0-3
Keeping the working area clean	
Using grab handles and steps	
Adjusting the operator's seat	
Applying the safety belt	0-5
Working from the operator's seat only	0-5
Never take passengers on the machine	0-5
Safety instructions for machine operation	0-6
Before setting off	
Note the position of the working equipment	0-6
Taking care during operation	0-6
Taking care when trenching	
Distance from overhead power lines	0-7
Accident Prevention when reversing and slewing	
Rules for driving on the road	
Recovering and towing the machine	0-9
Travelling uphill and downhill	0-10
Preventing the machine from overturning	0-11
Inspecting the deployment location	0-11
Parking the machine safely	
Preventing accidents when the machine is moving	
Confirming the direction of machine travel.	
Avoid Caving out high banks	
Never move the bucket above persons	
·	
Safety instructions, maintenance/servicing	0-15
Safety during transport	0-15
Safety during servicing operations	0-16
Warning instructions for servicing work	0-17
Correct machine support	
working at greater heights	
Keeping clear of moving parts	
Prestressed units	
Never remove lead seals	0-19

Dismantling components0-20After repair work0-20Correct waste disposal0-20Welding operations0-21Starting the engine with starter batteries0-22Prevention of acid-induced burns0-22Prevention of scalding0-23Safe handling of fluids0-23Fire prevention0-24Evacuation in case of fire0-25Risks from exhaust gases0-25Risks from fluids in pressure systems0-26Preventing heat build-up close to pressure systems0-27Preventing heat build-up in lines carrying combustible fluids0-27Preventing heat build-up in lines carrying combustible fluids0-27Risks from breaking-away components0-29Use appropriate tools0-29Varning and instruction signs0-30Signs0-30Positioning of signs0-31Organizational measures0-33Selection and qualification of personnel; basic responsibilities0-33	Safety instructions for accumulators	
After repair work 0-20 Correct waste disposal 0-20 Welding operations 0-21 Starting the engine with starter batteries 0-22 Prevention of acid-induced burns 0-23 Safe handling of fluids 0-23 Fire prevention 0-24 Evacuation in case of fire 0-23 Risks from exhaust gases 0-25 Risks from fluids in pressure systems 0-26 Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-29 Warning and instruction signs 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-33 Selection and qualification of personnel; basic responsibilities 0-33	Dismantling components	
Correct waste disposal0-20Welding operations0-21Starting the engine with starter batteries0-22Prevention of acid-induced burns0-22Prevention of scalding0-23Safe handling of fluids0-23Safe handling of fluids0-23Fire prevention0-24Evacuation in case of fire0-25Risks from exhaust gases0-25Risks from exhaust gases0-26Preventing heat build-up close to pressure systems0-27Preventing heat build-up in lines carrying combustible fluids0-27Removing paint before welding0-28Risks from breaking-away components0-29Use appropriate tools0-30Signs0-30Positioning of signs0-31Organizational measures0-33Selection and qualification of personnel; basic responsibilities0-33	After repair work	
Welding operations0-21Starting the engine with starter batteries0-22Prevention of acid-induced burns0-22Prevention of scalding0-23Safe handling of fluids0-23Fire prevention0-24Evacuation in case of fire0-25Risks from exhaust gases0-26Preventing heat build-up close to pressure systems0-26Preventing heat build-up in lines carrying combustible fluids0-27Removing paint before welding0-28Risks from breaking-away components0-29Use appropriate tools0-30Signs0-30Positioning of signs0-31Organizational measures0-32Selection and qualification of personnel; basic responsibilities0-33	Correct waste disposal	
Starting the engine with starter batteries 0-22 Prevention of acid-induced burns 0-22 Prevention of scalding. 0-23 Safe handling of fluids. 0-23 Fire prevention 0-24 Evacuation in case of fire 0-25 Risks from exhaust gases 0-25 Risks from fluids in pressure systems 0-26 Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding. 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-29 Warning and instruction signs 0-30 Organizational measures 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Welding operations	
Prevention of acid-induced burns0-22Prevention of scalding0-23Safe handling of fluids0-23Fire prevention0-24Evacuation in case of fire0-25Risks from exhaust gases0-25Risks from fluids in pressure systems0-26Preventing heat build-up close to pressure systems0-27Preventing heat build-up in lines carrying combustible fluids0-27Removing paint before welding0-28Risks from breaking-away components0-29Use appropriate tools0-30Signs0-30Positioning of signs0-31Organizational measures0-32Selection and qualification of personnel; basic responsibilities0-33	Starting the engine with starter batteries	
Prevention of scalding. 0-23 Safe handling of fluids. 0-23 Fire prevention 0-24 Evacuation in case of fire 0-25 Risks from exhaust gases 0-25 Risks from fluids in pressure systems 0-26 Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding. 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-29 Warning and instruction signs. 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Prevention of acid-induced burns	
Safe handling of fluids 0-23 Fire prevention 0-24 Evacuation in case of fire 0-25 Risks from exhaust gases 0-25 Risks from fluids in pressure systems 0-26 Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-29 Warning and instruction signs 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Prevention of scalding	
Fire prevention 0-24 Evacuation in case of fire 0-25 Risks from exhaust gases 0-25 Risks from fluids in pressure systems 0-26 Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Safe handling of fluids	
Evacuation in case of fire0-25Risks from exhaust gases0-25Risks from fluids in pressure systems0-26Preventing heat build-up close to pressure systems0-27Preventing heat build-up in lines carrying combustible fluids0-27Removing paint before welding0-28Risks from breaking-away components0-29Use appropriate tools0-20Warning and instruction signs0-30Signs0-30Positioning of signs0-31Organizational measures0-32Selection and qualification of personnel; basic responsibilities0-33	Fire prevention	
Risks from exhaust gases 0-25 Risks from fluids in pressure systems 0-26 Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-29 Warning and instruction signs 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Evacuation in case of fire	
Risks from fluids in pressure systems 0-26 Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-20 Warning and instruction signs 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Risks from exhaust gases	
Preventing heat build-up close to pressure systems 0-27 Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-29 Warning and instruction signs 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Risks from fluids in pressure systems	
Preventing heat build-up in lines carrying combustible fluids 0-27 Removing paint before welding. 0-28 Risks from breaking-away components 0-29 Use appropriate tools 0-29 Warning and instruction signs. 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Preventing heat build-up close to pressure systems	
Removing paint before welding. 0-28 Risks from breaking-away components. 0-29 Use appropriate tools. 0-29 Warning and instruction signs. 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Preventing heat build-up in lines carrying combustible fluids	
Risks from breaking-away components 0-29 Use appropriate tools 0-29 Warning and instruction signs 0-30 Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	Removing paint before welding	
Use appropriate tools	Risks from breaking-away components	
Warning and instruction signs	Use appropriate tools	0-29
Warning and instruction signs	Manning and instruction sizes	0.00
Signs 0-30 Positioning of signs 0-31 Organizational measures 0-32 Selection and qualification of personnel; basic responsibilities 0-33	warning and instruction signs	
Organizational measures	Signs	
Organizational measures	Positioning of signs	
Selection and qualification of personnel; basic responsibilities	Organizational measures	0-32
	Selection and qualification of personnel; basic responsibilities	
Safety instructions governing specific operational phases	Safety instructions governing specific operational phases	
Warning of special dangers	Warning of special dangers	

SAFETY INSTRUCTIONS

Personal safety instructions

Observe the safety instructions

- Read carefully through all safety instructions attached to the machine and observe them; read all safety instructions in this manual in addition.
- Safety instruction stickers/plates must be affixed, maintained and replaced when necessary.
- If a safety instruction sticker/plate or this manual is damaged or missing, obtain a replacement from your dealer. The procedure is the same as when ordering spare parts (it is essential to quote the machine type and the serial number).
- Familiarize yourself with the correct, safety-oriented procedure for operating the machine and its control elements.
- Allow only trained, qualified and authorized persons to operate the machine.
- Keep the machine in good working order.
- Unauthorized modifications to the machine may affect its efficiency and/or safety and reduce its service life.
- The instructions given in this Safety Instructions section are designed to show the fundamental safety procedures for the machine. However, they cannot cover all hazardous situations with which you may be confronted. If in doubt, consult your immediate superior before operating the machine or carrying out servicing work.

Protection from noise

Sustained effects of noise may lead to impaired hearing or deafness.

Wear appropriate ear protectors such as earplugs or muffs for protection from disturbing or intolerable noise.

Preparing for emergencies

Be prepared for the event of a fire breaking out or an accident occurring.

Keep the first-aid box and the fire extinguisher readily accessible at all times.

Read the instructions for operating the fire extinguisher and learn how to use it properly.

Stipulate emergency procedures for the event of fire or accidents.

Keep the emergency numbers of doctors, emergency services, hospitals and the fire service in the immediate vicinity of the phone.

Wearing protective clothing

Wear close-fitting clothing and pro- tective equipment suited to the work.
You need:
- a safety helmet
- safety footwear
- goggles or face guard
- protective gloves
- ear protectors
- reflective clothing
- waterproof clothing
- respirator or filtering mask.
Ensure that you wear the right equipment and clothing for the job.
- Never take risks.
 Never wear loosely fitting cloth- ing, jewellery or other objects that might get caught on operating levers or other machine compo- nents.
Safe operation demands the op- erator's complete attention. Never wear headphones to listen to the radio or to music while operating the machine.

Safety instructions before starting work

Checking the machine

Before starting up the machine each day or before each shift, give the outside of the machine a careful visual inspection to prevent damage and injury.

- Check the machine for superficial damage.
- Check before starting work that all covers and caps are closed and locked.

Keeping the working area clean

Clean the working area before starting work.

- Remove any objects that might endanger the mechanics or persons in the working area.
- Keep your cab clean and cleared; loose items may disturb the machine operation.

Fig. 2

Using grab handles and steps

Falls are one of the main causes of injury.

- Always face the machine when entering or leaving it, and use only the aids provided, e.g. steps and handrails.
- Never use operating elements as grab handles.
- Never jump down from the machine.
- Never climb up onto or down from a moving machine.
- Watch for slippery platforms, steps and handles when leaving the machine.

Adjusting the operator's seat

A seat that is poorly adjusted with respect to the operator or the working conditions may result in premature operator fatigue and thus in faulty operation.

- The seat must be adjusted with any change of machine operator.
- The operator must be able to depress the pedals completely and move the control levers effortlessly with his back resting against the backrest.

If that is not possible, move the seat forward or back and check the setting again.

Consult the relevant section in the Owner's Manual.

Fig. 3

Applying the safety belt

If the machine overturns, the operator may be injured and/or thrown out of the cab. He may be severely injured or even crushed to death by the overturning machine.

- Before operating the machine, check the belt fabric, the closure and the fastening components carefully. If one of the parts is damaged or worn, replace the safety belt or the components before starting up the machine.
- Always remain seated and keep the safety belt fastened while operating the machine. This will help minimize the risk of injury in the event of an accident.

The safety belt must be replaced after any serious accident even if it appears to be undamaged.

Fig. 5

Working from the operator's seat only

Starting up the engine incorrectly may cause the machine to make unexpected movements that might lead to severe, even fatal, injury.

- Always start up the engine from the operator's seat only.
- Never start the engine by shortcircuiting the starter.
- After starting up the engine, check that all driving levers, driving pedals and control levers are in neutral position.

Never take passengers on the machine

Passengers on the machine may suffer injury e.g. from foreign bodies or through being thrown off.

- Only the operator is allowed onto the machine. Never take passengers.
- Passengers also obstruct the operator's view so that the machine is no longer safely operated.

Safety instructions for machine operation

Before setting off

Never allow other persons to travel with you on the machine.

Note the position of the working equipment

Never drive with the working equipment extended, as that may impair the stability of the machine. Bring the working equipment as close as possible to the machine.

Taking care during operation

If the front equipment or another part of the machine collides with a higher obstacle, e.g. a bridge, both the machine and the other object are damaged, and persons may be injured.

Take care to prevent the boom or stick from colliding with higher obstacles.

Taking care when trenching

The inadvertent severing of underground cables or gas pipes may cause an explosion and / or fire. This may result in severe, potentially fatal injury.

- Before doing any trenching work, check the course of cables, gas pipes and water pipes.
- Observe the statutory minimum distance from cables, gas pipes and water pipes. Never look into the end of an inadvertently severed fibre-optics cable, as that may severely injure the eyes.

Contact the local authorities and / or supply enterprises (electricity, gas, water, sewage, telecommunications etc.) to obtain information on underground supply lines.

Distance from overhead power lines

Severe, potentially fatal injury may result from the machine or the front equipment not being kept well clear of overhead power lines.

- If work is being done close to an overhead power line, <u>no</u> part of the machine or the load must come within a distance of 3 m plus twice the length of the overhead power line insulator from the power line.
- Check out and observe the relevant local regulations.
- Wet ground increases the range in which a person may get an electric shock.
- Keep all persons or colleagues clear of the location.

After contacting live wires

- Do not leave the machine.
- Drive the machine out of the hazard zone. Warn others against approaching and touching the machine.
- Have the live wire de-energized.

Do not leave the machine until the contacted / damaged line has been de-energized with absolute certainty.

Accident Prevention when reversing and slewing

To prevent accidents during reversing and slewing:

- Enlist the assistance of a marshaller if your view is restricted.
- Always look in all directions <u>be-fore</u> reversing or slewing. Make sure there is no one in the imme-diate vicinity.
- Keep the acoustic reversing alarm (if present) in a good operating state.
- Always be prepared for the possibility of persons entering the hazard zone. Use the horn or another signal to warn any persons in the immediate vicinity.
- Enlist a marshaller for reversing if your view is restricted. Always ensure that the marshaller is within sight.
- The machine must not be moved until agreement has been reached with the marshaller on correct interpretation of the signals.
- Familiarize yourself with the meaning of all markings, signs and designations used in the operation and come to an agreement on them with the marshaller.

- Keep windows, mirrors and headlamps clean and in good order.

- Dust, heavy rain, fog, etc. may reduce visibility. If this is the case, reduce your speed and switch on appropriate lighting.

Read the Owner's Manual carefully.

Rules for driving on the road

The machine must not be driven on the public highway unless the conditions of the "General Operating Permit" are observed or, in the event of deviations from the "General Operating Permit", a vehiclespecific operating permit has been granted. These permits must be present in the cab during such travel.

- Always have a warning triangle, warning lamp and first-aid kit on board.
- Bring the working equipment into a position in which the maximum machine dimensions are not exceeded.
- Switch the bucket/grab switchover valve to "Grab" position. The bucket cylinder is then hydraulically blocked.
- Mount clearance lamp on stick and connect to a socket.
- Raise levelling blade completely and attach a reflector.
- Raise claws (option) completely and block mechanically.
- Switch off floodlamps.
- Lock superstructure.

Recovering and towing the machine

Tow the machine with a tow-rod or towing rope only.

The tow-rod or rope must be free from damage. They must be dimensioned in such a way that the calculated breaking load is equal to three times the tractive power of the towing machine.

The towing vehicle must have adequate tractive power.

Drive slowly, carefully and smoothly.

All persons must keep clear of the tow-rod or rope.

Tow only if the brakes and the steering of the machine are functioning properly and if the machine cannot be otherwise transported.

- Tow defective machines only as far as necessary to recover the machine from hazardous areas.
- After the recovery, the machine must be secured against inadvertent movements and unauthorized starting.
- Have the machine repaired before transporting it over greater distances, or load it onto a transport vehicle.
- The machine is not suitable for towing trailers or other vehicles over longer distances; this would result in damage to axles and gearboxes. The tow coupling is designed solely for towing or recovering vehicles from hazardous areas or for lashing purposes on transport vehicles.

Travelling uphill and downhill

Before starting up the machine, read through the Owner's Manual carefully.

- Before driving the machine, put it into neutral position (see Owner's Manual).
- Never drive down slopes with a gradient of more than 30°. Take an alternative route with lower gradients.
- Keep the bucket 20 30 cm above the ground on the uphill side while travelling uphill or downhill.
- If the machine starts to slip or to lose its stability, lower the bucket immediately.
- Driving across slopes may cause the machine to slip or overturn.
- Steering manoeuvres on slopes may cause the machine to over-turn.
- Never coast downhill. This may result in a loss of control over the vehicle and in severe damage to property as well as fatal injury.
- Always change to first gear <u>before</u> the downhill / uphill slope. This increases the brake action of the travel motor, preventing inadmissibly high travel speeds.
- When working on a slope, the fuel tank must be topped up as soon as the fuel indicator lights up.

Fig. 12

Preventing the machine from overturning

Working on slopes always entails a risk of the machine overturning. This may result in severe, potentially fatal injury.

To prevent overturning:

- Exercise special care when working on a slope.
- Prepare the working area of the machine by levelling it.
- Keep the bucket close to the ground and to the machine.
- Reduce the working speed of the machine to prevent overturning or slipping.

Avoid changing direction when driving on a slope.

- Always try to avoid crossing a slope with a gradient of more than 5 degrees.
- When slewing a load, reduce the slewing speed to meet safety requirements.

Special care must be taken when working on frozen ground.

- A rise in temperature softens the soil, impairing the stability of the machine during travel.

Inspecting the deployment location

Working at the edge of excavations or on the verge of a road entails a risk of the machine overturning. This may result in severe, potentially fatal injury.

- Before starting work, inspect the site and the ground conditions to prevent any risk of the machine overturning and of the ground, a stockpile or a wall giving way.
- If necessary, the ground, excavation site edges and verges must be reinforced. Keep sufficient clearance with the machine from the edges of the excavation site and the verges.
- When working on a slope or on the verge of a road, enlist the services of a marshaller if necessary.
- If the ground has a poor loadbearing potential, reinforce it before starting work.
- Special attention is needed when working on frozen ground. If the ambient temperature rises, the ground becomes soft and slippery.

Parking the machine safely

To prevent accidents:

- Park on a flat, horizontal surface.
- Turn the brake switch to braking position.
- Set the working equipment down on the ground.
- Lower the levelling blade and/or the outrigger claws onto the ground.
- Engage the superstructure lock.
- Run the engine unloaded at minimum speed for ca. 5 minutes.
- Turn the ignition key to OFF position to switch off the engine. Then withdraw the key.
- Move the steering safety lever to block the machine.
- Lock the windows, the sliding roof and the cab door.
- Lock all covers and flaps.

Fig. 17

Preventing accidents when the machine is moving

Severe or fatal accidents may result from an attempt to enter or leave a moving machine.

- Before leaving the operator's seat, select a flat, horizontal area for parking if possible.
- Park the machine safely.
- Block both wheels and set the working equipment down on the ground.
- Park at a reasonable distance from other vehicles.

Confirming the direction of machine travel

Inadvertent activation of the operating pedal may result in severe damage or fatal accidents.

Check the machine position. Read the corresponding section in the Owner's Manual.

Avoid caving out high banks

Fig. 19

Protection from rockfall and landslides

Before working at locations with a risk of rockfall, make sure your machine has a cab with a Falling Object Protective Structure (FOPS).

Fig. 20

Caving prevention

To reverse away from the edge of an excavation in the event of the ground giving way, the tracks must always be positioned with the rear travel motors at right angles to the edge of the excavation.

Do not panic if the ground starts to give way and adequate withdrawal is impossible. In such cases the machine can often be secured by lowering the front equipment.

Fig. 21

Never move the bucket above persons

The bucket must never be lifted, moved or slewed above persons or a truck cab.

Material falling from the bucket or a collision with the bucket may result in injury and in damage to the machine.

Fig. 22

Safety instructions, maintenance/servicing

Safety during transport

There is a risk of the machine overturning when it is being loaded onto a truck or trailer and when it is being unloaded.

- Ensure that local regulations are observed when the machine is being transported on the public highway.
- An appropriate truck or trailer must be provided for the transport of the machine.

When loading/unloading the machine, the following precautions must be taken:

- Find firm, horizontal ground.
- Always use a loading platform or drive-on ramp.
- A marshaller must be enlisted to help with loading/unloading the machine.
- When loading or unloading the machine, the automatic speed reset must always be switched off to prevent an unexpected increase in speed due to inadvertent activation of an operating lever.

Always set the transmission stage switch to "slow".

In the "fast" transmission stage, the travelling speed may be automatically increased.

- Avoid steering movements when driving up or down the ramp, as that is extremely dangerous. If steering is absolutely essential, first drive back onto the ground or the loading area, correct the driving direction, and set off again.

At the top end of the ramp, which adjoins the loading area, there is a joint. Drive over it with care.

- When slewing the superstructure, avoid fast movements as they might cause the machine to overturn, resulting in potential injury.
- Keep the stick retracted and turn the superstructure slowly to ensure maximum stability.
- Secure the machine frame with chains or cables.

Details are given in the appropriate sections of the Owner's Manual.

Fig. 23

Safety during servicing operations

To prevent accidents:

- Before starting work, familiarize yourself with the servicing procedure.
- Keep the working area clean and dry.
- Never perform any lubrication or servicing work while the machine is in motion.

Before carrying out servicing work on the machine:

- Park the machine safely.
- Never leave the machine unsupervised if servicing work has to be carried out with the engine running.
- If the machine has to be raised, the boom and stick must be positioned at an angle of 90 - 110°. Secure the machine components that have to be raised for servicing or repair work with appropriate supports.
- Work must never be done under a raised machine that is supported by the boom.

Certain components have to be checked at regular intervals and repaired or replaced if necessary. Details are given in the corresponding sections of the Owner's Manual.

- Use original spares only.
- All components must be kept in a good state and correctly installed. Any defect must be repaired immediately.
- Any damage must be rectified immediately. Worn or nonfunctioning components must be replaced. Remove any lubricating grease, oil and dirt deposits.

Disconnect the cable from the negative pole of the battery before doing any work on the electrical system or arc welding on the machine.

Fig. 24

Warning instructions for servicing work

Correct machine support

Never carry out work on the machine without first securing it.

- Always lower the working equipment or the tool onto the ground before working on the machine.
- If you have to work on a raised machine or raised working equipment, stabilize the machine or working equipment with a support.
- The machine must not be supported with hollow blocks, tyres or supports that give way when continuously loaded.
- Never work under a machine that is supported with lifting gear only.

Working at greater heights

Always wear a safety harness when working at greater heights.

Wear an approved safety harness; it must be equipped with stabilizers and safety cables.

Keeping clear of moving parts

Catching in moving parts may result in severe injury.

To prevent accidents, care must be taken to ensure that hands, feet, clothing, jewellery and hair cannot get caught in moving parts when work is being done close to them.

Fig. 28

Prestressed units

Never open defective prestressed systems but replace the entire system.

Open only in exceptional cases, when the system and the operational sequence are exactly known and the necessary special tools are available.

Never remove lead seals

Never change the rated pressure of pressure-reducing valves without the explicit authorization of the manufacturer.

Never remove lead seals from pressure-reducing valves and accumulators.

Safety instructions for accumulators

Accumulators are installed in the hydraulic system. They contain nitrogen under high initial pressure.

Even when the hydraulic system has been depressurized, the nitrogen pressure is maintained in the accumulator.

The accumulators are completely safe in operation. If incorrectly handled, however, there is a risk of explosion.

The accumulators installed in this machine cannot be repaired. Defective accumulators must be replaced.

Never handle accumulators mechanically, never weld or solder them.

Before dismantling the accumulator, put on goggles and working gloves, and depressurize the hydraulic system.

Use original spares only. If in doubt, contact your local agent or the after-sales service.

Never remove or paint over warning and information plates, rating plates or type identification markings. Replace illegible or damaged plates immediately.

Dismantling components

Never dismantle while the machine is still at operating temperature. Oils, greases, brake fluid or coolant

may have a high temperature and thus result in burning or scalding.

Wait for the machine to cool down.

Depressurize pipelines and hoses, cylinders, radiator, hydraulic tank, compressed air reservoir and other systems or units before starting work.

Replace defective components in good time to prevent greater damage.

Clean the defective component carefully before dismantling it.

Mark dismantled components in the correct sequence to facilitate installation.

When dismantling the component, close exposed hose and pipe connections, open boreholes and housings with care to prevent dirt from penetrating.

After repair work

To prevent corrosion, coat all bright metal machine components with a grease film.

On completing the work, reassemble all protective devices, covers, and sound- and vibration-insulation material.

Never start up the driving motor while work is being done on the machine.

Check the repaired components and all machine functions with a trial run.

Never release the machine for recommissioning until it is fully functioning.

Correct waste disposal

Incorrectly discarded waste is an environmental hazard. Hazardous substances used in excavators include lubricants, fuels, coolants, brake fluids, filters and batteries.

- Use sealed containers to discard fluids. Never use containers designed for food or drinks.
- Never discard waste onto the ground, into drains or into water.

Ask your local authorities, collection points or dealer about the correct procedure for recycling or discarding waste.

Welding operations

Before any welding operations on the machine:

- Disconnect the battery, first at the negative and then at the positive pole.
- Disconnect the positive pole at the alternator.
- Protect disconnected terminals and plugs from short-circuiting and contamination by covering them with foil or adhesive strips.

Bring the welding current terminals as close as possible to the welding point.

The welding current must not flow through the slewing ring, pin couplings, link joints or hydraulic cylinders.

Restore all electrical connections after completion of welding operations.

When connecting the battery, connect first the positive pole terminal and then the negative pole terminal.

Starting the engine with starter batteries

Battery gas may explode, causing damage and injury.

If the engine is to be started up with starter batteries, ensure that all procedures described in the Owner's Manual are observed.

- The operator must be seated on the driver's seat to keep the machine under control when the engine starts up. Two persons are needed to start up the engine with starter batteries.
- Never use batteries that have been stored for long periods at low temperatures.
- Mistakes in implementing the procedure specified for starting up the engine with starter batteries may result in a battery explosion or unexpected machine movements.

Battery gases may explode.

- Keep sparks, lit matches or open flames away from the upper side of batteries.
- The battery charge must never be controlled by applying a metal object to both pole terminals. Use a voltmeter or an acidity meter.
- A frozen battery must not be charged; it may explode. Heat the battery up to 16 °C.

Battery acid is toxic. If the battery explodes, battery acid may splash into the eyes with a potential risk of blinding.

- You must wear eye protection when checking battery acidity.

Prevention of acid-induced burns

The sulphuric acid contained in the battery is toxic. It is so strong that it may burn the skin, burn holes in clothing and, if splashed into the eyes, lead to blinding. Therefore:

- Top up the batteries on well ventilated premises only.
- Wear goggles and rubber gloves.
- Take care not to inhale the electrolyte vapours while topping up the batteries.
- Make sure no electrolyte is spilt or runs over.
- Use appropriate starting aids in an emergency.

If splashed with acid:

- Rinse the skin with plenty of water.
- Neutralize the acid by spreading sodium bicarbonate or fuller's earth over it.
- Rinse out the eyes for 10-15 minutes with water.
- Seek medical advice immediately.

If acid has been swallowed:

- Drink large quantities of water or milk, milk of magnesia, raw beaten egg or vegetable oil.
- Seek medical advice immediately.

Prevention of scalding

Hot, spattering fluids:

- After machine operation the engine coolant is hot and under pressure. Hot water or steam is contained in the engine, radiator and heating lines. If escaping hot water or steam touches the skin, it may cause severe scalding.
- To prevent potential injury through hot, spattering water: Never remove the radiator cover until the engine has cooled down. To open the cover, turn it slowly as far as the limit stop. Depressurize the radiator completely before opening the cover.

The hydraulic tank is under pressure. Depressurize it completely before removing the cover.

Hot fluids and surfaces:

Engine oil, gearbox oil and hydraulic oil also heat up during operation.

The engine, hoses, lines and other components also heat up.

Give the oil and the components time to cool down before starting servicing or inspection work.

Fig. 31

Safe handling of fluids

Handle fuel with care: it is highly flammable. Igniting fuel may result in an explosion or a fire with the risk of severe, potentially fatal injury.

- When refuelling the machine, smoking and the use of open flames or sparks in the immediate vicinity are prohibited.
- Always shut off the engine before refuelling.
- Refuelling must be done in the open air.

All fuels, most lubricants and some antifreezes are flammable.

- Flammable fluids must be stored where they are protected from fire.
- Pressurized containers must not be opened with force or incinerated.

Never keep oily rags: risk of selfcombustion and fire.

Fire prevention

Checking for leakages:

Leakages of fuel, hydraulic oil and lubricants may cause fires.

- Check whether clips are missing or loose, hoses are kinked, lines or hoses rub against one another, the oil cooler is damaged or oil cooler flange screws are loose, allowing oil to escape.
- Missing, loose or damaged clips, lines, hoses, oil coolers or oil cooler flange screws must be replaced, tightened or repaired.
- High-pressure lines must not be bent or hammered.
- Never install bent or damaged lines, tubes or hoses.

Checking for short-circuits:

- Short-circuits may cause fires.
- Ensure that all electrical connections are clean and have a firm fit.

Check before each shift or after ca. ten operating hours whether electric cables or lines are loose, kinked, hardened or worn through.

- Check before each shift or after ca. ten operating hours whether terminal caps are missing or damaged.
- Never start up the machine if cables or lines are loose, kinked, etc.

Removal of flammable substances:

- Spilt fuel or lubricant, waste, lubricating grease, dirt, coal dust deposits and other flammable substances may cause fires.
- To prevent fires, the machine must be checked and cleaned once a day. Any spillages or deposits of flammable substances must be cleared away immediately.

Checking the ignition key function:

- If the engine is not shut off when fire breaks out, the fire will spread, impeding fire-fighting operations.
- Before starting daily machine operations, the ignition key must be checked for correct functioning.

Start up the engine and run it at a low idling speed.

To confirm that the engine is shut off, turn ignition key to OFF position.

- Any irregularities that are detected must be rectified before the machine is put into operation.

Checking heat shields:

The absence of heat shields or any damage to them may result in fire breaking out.

Damaged or missing heat shields must be repaired or replaced before the machine is put into operation.

Evacuation in case of fire

If a fire breaks out, evacuate the machine as follows:

- If there is sufficient time, shut off the engine by turning the ignition key to OFF position.
- If there is sufficient time, use the fire extinguisher.
- Leave the machine.

Risks from exhaust gases

Prevent the risk of suffocation. Engine exhaust gases may cause nausea or even death.

- If you have to work in a building, make sure there is adequate ventilation.

Use an exhaust pipe extension to remove the exhaust gases, or open doors and windows to let in sufficient fresh air.

Fig. 33

Risks from fluids in pressure systems

- Cut out this risk by depressurizing the system before disconnecting hydraulic or other lines.
- Tighten all connections before pressurizing the system.
- Using a piece of card, search for any leakages; be sure to protect hands and body from fluids under high pressure. Wear a face guard or goggles to protect your eyes.

Seek medical advice immediately after an accident. Any fluid that has penetrated the skin must be removed surgically within a few hours to prevent severe infection (gangrene).

Fig. 35

Preventing heat build-up close to pressure systems

Never carry out heat-generating welding or soldering work close to pressurized fluid lines or other highly flammable substances, and never use a flame cutter there.

Pressure lines may be inadvertently cut if the heat goes beyond the immediate flame area. To provide temporary protection for hoses or other materials, mount fire-resistant shields when carrying out welding or soldering work. Preventing heat build-up in lines carrying combustible fluids

- Never carry out welding or flamecutting work on pipes or lines carrying combustible fluids.
- Flush them out with a non-flammable solution before welding or flame-cutting them.

Removing paint before welding

Hazardous fumes may develop if paint is heated by welding, soldering or the use of a flame cutter. These fumes may affect your health if inhaled.

- Avoid inhaling potentially toxic fumes and dust.
- Carry out such work only in the open air or on well ventilated premises.
- Paints and solvents must be discarded in accordance with local environmental regulations.

Remove paint prior to welding or heating:

- When rubbing down paint, avoid inhaling the dust.
- Wear an approved respiratory mask.
- When using a solvent or paint remover, remove the agent with soap and water before any welding operations. Remove all solvent or paint remover containers and other inflammable materials from the working area. Give the fumes at least 15 minutes to dissipate before any welding or heating.

Risks from breaking-away components

The tyres are inflated under pressure Bursting tyres and breakingaway rim parts may cause serious damage or fatal accidents.

- Tyres must be changed by experts only.
- Always ensure that the tyre pressure is correct. Insufficient tyre pressure means greater wear on the tyres and poor machine stability.
- Excessively high tyre pressure means poor handling properties on terrain and a risk of bursting tyres.
- Prior to inflating tyres, check rims and rim components for damage, penetrating foreign bodies and a firm fit.
- Never inflate tyres above the recommended pressure.
- Leave tyres to cool down before working on them.
- Use only compressed ambient air to inflate tyres. Never use combustible gases: risk of explosion.

Use appropriate tools

Use only tools suited to the respective work.

Inappropriate tools, components and procedures may result in hazardous situations.

Use tools whose length is suitable for the tightening or loosening of safety elements to prevent injuries resulting from failure to control a wrench.

Never use tools complying with US standards or British standards for metric connection elements.

Use original spares only (see spareparts catalogue).

Warning and instruction signs

Observe the warning and instruction signs attached to the machine.

Keep the signs clean and legible. Replace signs as soon as they become illegible. New warning and instructions signs can be ordered from the O&K Spare-Parts Service. The part numbers required for orders can be found in the spare-parts list of your machine.

Signs

Number	Description	Symbol
1	Do NOT put the machine into operation without having read and under- stood the Owner's Manual.	
2	Risk of injury from working equipment being moved. Never move working equipment until the hazard zone is clear of all persons.	
3	Risk of injury from a falling load or moving working equipment. Always keep clear of the area below a lifted load or working equipment.	
4	Damage to alternator, controller and electronic modules is possible if the battery is disconnected while the engine is running. Therefore, always shut off the engine before disconnecting and removing batteries.	
5	Risk of injury from the slewing superstructure or the moving machine. Never slew the superstructure or drive the machine until the hazard zone is clear of all persons.	
6	Risk of injury from hot or rotating components in the engine compart- ment. Never open the engine compartment cover until the engine has been shut off.	
7	This sign shows that the working equipment projects far beyond the machine and that it can be moved without the machine being moved.	
8	Risk of injury from electric current. Keep clear of live cables. Distances:	
	up to 1000 V (1 kV) = 1 meter, from 1 kV to 110 kV = 3 meter, from 110 kV to 220 kV = 4 meters, from 220 kV to 380 kV = 5 meters, unknown voltage = 5 meters.	
9	Lifting gear can be attached at this point if machine components have to be dismantled.	
10	Lashing gear must be attached at this point if the machine is to be transported.	

Positioning of signs

Organizational measures

The Owner's Manual must always be at hand at the deployment site of the machine, e.g. in the container provided.

In addition to the Owner's Manual, observe and instruct the user in all other generally applicable statutory and other mandatory regulations relevant to accident prevention and environmental protection.

These compulsory regulations may also deal, for example, with the handling of hazardous substances, the issuing/wearing of personal protective equipment, or traffic regulations.

The Owner's Manual must be supplemented by instructions covering the duties involved in supervising and notifying special organizational features, such as job organization, working sequences or deployed personnel.

The personnel assigned to work on the machine must have read the operating instructions and in particular the Safety Instructions section before starting work. Reading the instructions after work has begun is too late. This applies especially to persons working only occasionally on the machine, e.g. during setting-up or servicing.

Check at least occasionally whether the work is being carried out in compliance with the Owner's Manual and with attention being paid to risks and safety factors.

Long hair must be tied back or otherwise secured, garments must be close-fitting, and no jewellery including rings may be worn. Injury may result from such items being caught up in the machinery or catching on moving parts.

Use personal protective equipment wherever required by the circumstances or by law Observe all safety instructions and warnings attached to the machine.

See to it that safety instructions and warnings attached to the machine are always complete and perfectly legible.

In the event of safety-relevant modifications or changes in the behaviour of the machine during operation, stop the machine immediately and report the malfunction to the competent authority/person.

Never make any modifications, additions or conversions which might affect safety without the supplier's approval. This also applies to the installation and adjustment of safety devices and valves as well as to welding work on load-bearing elements.

Spare parts must comply with the technical requirements specified by the manufacturer. Spare parts from original equipment manufacturers can be relied upon to do so.

Replace hydraulic hoses within stipulated and appropriate intervals, even if no safety-relevant defects have been detected.

Adhere to prescribed intervals or those specified in the Owner's Manual for routine checks and inspections.

For the execution of maintenance work, tools and workshop equipment equal to the task on hand are absolutely indispensable.

The personnel must be familiar with the location and operation of fire extinguishers.

Observe all fire-warning and fire-fighting procedures.

Selection and qualification of personnel; basic responsibilities

Any work on / with the machine must be executed by reliable personnel only. Statutory minimum age limits must be observed.

Deploy only trained or instructed staff and set out clearly the individual responsibilities of the personnel for operation, set-up, maintenance and repair.

Make sure that only authorized personnel works on / with the machine.

Define the machine operator's responsibilities – also with regard to observing traffic regulations giving the operator the authority to refuse instructions by third parties that are contrary to safety.

Do not allow persons to be trained or instructed or persons taking part in a general training course to work on or with the machine without being permanently supervised by an experienced person.

Work on the electrical system and equipment of the machine must be carried out only by a skilled electrician or by instructed persons under the supervision and guidance of a skilled electrician and in accordance with electrical engineering rules and regulations.

Work on chassis, brake and steering systems must be performed only by skilled personnel specially trained for such work.

Work on the hydraulic system must be carried out only by personnel with special knowledge and experience of hydraulic equipment.

Safety instructions governing specific operational phases

Standard operation

Avoid any operational mode that might be prejudicial to safety.

Before starting work, familiarize yourself with the surroundings and circumstances of the site, such as obstacles in the working and travelling area, the soil bearing capacity and any barriers separating the construction site from the public highway.

Take the necessary precautions to ensure that the machine is used only when in a safe and reliable state.

Operate the machine only if all protective and safety-oriented devices, e.g. removable safety devices, emergency shut-off equipment, soundproofing elements and extractors, are in place and fully functional.

Check the machine at least once per working shift for obvious damage and defects. Report any changes (incl. changes in the machine's working behaviour) to the competent organization/person immediately. If necessary, stop the machine immediately and lock it.

In the event of malfunctions, stop the machine immediately and lock it. Have any defects rectified immediately.

Start the machine from the driver's seat only.

During start-up and shut-down procedures always watch the indicators in accordance with the Owner's Manual.

Before setting the machine in motion, make sure that nobody is at risk.

Before starting work or travelling with the machine, check that the braking, steering, signalling and lighting systems are fully functional.

Before setting the machine in motion always check that the accessories have been safely stowed away.

When travelling on public roads, ways and places, always observe the valid traffic regulations and, if necessary, make sure beforehand that the machine is in a condition compatible with these regulations.

In conditions of poor visibility and after dark always switch on the lighting system.

Persons accompanying the driver must be seated on the passenger seats provided for this purpose.

When driving through underpasses or tunnels, over bridges or under overhead lines, always make sure that there is sufficient clearance.

Always keep at a distance from the edges of building pits and slopes.

Avoid any operation that might be a risk to machine stability.

Never travel across slopes; always keep the working equipment and the load close to the ground, especially when travelling downhill.

On sloping terrain always adapt your travelling speed to the prevailing ground conditions. Never change to a lower gear on a slope but always before reaching it.

Before leaving the driver's seat always secure the machine against inadvertent movement and unauthorized use. Shut off the engine.

Special work in conjunction with utilization of the machine - Maintenance and repairs during operation - Disposal of parts and consumables

Observe the adjusting, maintenance and inspection activities and intervals set out in the Owner's Manual, including information on the replacement of parts and equipment. These activities may be executed by skilled personnel only.

Brief operating personnel before beginning special operations and maintenance work, and appoint a person to supervise the activities.

In any work concerning the operation, conversion or adjustment of the machine and its safetyoriented devices or any work related to maintenance, inspection and repair, always observe the start-up and shut-down procedures set out in the Owner's Manual and the information on maintenance work.

Ensure that the maintenance area is adequately secured.

If the machine is completely shut down for maintenance and repair work, it must be secured against inadvertent starting by:

- removing the ignition key and
- attaching a warning sign.

Carry out maintenance and repair work only if the machine is positioned on stable and level ground and has been secured against inadvertent movement and buckling.

To avoid the risk of accidents, individual parts and large assemblies being moved for replacement purposes should be carefully attached to lifting tackle and secured. Use only suitable and technically perfect lifting gear and suspension systems with adequate lifting capacity. Never work or stand under suspended loads.

The fastening of loads and the instructing of crane operators should be entrusted to experienced persons only. The marshaller giving the instructions must be within sight or sound of the operator.

For carrying out overhead assembly work always use specially designed or otherwise safetyoriented ladders and working platforms. Never use machine parts as a climbing aid. Wear a safety harness when carrying out maintenance work at greater heights.

Keep all handles, steps, handrails, platforms, landings and ladders free from dirt, snow and ice.

Clean the machine, especially connections and threaded unions, of any traces of oil, fuel or preservatives before carrying out maintenance/ repair work. Never use aggressive detergents. Use lintfree cleaning rags.

Before cleaning the machine with water, steam jet (high-pressure cleaning) or detergents, cover or tape up all openings which have to be protected against water, steam or detergent penetration for safety and functional reasons. Special care must be taken with electric motors and switchgear cabinets.

Ensure during cleaning of the machine that the temperature sensors of the fire-warning and firefighting systems do not come into contact with hot cleaning agents as this might activate the extinguishing system.

After cleaning, remove all covers and tapes applied for that purpose.

After cleaning, examine all fuel, lubricant, and hydraulic fluid lines for leaks, loose connections, chafe marks and damage. Any defects found must be rectified without delay.

Always tighten any screwed connections that have been loosened during maintenance and repair work.

Any safety devices removed for set-up, maintenance or repair purposes must be refitted and checked immediately upon completion of the maintenance and repair work..

Ensure that all consumables and replaced parts are disposed of safely and with minimum environmental impact.

Warning of special dangers

Electric energy

Use only original fuses with the specified current rating. Switch off the machine immediately if trouble occurs in the electrical system.

When working with the machine, maintain a safe distance from overhead electric lines. If work is to be carried out close to overhead lines, the working equipment must be kept well away from them. Caution: life-threatening danger! Check out the prescribed safety distances.

If your machine comes into contact with a live wire

- Do not leave the machine.
- Drive the machine out of the hazard zone and warn others against approaching and touching the machine.
- Have the live wire de-energized.
- Do not leave the machine until the damaged line has been de-energized with certainty.

The electrical equipment of machines is to be inspected and checked at regular intervals. Defects such as loose connections or scorched cables must be rectified immediately.

Gas, dust, steam and smoke

Operate internal combustion engines and fueloperated heating systems only on adequately ventilated premises. Before starting the machine on enclosed premises, make sure that there is sufficient ventilation.

Observe the regulations in force at the respective site.

Carry out welding, flame-cutting and grinding work on the machine only if this has been expressly authorized, as there may be a risk of explosion and fire.

Before carrying out welding, flame-cutting and grinding operations, clean the machine and its surroundings of dust and other inflammable substances and make sure that the premises are adequately ventilated (risk of explosion).

Hydraulic and pneumatic equipment

Check all lines, hoses and screwed connections regularly for leaks and obvious damage. Repair damage immediately. Splashed oil may cause injury and fire.

Depressurize all system sections and pressure pipes (hydraulic system, compressed-air system) to be removed in accordance with the specific instructions for the unit concerned before carrying out any repair work.

Hydraulic and compressed-air lines must be laid and fitted properly. Ensure that no connections are interchanged. The fittings, lengths and quality of the hoses must comply with the technical requirements.

Noise

During operation, all sound baffles of the machine must be closed.

Always wear the prescribed ear protectors.

Oil, grease and other chemical substances

When handling oil, grease and other chemical substances, observe the product-related safety regulations.

Be careful when handling hot consumables (risk of burning or scalding).

Transporting and towing; recommissioning

The machine must be towed, loaded and transported only in accordance with the Owner's Manual.

For towing the machine observe the prescribed transport position, admissible speed and route.

Use only appropriate means of transport and lifting gear of adequate capacity.

The recommissioning procedure must be strictly in accordance with the Owner's Manual.

SECTION 1

TECHNICAL DATA AND SPECIFICATION

INDEX

SERVICE DATA GENERAL	. 1-1
Foreword	1-1
Data sheet for MH6.6 cylinders	1-2
Data sheet for MH8.6 cylinders	1-3
Bucket-induced protrusion	1-4
SI- and Additional Units	1-6
Quantities of Space and Mass	1-6
Time related Quantities	1-7
Quantities of force, energy and power	1-8
Conversions Tables Part 1	1_9
Conversion for units of leath	1-9
Conversion for units of area	1-9
Conversion from foot and inch to metric mesures	1-10
Conversion from newtonmeter (Nm) into foot pounds (ft lb)	1-11
Conversions Tables Part 2	1 10
Conversion table for units of pressure in gases, steam and fluids	1 10
Conversion table for units of power, energy and beat quantity	. 1-19
Conversion table for units of mechanical stress	1_10
Practically equivalent units for pressure and mechanical stress (strength)	1_20
Units of temperature and conversion formulars	1-20
Power. Energy and heat flow	1-21
Speed	1-22
Units of mass (weight)	1-23
Units of volume, flow rates	1-24
Fuel consumption	1-25
Calculation Examples	1-26
Angles of Slope	1-26
Travel Speed	1-26
Hydraulic outputs (pumps/motors)	1-27
Stroking times of cylinders	1-27
Speeds of hydraulic motors	1-28
Tightening Torques	1-29
General information	1-29
Units of measurement	1-29
Bolts with standard thread DIN 13 – 13	1-30
Bolts with metric fine thread DIN 13 – 13	1-31
Tightening torques for SAE flange – system	1-32
Tightening angles	1-32
Special tools for cylinders	1-33
Screwed hex insert for piston nut	1-33
Sealing kit – Assembly	1-33
Scraper ring – Assembly	1-33

Bushes - Dismantling	1-33
Rod guide assembly.	1-34
Piston nut loosening and tightening	1-34
Special tools for axles and gearboxes	1-35
Axial stress meter	1-35
Bearing friction moment adjusting device	1-35
Driving tool for bushing	1-35
Driving tool for bushing	1-35
Assembly aid for shaft seals	1-35
Master shaft	1-35
Master shaft	1-36
Extraction device	1-36
Driving tool	1-36
Driving tool	1-36
Driving tool	1-36
Assembly aid	1-36
Assembly aid	1-37
Brake centering device	1-37
Tool handle	1-37
Hydraulic pump	1-37
Measuring device	1-37
Threaded studs	1-37
Driving tool for shaft seals	1-38
Driving tool	1-38
Driving tool	1-38
Spacers	1-39

SERVICE DATA GENERAL

Foreword

The "Service Data" contains details which are important to the service staff. Data included in other parts of the general documentation have been left aside.

The set of documents for this construction machine includes:

- Operation and Maintenance Instruction Manual
- Parts Catalog

"Technical Handbooks" (THB) and "Service Information" bulletins (SI) are, furthermore, to be considered as supplements to the general documentation.

Data regarding auxiliary units for operating ancillary or special systems, as well as data on machines produced only in small numbers, have not been included.

Filling quantities are only approximate figures intended to help in stockholding the various fluids and agents. Each unit has appropriate checking systems, e.g. dipstick or checking screws, with which the exact filling level can be checked.

The Part Numbers given in the sections are not to be used when ordering spare parts. They are only intended to identify the component being referred to.

When ordering spare parts, use only the Parts Catalog given in the spare parts lists.

Data sheet for MH6.6 cylinders

		Dicton	Piston	Longth	Stroke	Longth	Cylinder barrel		Piston rod	
MH6.6	P/N	1 131011	rod	Lengin	STORE	Length	Eye	Width	Eye	Width
		Øb	Øа	A	В	С	Øc	D	Ø d	E
Monoblock boom	72113778	135	85	1630±1.8	1050±1.8	2680±3.6	90 ^{+0.25} +0.05	116_0_ _0.5	$100^{+0.25}_{+0.05}$	106_0_0_5
Boom adjusting	72104531	135	85	1565±1.8	985±1.8	2550±3.6	90 ^{+0.25} +0.05	116_0_0_5	$100^{+0.25}_{+0.05}$	106_0_0_5
Stick cylinder	72104546	135	95	1975±1.8	1400±1.8	3375±3.6	80	116 _{_0.5}	80	116 _{_0.5}
Bucket cylinder	72113790	115	80	1660±1.8	1075±1.8	2735±3.6	$70^{+0.25}_{+0.05}$	96_0_5	80 ^{+0.25} +0.05	96_0_
Adjusting cylinder	3327103	180	100	1360	745	2105	110 ^{+0.457} +0.370	126±1.2	110 ^{+0.457} +0.370	126 _{_0.5}

Data sheet for MH8.6 cylinders

		Piston	Piston	Length	Stroke	Length	Cylinde	barrel	Piston rod	
MH8.6	P/N	1 131011	rod	Length	Slicke	Length	Eye	Width	Eye	Width
		Øb	Øа	A	В	С	ØC	D	Ød	Е
Monoblock boom	72112074	145	90	1630±1.8	1050±1.8	2680±3.6	$90^{+0.25}_{+0.05}$	116_0_0_5	110 ^{+0.25} +0.05	106_0_0_5
Boom adjusting	72104481	145	90	1565±1.8	985±1.8	2550±3.6	90 ^{+0.25} +0.05	116_0_0_5	$110^{+0.25}_{+0.05}$	106_0_0_5
Stick cylinder	72104471	145	95	1975±1.8	1400±1.8	3375±3.6	90 ^{+0.25} +0.05	123_0	90 ^{+0.25} +0.05	123_0
Bucket cylinder	72111967	125	85	1665±1.8	1075±1.8	2740±3.6	80 ^{+0.25} +0.05	123_00	$80^{+0.25}_{+0.05}$	123_0
Adjusting cylinder	3326713	185	100	1360	745	2105	110 ^{+0.457} +0.370	126±1.2	110 ^{+0.457} +0.370	126 _{-0.5}

Bucket-induced protrusion

			MH6.6	MH8.6
Α	distance of pins	[mm]	450	465
в	link length	[mm]	595	610
С	rocker arm length	[mm]	630	652
κ	extended buk- ket cylinder	[mm]	2735	2740
s		[mm]	110	92
Т	load hook position	[mm]	290	290
J		[mm]	165	160
D	coordinates of	[mm]	415	461
ш	rocker arm	[mm]	30	42
F	coordinates of	[mm]	2528	2560
н	bucket cylinder	[mm]	726	682
-	to bottom plate	[mm]	122	125
J	retracted buk- ket cylinder	[mm]	1660	1665
0	stick end radius	[mm]	110	110
Ρ	link end radius	[mm]	80	80
v	max. radius of bucket hub	[mm]		
R	stick angle	[°]	11.2	10.4
м	opening angle	[°]	33.3	31.8
Ν	closing angle	[°]	142.5	142.7
Q	max. bucket force	[kN]	134.6	156.5
	reference for M, N, Q			
L	bucket angle	[°]	100	100
G	teeth radius of bucket	[mm]	1400	1450

Fia	2
гıу.	2

			MH6.6	MH8.6
а	min. bucket interface width	[mm]	307	409
b	thickness of hubs	[mm]	60	70
c1	min. diameter hub (linkage)	[mm]	180	180
c2	min. diameter hub (stick)	[mm]	190	190
d	hole diameter for pin	[mm] 80 H7		90 H7
е	length of pins	[mm]	450	580
f	pin diameter	[mm]	80 e7	90 e7
g	distance of fixing thread	[mm]	130	175
h	chamfer of pin	[mm]	15	20
i	bottom diame- ter block	[mm]	45	70
j	top diameter block	[mm]	30	49
k	thread	[mm]	M16	M20
Ι	bottom height of block	[mm]	" o "+2	" o "+2
m	top height of block	[mm]	10	14

MH6.6 / MH8.6

SI- and Additional Units

Quantities of Space and Mass

Quantity	Symbol	Unit			Conv	ersion	Explanation Remark
		old	new		for exact	for rough calculation	
						(appr. 2% inexact)	
			SI - Units	Selection of additional units			
Length	I	mm, cm, dm, m, km	m	mm, km			
Area	А	mm², cm², dm², m²	m²	mm², cm²			
Volume	V, Vn	mm³, cm³, dm³, m³, l	m³	mm³, cm³, dm³, l			
Mass	m	mg, g, kg, Mg=t, (kp s²/m)	kg	mg, g, Mg, t			
Density	ρ	g/cm ³ , kg/dm ³ , (kg _f s ² /m ⁴)	kg/m³	g/cm³, kg/dm³			
Inertia mo- ment	J	kg m² (kg _f m s²)	kg m²	Mg m²	1 kg _f m s² = 9.81 kg m²	1 kg _f m s² = 10 kg m²	
Specific vol- ume	v	m³/kg, m³/t	m³/kg	m³/Mg			

Time related Quantities

Quantity	Symbol	Unit			Conve	Explanation Remark	
		old	new		for exact calculation	for rough calculation (appr. 2% inexact)	
			SI - Units	Selection of additional units			
Time	t	s, min, h, d = day	S	ms, min, h, d			
Frequency	f	Hz	Hz				1 Hz = 1/s
Rate of revolu- tions	n	rev/min	1/s	1/min			s = min/60
Speed	V	m/s, km/h	m/s	km/h			
Acceleration	а	m/s²	m/s²				
Volume flow	V	m³/s, m³/min, m³/h	m³/s	m³/min, l/h			
Mass flow	m	kg/s, kg/min, kg/h	kg/s				
Heat flow	Φ	kcal/h	W	kW, MW	1 kcal/h = 1.163 W	1 kcal/h = 1.2 W	1 W = 1 J/s = 1 Nm/s
Specific fuel and oil con- sumption	b, b _s	kg/CVh g/CVh	kg/J	g/kWh	1 g/CVh = 1.359 g/kWh	1 g/CVh = 1.36 g/kWh	

Quantities of force, energy and power

Quantity	Symbol		Unit		Conve	Explanation Remark	
		old new		new		for rough calculation	
						(appr. 2% inexact)	
			SI - Units	Selection of additional units			
Force	F	(dyne, g _f)	N (Newton)	MN, kN, mN	1 kg _f = 1 kg x 9.81 m/s² = 9.81 N	1 kg _f = 10 N	1 N = 1 kg x 1 m/s² = 1 kg m/s²
Pressure (of Fluids)	P, Pi, P _e , P _ū , P _u	(kg _f /cm²,at,atm) (mWS, Torr) (mmHg)	N/m² Pa (Pascal)	bar, mbar	1 kg _f /cm ² = 0.981 bar 1 atm = 1.013 bar 1 mWS = 0.098 bar	1 kg _f /cm² = 1 bar 1 mWS = 0.1 bar	1 N/m ² = 1 Pa 1 Pa = 10 ⁻⁵ bar 1 bar = 10 ⁵ N/m ²
Mechanical stress	σ,τ	(kg _f /cm²) (kg _f /mm²)	N/m², Pa	N/mm²	1 kg _f /mm² = 9.81 N/mm² 1 kg _f /cm² = 9.81 N/cm²	1 kg _f /mm² = 10 N/mm² 1 kg _f /cm² = 10 N/cm²	1 N/m² = 1Pa
Energy	W	(kg _f m)	J (Joule)	MJ, kJ, kW h	1 kg _f m = 9.81 J	1 kg _f m = 10 J	3.6 MJ = 1 kWh 1 J = 1 Nm = 1 Ws
Heat capacy	Q	(cal, erg)	J (Joule)	MJ, kJ, kW h	1 kcal = 4.19 kJ		3.6 MJ = 1 kWh 1J = 1 Nm = 1 Ws
Power	Ρ	(CV), W	W	kW, MW	1 CV = 0.735499 kW 1 kW = 1.359622 CV	1 CV = 0.74 kW 1 kW = 1.36 CV	1 W = 1J/s = 1 Nm/s
Torque, bending moment	М	(kg _f m)	Nm	Ncm	1 kg _f m = 9.81 Nm	1 kg _f m = 10 Nm	

Conversions Tables Part 1

Conversion for units of legth

Length	in	ft	yd	mi	UK n mile	cm	m
1 inch	1	0.0833	0.0278			2.54	0.0254
1 foot	12	1	0.3333	0.00019	0.00016	30.48	0.3048
1 yard	36	3	1	0.00057	0.00049	91.44	0.9144
1 statute mile	63360	5280	1760	1	0.86842		1609.3
1 UK nautic mile	72960	6080	2026.7	1.15151	1		1853.2
1 cm	0.3937	0.0328	0.0109			1	0.01
1 m	39.370	3.2808	1.0936	0.00062	0.00054	100	1

Length

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	m m
I III	╫╫ <mark>┦</mark> ╫╫	╫╫╢	₩₩	┟┼┼┦┟┼┤	╎┼╁┦┦┼╁	₩₩₩	╎╢╎┦╎╢	╎┼┼┦┛╹┼┼	╟╫╢	₩₩₽₩		╫╫╫╫	╙╫╢	╎╢╢╢╢	╨╫╢╢	╟╫╇	╟╢╢	╙╫╢╢╢	╫╫╇	ΨΨ	in
		7			6		5			4		3			2		<u> </u>			0	ш

25.4 mm = 1 in

Conversion for units of area

Area	sq in	sq ft	sq yd	sq mi	acre	cm ²	m²	km ²
1 square inch	1	0.0069				6.4516		
1 square foot	144	1	0.1111			929.03	0.0929	
1 square yard	1296	9	1		0.00021	8361.3	0.8361	
1 square mile				1	640			2.58999
1 acre		43560	4840	0.00156	1		4046.9	0.004047
1 cm ²	0.1550					1	0.0001	
1 m²	1550.0	10.764	1.1960			10000	1	
1 km ²				0.3861	247.105			

Area

600030

1 ft = 12 in = 304.8 mm

Example: 4ft 2in = 1.27m

£4						i	n					
11	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+10	+11
	m	m	m	m	m	m	m	m	m	m	m	m
0		0.0254	0.0508	0.0762	0.1016	0.1270	0.1524	0.1778	0.2032	0.2286	0.2540	0.2794
1	0.3048	0.3302	0.3556	0.3810	0.4064	0.4318	0.4572	0.4826	0.5080	0.5334	0.5588	0.5842
2	0.6096	0.6350	0.6604	0.6858	0.7112	0.7366	0.7620	0.7874	0.8128	0.8382	0.8636	0.8890
3	0.9144	0.9398	0.9652	0.9906	1.0160	1.0414	1.0668	1.0922	1.1176	1.1430	1.1684	1.1938
4	1.2192	1.2446	1.2700	1.2954	1.3208	1.3462	1.3716	1.3970	1.4224	1.4478	1.4732	1.4986
5	1.5240	1.5494	1.5748	1.6002	1.6256	1.6510	1.6764	1.7018	1.7272	1.7526	1.7780	1.8034
6	1.8288	1.8542	1.8796	1.9050	1.9304	1.9558	1.9812	2.0066	2.0320	2.0574	2.0828	2.1082
7	2.1336	2.1590	2.1844	2.2098	2.2352	2.2606	2.2860	2.3114	2.3368	2.3622	2.3876	2.4130
8	2.4384	2.4638	2.4892	2.5146	2.5400	2.5654	2.5908	2.6162	2.6416	2.6670	2.6924	2.7178
9	2.7432	2.7686	2.7940	2.8194	2.8448	2.8702	2.8956	2.9210	2.9464	2.9718	2.9972	3.0226
10	3.0480	3.0734	3.0988	3.1242	3.1496	3.1750	3.2004	3.2258	3.2512	3.2766	3.3020	3.3274
11	3.3528	3.3782	3.4036	3.4290	3.4544	3.4798	3.5052	3.5306	3.5560	3.5814	3.6068	3.6322
12	3.6576	3.6830	3.7000	3.7338	3.7592	3.7846	3.8100	3.8354	3.8608	3.8862	3.9116	3.9370

Conversion from foot and inch to metric mesures

1 in = 25.4 mm (exact)

Conversion from newtonmeter (Nm) into foot pounds (ft lb)

Nm	0	1	2	3	4	5	6	7	8	9
10	7.376	8.113	8.851	9.588	10.326	11.063	11.801	12,539	13.276	14.014
20	14.751	15.489	16.226	16.964	17.701	18.439	19.177	19.914	20.652	21.389
30	22.127	22.864	23.602	24.339	25.077	25.815	26.552	27.290	28.027	28.765
40	29.502	30.240	30.978	31.715	32.453	33.190	33.928	34.665	35.403	36.140
50	36.878	37.616	38.353	39.091	39.828	40.566	41.303	42.041	42.778	43.516
60	44.254	44.991	45.729	46.466	47.204	47.941	48.679	49.417	50.154	50.892
70	51.629	52.367	53.104	53.842	54.579	55.317	56.055	56.792	57.530	58.267
00	59.005	59.742 67.119	67 856	68 503	60 331	02.093	70 806	04.100	04.900	03.043
100	73 756	74 494	75 231	75 969	76 706	77 444	78 181	78.919	79.656	80 394
110	81 132	81 869	82 607	83 344	84 082	84 819	85 557	86 295	87 032	87 770
120	88.507	89.245	89.982	90.720	91.457	92.195	92.933	93.670	94.408	95.145
130	95.883	96.620	97.358	98.095	98.833	99.571	100.308	101.046	101.783	102.521
140	103.258	103.996	104.734	105.471	106.209	106.946	107.684	108.421	109.159	109.896
150	110.634	111.372	112.109	112.847	113.584	114.322	115.059	115.797	116.534	117.272
160	118.010	118.747	119.485	120.222	120.960	121.697	122.435	123.173	123.910	124.648
170	125.385	126.123	126.860	127.598	128.335	129.073	129.811	130.548	131.286	132.023
180	132.761	133.498	134.236	134.973	135.711	136.449	137.186	137.924	138.661	139.399
200	140.130	140.074	141.012	142.349	143.007	143.024	144.302	140.299	140.037	140.774
210	154 888	140.230	156 363	149.725	157 838	158 575	159 313	160 051	160 788	161 526
220	162 263	163 001	163 738	164 476	165 213	165 951	166 689	167 426	168 164	168 901
230	169.639	170.376	171.114	171.851	172.589	173.327	174.064	174.802	175.539	176.277
240	177.014	177.752	178.490	179.227	179.965	180.702	181.440	182.177	182.915	183.652
250	184.390	185.128	185.865	186.603	187.340	188.078	188.815	189.553	190.290	191.028
260	191.766	192.503	193.241	193.978	194.716	195.453	196.191	196.929	197.666	198.404
270	199.141	199.879	200.616	201.354	202.091	202.829	203.567	204.304	205.042	205.779
280	206.517	207.254	207.992	208.729	209.467	210.205	210.942	211.680	212.417	213.155
290	213.892	214.630	215.368	216.105	216.843	217.580	218.318	219.055	219.793	220.530
310	221.200	222.000	222.743	223.401	224.210	224.900	223.093	220.431	227.100	227.900
320	236 019	236 757	237 494	238 232	238 969	239 707	240 445	241 182	241 920	242 657
330	243.395	244.132	244.870	245.607	246.345	247.083	247.820	248.558	249.295	250.033
340	250.770	251.508	252.245	252.983	253.721	254.458	255.196	255.933	256.671	257.408
350	258.146	258.884	259.621	260.359	261.096	261.834	262.571	263.309	264.046	264.784
360	265.521	266.259	266.997	267.734	268.472	269.209	269.947	270.684	271.422	272.159
370	272.897	273.635	274.372	275.110	275.847	276.585	277.323	278.060	278.798	279.535
380	280.273	281.010	281.748	282.485	283.223	283.960	284.698	285.436	286.173	286.911
390 400	207.040	200.300	209.123	209.001	290.596	291.330	292.074	292.011	293.549	294.200
410	302 399	303 137	303 875	304 612	305 350	306.087	306 825	307 562	308 300	309.038
420	309.775	310.513	311.250	311.988	312.725	313.463	314.200	314.938	315.676	316.413
430	317.151	317.888	318.626	319.363	320.101	320.838	321.576	322.313	323.051	323.789
440	324.526	325.264	326.001	326.739	327.477	328.214	328.952	329.689	330.427	331.164
450	331.902	332.639	333.377	334.115	334.852	335.590	336.327	337.065	337.802	338.540
460	339.278	340.015	340.753	341.490	342.228	342.965	343.703	344.440	345.178	345.916
4/0	346.653	347.391	348.128	348.866	349.603	350.341	351.078	351.816	352.553	353.291
480	354.029	354.700	355.504	300.241	300.979	357.717	358.454	359.192	359.929	368 042
500	368 780	369 517	370 255	370 992	371 730	372 468	373 205	373 943	374 680	375 418
510	376.156	376.893	377.631	378.368	379.106	379.843	380.581	381.318	382.056	382.793
520	383.531	384.269	385.006	385.744	386.481	387.219	387.957	388.694	389.432	390.169
530	390.907	391.644	392.382	393.119	393.857	394.594	395.332	396.070	396.807	397.545
540	398.282	399.020	399.757	400.495	401.232	401.970	402.708	403.445	404.183	404.920
550	405.658	406.396	407.133	407.871	408.608	409.346	410.083	410.821	411.558	412.296
560	413.033	413.771	414.509	415.246	415.984	416.721	417.459	418.196	418.934	419.671
570	420.409	421.147	421.884	422.022	423.359	424.097	424.834	423.372	420.310	427.047
590	435 160	435 898	436 635	437 373	438 111	438 848	439 586	440 323	441 061	441 798
600	442 536	443 273	444 011	444 749	445 486	446 224	446 961	447 699	448 436	449 174
610	449.911	450.649	451.386	452.124	452.862	453.599	454.337	455.074	455.812	456.550
620	457.287	458.025	458.762	459.500	460.237	460.975	461.712	462.450	463.187	463.925
630	464.663	465.400	466.138	466.875	467.613	468.350	469.088	469.826	470.563	471.301
640	472.038	472.776	473.513	474.251	474.989	475.726	476.464	477.201	477.939	478.676
650	479.414	480.151	480.889	481.626	482.364	483.102	483.839	484.577	485.314	486.052
670	480.790	487.527	488.265	489.002	489.740	490.477	491.215	491.952	492.690	493.427
680	501 541	502 278	503 016	503 753	504 401	505 229	505 966	506 704	507 441	508 170
690	508.916	509.654	510.391	511.129	511.866	512.604	513.342	514.079	514.817	515.554
700	516.292	517.030	517.767	518.505	519.242	519.980	520.717	521.455	522.192	522.930

Nm	0	1	2	3	4	5	6	7	8	9
710	523.667	524.405	525.143	525.880	526.618	527.355	528.093	528.830	529.568	530.305
720	531.043	531.781	532.518	533.256	533.993	534.731	535.469	536.206	536.944	537.681
730	538.419	539.156	539.894	540.631	541.369	542.106	542.844	543.582	544.319	545.057
740	545.794	546.532	547.269	548.007	548.744	549.482	550.220	550.957	551.695	552.432
750 760	553.170	553.907	554.645	555.383	556.120	556.858	557.595	558.333	559.070	559.808
700	567 021	568 659	560 306	570 134	570 871	571 600	572 346	573 084	573 822	57/ 550
780	575 297	576 034	576 772	577 509	578 247	578 984	579 722	580 459	581 197	581 935
790	582.672	583.410	584.147	584.885	585.623	586.360	587.098	587.835	588.573	589.310
800	590.048	590.785	591.523	592.260	592.998	593.736	594.473	595.211	595.948	596.686
810	597.423	598.161	598.899	599.636	600.374	601.111	601.849	602.586	603.324	604.062
820	604.799	605.537	606.274	607.012	607.749	608.487	609.224	609.962	610.699	611.437
830	612.175	612.912	613.650	614.387	615.125	615.863	616.600	617.338	618.075	618.813
850	626 926	627 663	628 401	629 138	629 876	630 614	631 351	632 089	632 826	633 564
860	634.302	635.039	635.777	636.514	637.252	637.989	638.727	639.464	640.202	640.939
870	641.677	642.415	643.152	643.890	644.627	645.365	646.102	646.840	647.578	648.315
880	649.053	649.790	650.528	651.265	652.003	652.740	653.478	654.216	654.953	655.691
890	656.428	657.166	657.903	658.641	659.378	660.116	660.854	661.591	662.329	663.066
900	663.804	664.542	665.279	666.017	666.754	667.492	668.229	668.967	669.704	670.442
910	678 555	670 203	680.030	680 768	681 505	0/4.80/	675.005	070.342 693 719	677.080	0//.01/ 685.103
930	685 931	686 668	687 406	688 143	688 881	689 618	690 356	691 094	691 831	692 569
940	693.306	694.044	694.781	695.519	696.257	696.994	697.732	698.469	699.207	699.944
950	700.682	701.419	702.157	702.895	703.632	704.370	705.107	705.845	706.582	707.320
960	708.057	708.795	709.532	710.270	711.008	711.745	712.483	713.220	713.958	714.696
970	715.433	716.171	716.908	717.646	718.383	719.121	719.858	720.596	721.333	722.071
980	722.809	723.546	724.284	725.021	725.759	726.496	727.234	727.972	728.709	729.447
990 1000	730.164	738 297	739.035	730 772	733.135	733.072	734.010	735.347	730.005	730.022
1010	744 936	745 673	746 411	747 148	747 886	748 623	749 361	750 098	750 836	751 573
1020	752.311	753.049	753.786	754.524	755.261	755.999	756.736	757.474	758.211	758.949
1030	759.687	760.424	761.162	761.899	762.637	763.375	764.112	764.850	765.587	766.325
1040	767.062	767.800	768.537	769.275	770.012	770.750	771.488	772.225	772.963	773.700
1050	701 012	775.175	775.913	776.651	777.388	778.126	778.863	779.601	780.338	781.076
1000	780 180	789 927	703.209	704.020	702 130	703.301	700.239	700.970	707.714	705.401
1080	796.565	797.302	798.040	798.777	799.515	800.252	800.990	801.728	802.465	803.203
1090	803.940	804.678	805.415	806.153	806.890	807.628	808.366	809.103	809.841	810.578
1100	811.316	812.053	812.791	813.529	814.266	815.004	815.741	816.479	817.216	817.954
1110	818.691	819.429	820.167	820.904	821.642	822.379	823.117	823.854	824.592	825.330
1120	826.067	826.805	827.542	828.280	829.017	829.755	830.492	831.230	831.968	832.705
1140	840 818	841 556	842 203	843 031	843 769	844 506	845 244	845 981	846 719	847 456
1150	848.194	848.931	849.669	850.406	851.144	851.882	852.619	853.357	854.094	854.832
1160	855.569	856.307	857.045	857.782	858.520	859.257	859.995	860.732	861.470	862.208
1170	862.945	863.683	864.420	865.158	865.895	866.633	867.370	868.108	868.845	869.583
1180	870.321	871.058	871.796	872.533	873.271	874.009	874.746	875.484	876.221	876.959
1190	877.696	878.434	879.171	879.909	880.646	881.384	882.122	882.859	883.597	884.334
1200	892 448	893 185	893 923	894 660	895 398	896 135	896 873	897 610	898 348	899.085
1220	899.823	900.561	901.298	902.036	902.773	903.511	904.248	904.986	905.724	906.461
1230	907.199	907.936	908.674	909.411	910.149	910.886	911.624	912.362	913.099	913.837
1240	914.574	915.312	916.049	916.787	917.524	918.262	919.000	919.737	920.475	921.212
1250	921.950	922.687	923.425	924.163	924.900	925.638	926.375	927.113	927.850	928.588
1260	929.325	930.063	930.801	931.538	932.270	933.013	933.751	934.488	935.220	935.963
1280	944 077	944 814	945 552	946 289	947 027	947 764	948 502	949 240	949 977	950 715
1290	951.452	952.190	952.927	953.665	954.403	955.140	955.878	956.615	957.353	958.090
1300	958.828	959.565	960.303	961.041	961.778	962.516	963.253	963.991	964.728	965.466
1310	966.203	966.941	967.678	968.416	969.154	969.891	970.629	971.366	972.104	972.842
1320	973.579	974.317	975.054	975.792	976.529	977.267	978.004	978.742	979.479	980.217
1330	980.955	981.692	982.430	983.167 000 513	903.905 001 221	984.642	985.380 002 756	900.110 003 103	980.855	981.593
1350	995 706	996 443	997 181	997 918	998 656	999 394	1000 131	1000 869	1001 606	1002 344
1360	1003.082	1003.819	1004.557	1005.294	1006.032	1006.769	1007.507	1008.244	1008.982	1009.719
1370	1010.457	1011.195	1011.932	1012.670	1013.407	1014.145	1014.882	1015.620	1016.357	1017.095
1380	1017.833	1018.570	1019.308	1020.045	1020.783	1021.521	1022.258	1022.996	1023.733	1024.471
1390	1025.208	1025.946	1026.683	1027.421	1028.158	1028.896	1029.634	1030.371	1031.109	1031.846
1400	1032.584	1033.321	1034.059	1034.797	1035.534	1036.272	1037.009	1037.747	1038.484	1039.222

1410 1039.959 1041.435 1042.172 1042.910 1043.847 1044.355 1045.122 1045.860 1045.52 1420 1047.335 1048.071 1046.840 1049.548 1057.061 1053.396 1052.498 1052.498 1052.498 1052.498 1052.498 1052.498 1052.498 1052.498 1052.498 1052.498 1053.396 1053.397 1076.657 1053.397 1076.657 1057.347 <th>1410 1033 1420 1047 1430 1054 1440 1062 1450 1063 1450 1063 1460 1076 1470 1084 1480 1097 1490 1098 1500 1106 1510 1112 1520 1122 1530 1128 1550 1143 1550 1143 1560 1150 1570 1157</th> <th>039.9591040.697047.3351048.073054.7111055.448062.0861062.824069.4621070.199076.8371077.575084.2131084.951091.5891092.326098.9641099.702106.3401107.077</th> <th>1040.6971041.4351048.0731048.8101055.4481056.1861062.8241063.5611070.1991070.9371077.5751078.312</th> <th>1042.172 1049.548 1056.923 1064.299 1071.675</th> <th>1042.910 1050.285 1057.661</th> <th>1043.647 1051.023</th> <th>1044.385 1051.760</th> <th>1045.122 1052.498</th> <th>1045.860</th> <th>1046.597</th>	1410 1033 1420 1047 1430 1054 1440 1062 1450 1063 1450 1063 1460 1076 1470 1084 1480 1097 1490 1098 1500 1106 1510 1112 1520 1122 1530 1128 1550 1143 1550 1143 1560 1150 1570 1157	039.9591040.697047.3351048.073054.7111055.448062.0861062.824069.4621070.199076.8371077.575084.2131084.951091.5891092.326098.9641099.702106.3401107.077	1040.6971041.4351048.0731048.8101055.4481056.1861062.8241063.5611070.1991070.9371077.5751078.312	1042.172 1049.548 1056.923 1064.299 1071.675	1042.910 1050.285 1057.661	1043.647 1051.023	1044.385 1051.760	1045.122 1052.498	1045.860	1046.597
1420 1047.335 1048.870 1048.948 1050.285 1051.023 1051.023 1052.498 1053.236 1053.93 1430 1062.086 1062.824 1063.618 1065.036 1056.744 1065.874 1066.874 1066.874 1066.874 1067.887 1077.857 1078.425 1075.362 1076.183 1460 1076.837 1077.575 1078.312 1079.050 1079.788 1080.525 1081.263 1082.000 1082.738 1080.376 1470 1084.813 1084.951 1085.844 1038.044 1038.041 1038.052 1081.263 1082.000 1082.738 1080.376 1480 1098.364 1038.042 1107.77 1177.815 1115.051 1112.240 1112.240 1112.240 1112.240 1112.240 1112.240 1112.341 1113.611 1113.057 1133.417 1132.155 1132.829 1133.630 1133.437 1133.630 1133.437 1133.630 1133.437 1133.630 1133.437 1133.437 1133.437 1133.437	1420 1047 1430 1054 1440 1062 1450 1066 1460 1076 1470 1084 1480 1097 1490 1098 1500 1103 1520 1122 1530 1128 1550 1143 1550 1143 1560 1150 1570 1157	047.3351048.073054.7111055.448062.0861062.824069.4621070.199076.8371077.575084.2131084.951091.5891092.326098.9641099.702106.3401107.077	1048.073 1048.810 1055.448 1056.186 1062.824 1063.561 1070.199 1070.937 1077.575 1078.312	1049.548 1056.923 1064.299 1071 675	1050.285 1057.661	1051.023	1051.760	1052.498	1052 226	
1430 1054.711 1055.448 1056.166 1057.651 1058.398 1059.361 1059.874 1060.611 1061.33 1440 1062.086 1062.2824 1063.551 1064.293 1072.412 1073.150 1073.823 1074.625 1077.38 1073.857 1073.837 1073.87 1073.837 1073.87 1073.837 1073.88 1088.276 1080.833 1089.376 1090.83 1090.83 1098.381 1098.376 1090.84 1097.489 1090.82 1480 1098.864 1099.702 1100.439 1101.177 1101.915 112.656 1117.403 1118.141 1118.878 1119.666 1105.661 1500 112.1691 112.204 112.204 112.204 112.204 112.77 113.813 114.833 1141.813 1141.878 113.830 1143.330 1143.337 1133.842 1135.841 1141.933 1142.441 1124.779 1125.766 1153.544 1146.251 1165.766 1164.343 1148.141 1148.330 1141.443 1142.441 <t< th=""><th>1430 105- 1440 1062 1450 1063 1460 1076 1470 108- 1480 109- 1490 1096 1500 1100 1510 1113 1520 1122 1530 1126 1540 1135 1550 1143 1560 1560 1570 1155</th><th>054.711 1055.448 062.086 1062.824 069.462 1070.199 076.837 1077.575 084.213 1084.951 091.589 1092.326 098.964 1099.702 106.340 1107.077</th><th>1055.448 1056.186 1062.824 1063.561 1070.199 1070.937 1077.575 1078.312</th><th>1056.923 1064.299 1071 675</th><th>1057.661</th><th>4050 000</th><th></th><th></th><th>1055.250</th><th>1053.973</th></t<>	1430 105- 1440 1062 1450 1063 1460 1076 1470 108- 1480 109- 1490 1096 1500 1100 1510 1113 1520 1122 1530 1126 1540 1135 1550 1143 1560 1560 1570 1155	054.711 1055.448 062.086 1062.824 069.462 1070.199 076.837 1077.575 084.213 1084.951 091.589 1092.326 098.964 1099.702 106.340 1107.077	1055.448 1056.186 1062.824 1063.561 1070.199 1070.937 1077.575 1078.312	1056.923 1064.299 1071 675	1057.661	4050 000			1055.250	1053.973
1440 1062.068 1062.264 1063.261 1063.264 1063.264 1063.264 1063.262 1073.87 1074.625 1075.356 1073.87 1074.625 1075.356 1073.887 1074.625 1075.356 1073.887 1074.625 1075.356 1078.377 1078.487 1074.625 1075.356 1078.387 1074.625 1075.356 1074.851 1085.265 1081.265 1081.863 1082.061 1082.256 1083.263 1082.376 1090.114 1090.862 1480 1099.864 1097.702 1107.485 1108.552 1109.290 1110.028 1113.656 1111.503 1112.240 1112.945 1500 1121.091 1121.820 1122.851 1132.892 1133.630 1134.367 1134.361 1134.367 1134.361 <	1440 106. 1450 106. 1460 1076 1470 108. 1480 1091 1490 1092 1500 1100 1510 1113 1520 1122 1530 1128 1540 1135 1550 1143 1560 1150 1570 1155	J052.086 1062.824 069.462 1070.199 076.837 1077.575 084.213 1084.951 091.589 1092.326 098.964 1099.702 106.340 1107.077	1062.824 1063.561 1070.199 1070.937 1077.575 1078.312	1064.299		1058.398	1059.136	1059.874	1060.611	1061.349
1460 107.137 107.377 107.375 107.372 107.376 107.376 107.376 107.376 107.376 107.376 107.376 107.376 107.376 107.376 107.376 107.376 107.376 1082.001 1082.001 1082.001 1082.001 1082.001 1082.001 1082.001 1082.001 1082.001 1082.001 1082.001 1082.001 1096.751 1096.751 1096.751 1096.751 1096.751 1096.751 1096.751 1096.751 1096.751 1097.489 1097.489 1097.489 1097.489 1097.489 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.240 112.411 113.417 1132.455 1132.892 113.3630 1134.367 113.467 113.467 1134.361 1144.831 1144.141 1142.841 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118<	1450 1003 1460 1076 1470 1084 1480 1097 1490 1098 1500 1106 1510 1113 1520 1127 1530 1128 1540 1135 1550 1143 1560 1155 1570 1157	005.402 1070.199 076.837 1077.575 084.213 1084.951 091.589 1092.326 098.964 1099.702 106.340 1107.077	1077.575 1078.312		1065.036	1065.774	1066.512	1067.249	1067.987	1068.724
1470 1084.213 1085.688 1086.426 1087.163 1087.901 1088.838 1089.376 1090.114 1090.85 1480 1098.964 1092.326 1093.064 1093.801 1095.276 1096.1014 1096.751 1097.483 1098.484 1097.483 1098.201 1014.127 1101.177 1101.177 1101.177 1101.177 1101.177 1111.150 1111.203 1112.041 1122.040 1129.091 1121.091 1121.092 1122.064 1128.304 1124.071 1135.842 1136.580 1137.17 1138.055 1138.792 1135.501 1143.284 1144.533 1145.206 1155.013 1155.64 1145.244 1155.01 1143.281 1144.911 1147.131 1142.44 1155.01 1143.281 1144.911 1147.23 1142.44 1155.01 1155.76 1168.201 1167.557 1168.201 1167.557 1168.201 1167.557 1168.201 1167.557 1168.201 1167.557 1168.201 1167.557 1168.256 1169.201 1170.508 1177.146	1470 108- 1480 109' 1490 109 1500 1100 1510 1113 1520 112' 1530 1126 1540 1135 1550 1143 1560 1155 1570 1157	084.2131084.951091.5891092.326098.9641099.702106.3401107.077		1079 050	1072.412	1073.130	1073.887	1074.025	1073.302	1070.100
14801091.5891092.3261093.8611093.8011094.5391095.2761096.0141096.751107.4891085.2515001106.3401107.0771107.8151108.5521109.2901110.2851110.6551111.5031112.4011112.9715101113.7151114.4331115.1911115.9281116.6661117.4031118.1411118.8781119.6161120.7315201122.8471122.5661123.3041124.0411124.7771128.5511138.3031134.3671135.1711135.8421136.6801137.3171138.0551138.7921139.5301140.2881143.8111149.181149.4815501143.2181143.9551144.6931145.4011145.42811155.0611155.4411156.7611162.3941163.1321163.87111571157.9691158.7671168.2951160.1991161.6571162.3941163.1321163.8711184.26115801157.27201173.4581174.1951175.6701176.4081177.1461179.331179.3316001180.0961180.3331181.5711182.3091183.0461189.4221191.8571199.2721200.0101200.7481294.8416301202.2231202.9601203.6681207.3351208.611177.441179.331176.701176.4081177.141179.341179.3316001180.0961180.3951198.8971189.6841190.4221191.8571189.5511208.	1480 109* 1490 1098 1500 1106 1510 1113 1520 112* 1530 1128 1540 1135 1550 1143 1560 1155 1570 1155	091.5891092.326098.9641099.702106.3401107.077	1084.951 1085.688	1086.426	1087.163	1087.901	1088.638	1089.376	1090.114	1090.851
14901098.9641099.7021100.4391101.1771101.9151102.6521103.3901104.1271104.8651105.7615001103.7151114.6431115.1911115.9281116.6661117.4031118.1411118.8781119.6161122.3715201121.0911129.2041129.9421130.6791131.4171132.1551132.84671134.9551134.9671131.4171132.1551132.84671134.3551144.6931144.6331144.6331144.6331144.6381140.2681141.0051141.7431142.94415501150.5941151.3311152.0691152.8061153.5441155.0191155.7561156.4941157.25715701157.9691158.7071159.4441160.1821160.9191161.6571169.0321169.7701175.8761164.6016001180.0961180.8331187.5711168.2091183.0461187.8441184.5211179.9316001180.0961180.8331181.5711182.3091180.4611187.8441184.5211179.9316011187.4711188.0331184.5371182.3091183.0461183.784119.877119.6341186.211179.9416201194.847119.585119.6322119.0707119.855119.8771120.5491120.72120.048120.1431630120.22463120.286120.286122.129122.0571220.014120.284120.143120.1441640129.858 <t< th=""><th>1490 1098 1500 1106 1510 1113 1520 1121 1530 1126 1540 1138 1550 1143 1560 1150 1570 1157</th><th>098.9641099.702106.3401107.077</th><th>1092.326 1093.064</th><th>1093.801</th><th>1094.539</th><th>1095.276</th><th>1096.014</th><th>1096.751</th><th>1097.489</th><th>1098.227</th></t<>	1490 1098 1500 1106 1510 1113 1520 1121 1530 1126 1540 1138 1550 1143 1560 1150 1570 1157	098.9641099.702106.3401107.077	1092.326 1093.064	1093.801	1094.539	1095.276	1096.014	1096.751	1097.489	1098.227
1500 1106.340 1107.77 1107.815 1108.552 1109.290 1110.765 1111.503 1112.240 1112.91 1500 1113.715 1115.912 1115.928 1116.666 1117.403 1118.141 1118.878 1136.616 1120.32 1530 1128.467 1129.204 1129.942 1130.679 1131.417 1132.155 1132.803 1133.630 1142.631 1143.3630 1143.3630 1143.3630 1143.3630 1143.3630 1144.918 1550 1155.944 1155.364 1154.281 1155.266 1156.266 1155.244 1155.241 1155.266 1164.643 1165.041 1153.354 1166.355 1166.402 1167.557 1168.295 1169.032 1169.701 1172.458 1171.945 1170.001 1180.208 1167.557 1168.295 1169.032 1169.77 1179.508 1172.451 1171.93 1180.01 1188.947 1188.204 1189.644 1190.422 1191.159 1191.183 1181.57 1162.394 116	1500 1106 1510 1113 1520 1122 1530 1128 1540 1138 1550 1143 1560 1150 1570 1157	106.340 1107.077	1099.702 1100.439	1101.177	1101.915	1102.652	1103.390	1104.127	1104.865	1105.602
1520 113.13 114.433 113.91 113.23 04 1124.041 1124.779 1125.16 1126.35 1530 1128.467 1122.566 1122.304 1122.4041 1124.779 1125.16 1136.525 1136.582 1136.580 1137.317 1138.055 1138.052 1138.792 1139.530 1140.688 1141.051 1141.43.714 1142.441 1550 1143.218 1143.555 1144.693 1145.430 1146.168 1146.066 1147.643 1148.381 1149.18 1149.85 1570 1155.705 1156.707 1159.444 1160.182 1160.991 1161.657 1162.944 1157.23 1180.01 1165.345 1166.022 1166.320 1177.570 1176.408 1177.146 1177.833 1178.451 1179.951 1198.575 1180.996 188.947 1189.309 1183.046 1183.784 1184.521 1185.370 1180.476 1179.433 1174.451 1179.953 1199.272 100.10 100.748 1194.10 1172.358 1199.271 <th< th=""><th>1510 111. 1520 112' 1530 1128 1540 1138 1550 1143 1560 1150 1570 1157</th><th></th><th>1107.077 1107.815</th><th>1108.552</th><th>1109.290</th><th>1110.028</th><th>1110.765</th><th>1111.503</th><th>1112.240</th><th>1112.978</th></th<>	1510 111. 1520 112' 1530 1128 1540 1138 1550 1143 1560 1150 1570 1157		1107.077 1107.815	1108.552	1109.290	1110.028	1110.765	1111.503	1112.240	1112.978
122. 112. <th< th=""><th>1520 112 1530 1128 1540 1135 1550 1143 1560 1150 1570 1157</th><th>113.715 1114.453</th><th>1114.453 1115.191</th><th>1115.928</th><th>1110.000</th><th>1117.403</th><th>1118.141</th><th>1118.878</th><th>1119.010</th><th>1120.304</th></th<>	1520 112 1530 1128 1540 1135 1550 1143 1560 1150 1570 1157	113.715 1114.453	1114.453 1115.191	1115.928	1110.000	1117.403	1118.141	1118.878	1119.010	1120.304
1540 1135.842 1136.580 1137.317 1138.055 1138.792 1139.530 1140.268 1141.005 1141.743 1142.48 1550 1143.218 1143.395 1144.803 1145.430 1146.168 1147.643 1148.381 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1149.118 1141.743 1142.48 1550 1155.796 1156.049 1157.70 1157.999 1173.458 1174.933 1174.933 1174.933 1174.933 1174.933 1174.933 1174.933 1178.670 1175.700 1175.804 1177.933 1178.621 1179.33 1600 1180.996 1180.833 1181.71 1189.684 1190.422 1191.159 1191.897 1192.634 1193.372 1194.101 1620 1194.847 1195.585 1196.322 1197.101 1206.481 1207.385 1208.133 1201.456 1620 1220.32	1540 1135 1550 1143 1560 1150 1570 1157	128 467 1129 204	1129 204 1129 942	1123.304	1131 417	1132 155	1132 892	1133 630	1134 367	1135 105
15501143.2181143.9551144.6931145.4301146.1681146.9061147.6431148.3811149.1181149.2815601157.9691158.3711152.0691152.8061153.5441155.0191155.7561156.4941157.2215701165.3451166.021168.201167.571168.2951169.0221169.7701170.5081171.2451171.34515901172.7201173.4581174.1931171.3451172.331178.6211179.3316001180.0961180.8331181.5711182.3091183.0461183.7841184.5211185.2591185.3961185.25916101187.4711188.2091188.9471189.6841190.4221191.1591191.8971192.6341193.3721194.10116201194.8471185.5581196.3221199.4721200.0101200.7481201.42116301202.2231202.9601203.6981204.4351205.1731205.9101206.6481207.3851208.1231208.86116401209.5981217.7111218.449121.937122.874122.1371222.1371228.8741228.5741236.5611244.2641245.7011242.7881237.6251238.431237.6251238.431237.6251238.431237.6251238.431237.6251238.431237.6251238.431245.711245.7516601224.3491232.4671234.4671244.2641245.2011242.7881248.5671226.5631	1550 1143 1560 1150 1570 1157	135.842 1136.580	1136.580 1137.317	1138.055	1138.792	1139.530	1140.268	1141.005	1141.743	1142.480
1560 1151,331 1152,069 1152,806 1153,544 1154,281 1152,199 1155,756 1156,494 1157,756 1570 1157,969 1158,777 1159,444 1160,182 1160,199 1161,657 1162,394 1163,132 1163,870 1164,60 1580 1172,720 1173,458 1174,195 1174,933 1175,670 1176,408 1177,146 1177,183 1178,621 1178,237 1600 1180,096 1188,947 1189,684 1190,422 1191,159 1182,529 1185,272 1200,101 1200,748 1204,833 1202,923 1202,901 1207,748 1204,843 1202,223 1202,901 1207,748 1208,82 1210,336 1211,073 1211,811 1212,549 1213,286 1241,024 1214,761 1212,549 1228,175 1228,172 1230,284 1233,209 1233,938 1246,75 1236,162 1228,172 1230,284 1233,209 1233,938 1246,575 1256,153 1266,1228,123 1242,1251 1242,131 1242,051 124	1560 1150 1570 1157 1570 1157	143.218 1143.955	1143.955 1144.693	1145.430	1146.168	1146.906	1147.643	1148.381	1149.118	1149.856
1157.0 1157.069 1158.707 1159.444 1160.312 1160.312 1163.312 1164.30 1000 1180.096 1180.333 1181.571 1182.099 1183.046 1183.784 1184.521 1185.956 1196.31 1191.59 1191.555 1196.322 1191.060 1197.797 1198.535 1199.272 1200.010 1200.748 1201.28 1640 1209.598 1210.336 1211.073 1211.811 1212.549 1213.286 124.024 1214.761 1215.499 1222.373 1222.877 1228.75 1229.512 1230.250 1230.92 1261.28 124.761 124.761 124.761 124.761 124.761 1224.765 124.761 124.761 </th <th>1570 1157</th> <th>150.594 1151.331</th> <th>1151.331 1152.069</th> <th>1152.806</th> <th>1153.544</th> <th>1154.281</th> <th>1155.019</th> <th>1155.756</th> <th>1156.494</th> <th>1157.231</th>	1570 1157	150.594 1151.331	1151.331 1152.069	1152.806	1153.544	1154.281	1155.019	1155.756	1156.494	1157.231
1650 1163.343 1160.324 1160.325 1160.325 1160.325 1160.325 1160.325 1172.720 1173.458 1174.8621 1174.85 1600 1180.096 1180.833 1181.571 1182.309 1183.046 1183.784 1184.521 1185.259 1185.996 1186.73 1610 1187.471 1188.209 1188.647 1189.684 1190.422 1191.159 1191.897 1192.634 1193.372 1194.101 1620 1194.847 1195.551 1163.222 1197.060 1197.797 1188.535 1199.372 1200.010 1200.748 1201.44 1630 1202.223 1202.960 1203.698 1204.435 1205.910 1206.648 1207.385 1208.123 1208.264 1660 1224.349 1225.087 1225.824 1226.662 1227.300 1228.037 1228.75 1229.512 1230.200 1233.938 1240.576 1241.71 1242.788 1243.562 1244.246 1237.625 1233.60 1239.3401 1244.781 1248.1	a - y	157.969 1158.707	1158.707 1159.444	1160.182	1160.919	1161.657	1162.394	1163.132	1163.870	1164.607
118.0.96 118.1.20 118.1.571 118.3.09 118.0.70 118.0.784 118.5259 1185.259 1185.996 1186.73 1600 1187.471 1188.209 1188.947 1189.684 1190.422 1191.159 1191.877 1192.634 1193.372 1194.101 1620 1194.847 1195.585 1196.322 1197.060 1197.797 1198.535 1199.272 1200.010 1208.123 1208.82 1640 1202.223 1202.960 1203.688 1211.073 1211.811 1212.549 1213.286 1221.391 1222.137 1222.874 1225.421 1660 1224.349 1225.687 1225.624 1226.662 1227.300 1228.037 1228.651 1230.88 1670 1231.725 1232.463 1233.200 1233.938 1244.675 1235.413 1236.150 1236.888 1237.625 1238.36 1680 1239.101 1239.838 1240.576 1241.313 1242.051 1242.788 1243.526 1244.264 1245.001 1245.762 1700 1263.852 1254.589 1255.327 1266.064	1500 1100 1590 1170	105.345 1100.062	1100.002 1100.020	1107.007	1100.290	1109.032	1109.770	1170.000	1178 621	1170 358
16101187.4711188.2091188.9471189.6841190.4221191.1591191.8971192.6341193.3721194.1016201194.8471195.5851196.3221197.0601197.7971198.5351199.2721200.0101200.7481201.8416301202.2331202.9601203.6981204.4351205.1731205.9101206.6481207.3851208.1231208.8216401209.5981210.3361211.0731211.8111212.5491213.2861214.0241214.7611215.4991216.2316501224.3491225.0871225.8241226.621227.3001228.0371228.1751229.5121230.2501230.9216701231.7251232.4631233.2001233.9381234.6751236.4731236.1501236.8881237.6251238.3316801239.1011239.8381240.5761241.3131242.0511242.7881243.5261244.2641245.0011245.7717001253.8521256.3271266.0641266.8021257.5401258.2771259.0151259.7521260.4817101261.2281261.9651262.7031263.4401264.1781264.9151265.6531266.3901267.1281267.8617201268.6031269.3411270.781270.781270.7661274.5031275.5401258.2771258.037128.6617201268.6031269.5411270.781270.781270.7661274.5031275.551289.593 <th>1600 1180</th> <th>180.096 1180.833</th> <th>1180.833 1181.571</th> <th>1182.309</th> <th>1183.046</th> <th>1183.784</th> <th>1184.521</th> <th>1185.259</th> <th>1185.996</th> <th>1186.734</th>	1600 1180	180.096 1180.833	1180.833 1181.571	1182.309	1183.046	1183.784	1184.521	1185.259	1185.996	1186.734
16201194.8471195.5851196.3221197.0601197.7971198.5351199.2721200.0101200.7481201.48116301202.2231202.9601203.6981204.4351205.1731218.2641201.6481207.3851208.1231208.6616401209.5981210.3361211.0731211.8111212.5491213.2861214.0241214.7611215.4991216.32616501224.3491225.0871225.8241226.5621227.3001228.0371228.7571229.5121230.2501233.93816701231.7251232.4631233.0001233.9381234.6751236.1301236.8881237.6251238.3616801246.4761247.2141247.9511248.6891249.2711250.1641250.9021251.6391252.3771253.1117001253.8521254.5891255.3271256.0641267.5301257.5401258.2771259.0151259.7521260.4817101261.2281261.9651262.7031267.0781270.8161271.5531272.2911273.0281273.7661274.5031275.2617301275.9791276.7161277.4541278.1911278.9291279.6671280.4041281.1421281.8791282.6117401288.3541289.4021284.5571289.5671280.5071300.3181300.3181301.0561301.7931302.5311303.2681304.0061304.741750129.8431299.5511298.831299	1610 1187	187.471 1188.209	1188.209 1188.947	1189.684	1190.422	1191.159	1191.897	1192.634	1193.372	1194.109
16301202.2231202.9601203.6981204.4351205.1731205.9101206.6481207.3851208.1231208.8616401209.5981210.3361211.0731211.8111212.5491213.2861214.0241214.7611215.4991216.2316501224.3491225.0871225.8241226.5621227.3001228.0371228.7751229.5121230.2501230.9616701231.7251232.4631233.2001233.9381234.6751235.4131226.1641265.0521244.2641247.0251230.2501230.9616801246.4761247.2141247.9511248.6891249.4271250.1641250.9021251.6391252.3771253.1117001263.8521264.5891265.3271256.0641264.1781264.9151265.6531266.3901267.1281267.8617101261.2281261.9651262.7031263.4401264.1781264.9151265.6531266.3901267.1281275.2217301275.9791276.7161277.4541270.8161271.5531272.9211273.0281273.7661274.5031275.2417401283.6541298.4331299.5811300.3181301.0561301.7931302.5311303.2681304.0061304.7717501290.7301291.4671292.2051292.9431293.6801294.4181295.1551295.8931296.6301297.3617601306.2411306.2511343.8241300.3181300.	1620 1194	194.847 1195.585	1195.585 1196.322	1197.060	1197.797	1198.535	1199.272	1200.010	1200.748	1201.485
1640 1210.336 1211.073 1211.811 1212.328 1213.286 1214.024 1214.761 1215.499 1216.22 1650 126.974 1217.711 1218.449 1219.187 1219.924 1220.662 1221.399 1222.137 1222.874 1223.050 1230.95 1660 1224.349 1225.824 1226.562 1227.300 1228.037 1228.775 1229.512 1230.250 1230.250 1230.95 1670 1231.725 1232.463 1233.200 1233.938 1234.675 1235.413 1236.150 1236.888 1237.625 1238.36 1680 1239.101 1239.838 1240.576 1241.313 1242.9427 1250.164 1250.902 1251.639 1252.377 1258.177 1700 1253.852 1264.4589 1267.073 1263.440 1264.178 1264.915 1265.653 1266.390 1267.128 1267.86 1720 1268.603 1269.341 1270.078 1277.816 1277.553 1272.91 1273.766 1274.503 1275.24 1730 1275.979 1276.716 1277.454	1630 1202	202.223 1202.960	1202.960 1203.698	1204.435	1205.173	1205.910	1206.648	1207.385	1208.123	1208.861
1650 1210.314 1217.711 1215.347 1226.362 1220.302 1221.357 1222.374 1222.374 1222.374 1222.374 1222.374 1222.374 1222.374 1223.474 1223.423 1233.200 1233.938 1234.675 1228.037 1228.375 1236.150 1236.888 1237.625 1230.250 1250.377 1250.163 1267.36 1267.36 1267.36 1267.36 1267.36 1267.36 1267.32 1267.36 1267.32 <th>1640 1209</th> <th>209.598 1210.336</th> <th>1210.336 1211.073</th> <th>1211.811</th> <th>1212.549</th> <th>1213.286</th> <th>1214.024</th> <th>1214.761</th> <th>1215.499</th> <th>1216.236</th>	1640 1209	209.598 1210.336	1210.336 1211.073	1211.811	1212.549	1213.286	1214.024	1214.761	1215.499	1216.236
1670 123.725 1232.463 123.207 123.007 123.007 123.6150 123.6150 123.626 123.635 1680 1239.101 1239.838 1240.576 1241.313 1242.051 1242.788 1243.526 1244.264 1245.001 1245.73 1690 1246.476 1247.214 1247.951 1248.689 1249.427 1250.164 1250.902 1251.639 1252.377 1253.11 1700 1253.852 1254.589 1255.327 1266.064 1264.76 1247.500 1259.015 1259.752 1260.442 1710 1261.281 1261.965 1262.703 1263.400 1264.178 1247.501 1277.52 1260.442 1720 1268.603 1299.341 1270.078 1270.816 1271.553 1272.291 1273.028 1273.766 1274.503 1275.24 1730 1275.979 1276.716 1277.454 1282.677 1280.404 1281.421 1281.879 1282.61 1750 1290.730 1291.467 1292.205 </th <th>1660 1210</th> <th>210.974 1217.711</th> <th>1217.711 1210.449</th> <th>1219.107</th> <th>1219.924</th> <th>1220.002</th> <th>1221.399</th> <th>1222.137</th> <th>1222.074</th> <th>1223.012</th>	1660 1210	210.974 1217.711	1217.711 1210.449	1219.107	1219.924	1220.002	1221.399	1222.137	1222.074	1223.012
16801239.1011239.8381240.5761241.3131242.0511242.7881243.5261244.2641245.0011245.7316901246.4761247.2141247.9511248.6891249.4271250.1641250.9021251.6391252.3771253.1117001253.8521254.5891255.3271256.0641256.8021257.5401258.2771259.0151259.7521260.4417101261.2281261.2281269.3411270.0781270.8161271.5531272.2911273.0281273.7661274.5031275.2417201268.6031269.3411270.781270.8161271.5531272.9911273.0281273.7661274.5031275.2417401283.3541284.0921284.8291285.5671286.3041287.0421287.7801288.5171289.2551289.9917501290.7301291.4671292.2051292.9431293.6801294.4181295.1551295.8931296.6301297.3617601288.1051288.431299.5811300.3181301.0561301.7931302.5311303.2681304.0061304.7417701305.4811306.2191321.7071322.4451323.1821323.9201324.6571325.3951326.1331326.8718001327.6081328.3451329.0831329.8211330.5581331.2961332.0331332.7711333.5081334.2218101334.9831335.721136.4581337.1961337.9341336.671	1670 123 ⁻	231.725 1232.463	1232.463 1233.200	1233.938	1234.675	1235.413	1236.150	1236.888	1237.625	1238.363
16901246.4761247.2141247.9511248.6891249.4271250.1641250.9021251.6391252.3771253.1117001253.8521254.5891255.3271256.0641256.8021257.5401258.2771259.0151259.7521260.4617101261.2281261.9651262.7031263.4401264.1781264.9151265.6531266.3901267.1281267.8617201268.6031269.3411270.0781270.8161271.5531272.2911273.0281273.7661274.5031275.2417301275.9791276.7161277.4541278.1911278.9291279.6671280.4041281.1421281.8791282.551289.9917501290.7301291.4671292.2051292.9431293.6801294.4181295.1551295.8931296.6301297.3617601298.1051298.8431299.5811300.3181301.0561301.7931302.5311303.2681304.0061304.7417701305.4811306.2191306.9561307.6941308.4311309.9061310.6441311.3821312.1517801322.57132.10771322.4451323.1821323.9201324.6571325.3951326.1331326.4317801327.6081328.3451329.0831329.8211330.5581331.2961332.0311332.7711333.5081334.2417801327.6081328.3451329.0831329.8211330.5581331.2961332.0331322.77	1680 1239	239.101 1239.838	1239.838 1240.576	1241.313	1242.051	1242.788	1243.526	1244.264	1245.001	1245.739
17001253.8521254.5891255.3271256.0641256.8021257.5401258.2771259.0151259.7521260.46417101261.2281261.9651262.7031263.4401264.1781264.9151265.6531266.3901267.1281267.9617201268.6031269.3411270.0781270.8161271.5531272.2911273.0281273.7661274.5031275.2417301275.9791276.7161277.4541278.1911278.9291279.6671280.4041281.1421281.8791282.61317401283.3541284.0921284.8291285.5671286.3041287.0421287.7801288.5171289.2551289.92517501290.7301291.4671292.9431293.6801294.4181295.1551295.8931296.6301297.3617601298.1051298.8431299.5811300.3181301.0561301.7931302.5311303.2681304.0061304.7417701305.4811306.2191306.9561307.6941308.4311309.1691309.9061310.6441311.3821312.1517801312.8571313.5941314.3321315.0691315.8071316.5441317.2821318.0201318.7571319.4617901320.2321320.9701321.7071322.4451323.1821332.0331332.7711333.5081334.2418001327.6081328.3451329.0831329.8211330.5581331.2961332.0331332.77113	1690 1246	246.476 1247.214	1247.214 1247.951	1248.689	1249.427	1250.164	1250.902	1251.639	1252.377	1253.114
1710 1201.228 1201.905 1202.703 1203.440 1204.178 1204.915 1205.053 1206.0390 1207.128 1277.128 1720 1268.603 1269.341 1270.078 1270.816 1271.553 1272.291 1273.028 1273.766 1274.503 1275.24 1730 1275.979 1276.716 1277.454 1278.191 1278.929 1279.667 1280.404 1281.142 1281.879 1282.61 1740 1283.354 1291.467 1292.205 1292.943 1293.680 1294.418 1295.155 1295.893 1296.630 1297.36 1760 1298.105 1298.843 1299.581 1300.318 1301.056 1301.793 1302.531 1303.268 1304.006 1304.74 1770 1305.481 1306.219 1306.956 1307.694 1308.431 1309.169 1309.906 1310.644 1311.382 1312.457 1780 1312.857 1313.594 134.332 1315.069 1315.807 1316.544 1317.282 1318.020 1318.757 1319.48 1790 1322.635 1328.345 <td< th=""><th>1700 1253</th><th>253.852 1254.589</th><th>1254.589 1255.327</th><th>1256.064</th><th>1256.802</th><th>1257.540</th><th>1258.277</th><th>1259.015</th><th>1259.752</th><th>1260.490</th></td<>	1700 1253	253.852 1254.589	1254.589 1255.327	1256.064	1256.802	1257.540	1258.277	1259.015	1259.752	1260.490
1730 1203.003 1203.014 1210.016 1217.033 1217.033 1212.034 1213.026 1217.106 1281.142 128	1710 120 1720 1269	201.228 1201.905	1201.905 1202.703	1203.440	1204.178	1204.915	1205.053	1200.390	1207.128	1207.805
17401283.3541284.0921284.8291285.5671286.3041287.0421287.7801288.5171289.2551289.9917501290.7301291.4671292.2051292.9431293.6801294.4181295.1551295.8931296.6301297.3617601298.1051298.8431299.5811300.3181301.0561301.7931302.5311303.2681304.0061304.7417701305.4811306.2191306.9561307.6941308.4311309.1691309.9061310.6441311.3821312.1517801312.8571313.5941314.3321315.0691315.8071316.5441317.282138.0201318.7571319.4617901320.2321320.9701321.7071322.4451323.1821323.9201324.6571325.3951326.1331326.8718001337.9681328.3451329.0831329.8211330.5581331.2961332.0331332.7711333.5081342.2418101334.9831335.7211336.4581337.1941337.9341338.6711339.4091340.1461340.8841341.6218201342.3591343.0971343.8341344.5721345.3091346.0471346.7841347.5221348.2601348.9218301349.7351350.4721351.2101351.9471352.6851353.4221354.1601354.8971355.6351356.3718401357.1101357.8481358.551359.3231360.0611360.7781361.53	1730 1275	275.979 1276.716	1276.716 1277.454	1278.191	1278.929	1279.667	1280.404	1281.142	1281.879	1282.617
17501290.7301291.4671292.2051292.9431293.6801294.4181295.1551295.8931296.6301297.3617601298.1051298.8431299.5811300.3181301.0561301.7931302.5311303.2681304.0061304.7417701305.4811306.2191306.9561307.6941308.4311309.1691309.9061310.6441311.3821312.1517801312.8571313.5941314.3321315.0691315.8071316.5441317.2821318.0201318.7571319.4617901320.2321320.9701321.7071322.4451323.1821323.9201324.6571325.3951326.1331326.8718001337.6081328.3451329.0831329.8211330.5581331.2961332.0331332.7711333.5081334.2418101334.9831335.7211336.4581337.1961337.9341338.6711339.4091340.1461340.8841341.6218201342.3591343.0971343.8341344.5721345.3091346.0471346.7841347.5221348.2601348.9918301349.7351350.4721351.2101351.9471352.6851353.4221354.1601354.8971355.6351363.37418401357.1101357.8481358.5851359.3231360.0611360.7981361.5361362.2731363.0111363.7418501364.4861365.2231365.9611366.6981367.4361368.1741368	1740 1283	283.354 1284.092	1284.092 1284.829	1285.567	1286.304	1287.042	1287.780	1288.517	1289.255	1289.992
17601298.1051298.8431299.5811300.3181301.0561301.7931302.5311303.2681304.0061304.7417701305.4811306.2191306.9561307.6941308.4311309.1691309.9061310.6441311.3821312.1217801312.8571313.5941314.3321315.0691315.8071316.5441317.2821318.0201318.7571318.75717901320.2321320.9701321.7071322.4451323.1821323.9201324.6571325.3951326.1331326.8718001327.6081328.3451329.0831329.8211330.5581331.2961332.0331332.7711333.5081334.2418101334.9831335.7211336.4581337.1961337.9341338.6711339.4091340.1461340.8841341.6218201342.3591343.0971343.8341344.5721345.3091346.0471346.7841347.5221348.2601348.9818301349.7351350.4721351.2101351.9471352.6851353.4221354.1601354.8971355.6351366.3718401357.8481358.5851359.3231360.0611360.7881361.5361362.2731363.0111363.7418501364.4861365.2231365.9611366.6981367.4361368.1741368.9111369.6491370.3861371.1218601371.8611372.5991373.3371374.0741374.8121375.5491376.2871377	1750 1290	290.730 1291.467	1291.467 1292.205	1292.943	1293.680	1294.418	1295.155	1295.893	1296.630	1297.368
17701305.4811306.9191306.9561307.6941308.4311309.1691309.9061310.6441311.3821312.1517801312.8571313.5941314.3321315.0691315.8071316.5441317.2821318.0201318.7571319.4817901320.2321320.9701321.7071322.4451323.1821323.9201324.6571325.3951326.1331326.8718001327.6081328.3451329.0831329.8211330.5581331.2961332.0331332.7711333.5081334.2418101334.9831335.7211336.4581337.1961337.9341338.6711339.4091340.1461340.8841341.6218201342.3591340.4721351.2101351.9471352.6851353.4221354.1601354.8971355.6351363.3718401357.1101357.8481358.5851359.3231360.0611360.7981361.5361362.2731363.0111363.7418501364.4861365.2231365.9611366.6981367.4361368.1741368.9111369.6491370.3861371.1218601371.8611372.5991373.3371374.0741374.8121375.5491376.2871377.0241377.7621378.5018701379.2371379.9751380.7121381.4501382.1871382.9251383.6621384.4001385.1371385.87	1760 1298	298.105 1298.843	1298.843 1299.581	1300.318	1301.056	1301.793	1302.531	1303.268	1304.006	1304.743
17901312.0371313.0341314.0321313.0361313.0371313.0371313.0441317.2021310.0441317.2021310.0201310.771313.43718001327.6081328.3451329.0831322.4451323.1821323.9201324.6571325.3951326.1331326.8718101334.9831335.7211336.4581337.1961337.9341338.6711339.4091340.1461340.8841341.6218201342.3591343.0971343.8341344.5721345.3091346.0471346.7841347.5221348.2601348.9918301349.7351350.4721351.2101351.9471352.6851353.4221354.1601354.8971355.6351356.3718401357.1101357.8481358.5851359.3231360.0611360.7981361.5361362.2731363.0111363.7418501364.4861365.2231365.9611366.6981367.4361368.1741368.9111369.6491370.3861371.1218601371.8611372.5991373.3371374.0741374.8121375.5491376.2871377.0241377.7621378.5018701379.2371379.9751380.7121381.4501382.1871382.9251383.6621384.4001385.1371385.87	1770 1305 1780 1310	305.481 1306.219	1306.219 1306.956	1307.694	1308.431	1309.169	1309.906	1310.644	1311.382	1312.199
18001327.6081328.3451329.0831329.8211330.5581331.2961332.0711332.7711333.5081334.2218101334.9831335.7211336.4581337.1961337.9341338.6711339.4091340.1461340.8841341.6218201342.3591343.0971343.8341344.5721345.3091346.0471346.7841347.5221348.2601348.9918301349.7351350.4721351.2101351.9471352.6851353.4221354.1601354.8971355.6351356.3718401357.1101357.8481358.5851359.3231360.0611360.7981361.5361362.2731363.0111363.7418501364.4861365.2231365.9611366.6981367.4361368.1741368.9111369.6491370.3861371.1218601371.8611372.5991373.3371374.0741374.8121375.5491376.2871377.0241377.7621378.5018701379.2371379.9751380.7121381.4501382.1871382.9251383.6621384.4001385.1371385.87	1790 1312	320 232 1320 970	1320 970 1321 707	1322 445	1323 182	1323 920	1324 657	1325 395	1326 133	1326 870
18101334.9831335.7211336.4581337.1961337.9341338.6711339.4091340.1461340.8841341.6218201342.3591343.0971343.8341344.5721345.3091346.0471346.7841347.5221348.2601348.9918301349.7351350.4721351.2101351.9471352.6851353.4221354.1601354.8971355.6351356.3718401357.1101357.8481358.5851359.3231360.0611360.7981361.5361362.2731363.0111363.7418501364.4861365.2231365.9611366.6981367.4361368.1741368.9111369.6491370.3861371.1218601371.8611372.5991373.3371374.0741374.8121375.5491376.2871377.0241377.7621378.5018701379.2371379.9751380.7121381.4501382.1871382.9251383.6621384.4001385.1371385.87	1800 1327	327.608 1328.345	1328.345 1329.083	1329.821	1330.558	1331.296	1332.033	1332.771	1333.508	1334.246
18201342.3591343.0971343.8341344.5721345.3091346.0471346.7841347.5221348.2601348.9918301349.7351350.4721351.2101351.9471352.6851353.4221354.1601354.8971355.6351356.3718401357.1101357.8481358.5851359.3231360.0611360.7981361.5361362.2731363.0111363.7418501364.4861365.2231365.9611366.6981367.4361368.1741368.9111369.6491370.3861371.1218601371.8611372.5991373.3371374.0741374.8121375.5491376.2871377.0241377.7621378.5018701379.2371379.9751380.7121381.4501382.1871382.9251383.6621384.4001385.1371385.87	1810 1334	334.983 1335.721	1335.721 1336.458	1337.196	1337.934	1338.671	1339.409	1340.146	1340.884	1341.622
1830 1349.735 1350.472 1351.210 1351.947 1352.685 1353.422 1354.160 1354.897 1355.635 1356.37 1840 1357.110 1357.848 1358.585 1359.323 1360.061 1360.798 1361.536 1362.273 1363.011 1363.74 1850 1364.486 1365.223 1365.961 1366.698 1367.436 1368.174 1368.911 1369.649 1370.386 1371.12 1860 1371.861 1372.599 1373.337 1374.074 1374.812 1375.549 1376.287 1377.024 1377.762 1378.50 1870 1379.237 1379.975 1380.712 1381.450 1382.187 1382.925 1383.662 1384.400 1385.137 1385.87	1820 1342	342.359 1343.097	1343.097 1343.834	1344.572	1345.309	1346.047	1346.784	1347.522	1348.260	1348.997
1850 1364.486 1365.223 1365.961 1366.698 1367.436 1368.174 1368.911 1369.649 1370.386 1371.12 1860 1371.861 1372.599 1373.337 1374.074 1374.812 1375.549 1376.287 1377.024 1377.762 1378.50 1870 1379.237 1379.975 1380.712 1381.450 1382.187 1382.925 1383.662 1384.400 1385.137 1385.87	1830 1349 1840 135	349.735 1350.472	1350.472 1351.210	1351.947	1352.685	1353.422	1354.160	1354.897	1355.635	1356.373
1860 1371.861 1372.599 1373.337 1374.074 1374.812 1375.549 1376.287 1377.024 1377.762 1378.50 1870 1379.237 1379.975 1380.712 1381.450 1382.187 1382.925 1383.662 1384.400 1385.137 1385.87	1850 1364	364 486 1365 223	1365 223 1365 961	1366 698	1367 436	1368 174	1368 911	1369 649	1370 386	1303.740
1870 1379.237 1379.975 1380.712 1381.450 1382.187 1382.925 1383.662 1384.400 1385.137 1385.87	1860 137 ⁴	371.861 1372.599	1372.599 1373.337	1374.074	1374.812	1375.549	1376.287	1377.024	1377.762	1378.500
	1870 1379	379.237 1379.975	1379.975 1380.712	1381.450	1382.187	1382.925	1383.662	1384.400	1385.137	1385.875
1880 1386.613 1387.350 1388.088 1388.825 1389.563 1390.301 1391.038 1391.776 1392.513 1393.25	1880 1386	386.613 1387.350	1387.350 1388.088	1388.825	1389.563	1390.301	1391.038	1391.776	1392.513	1393.251
1890 1393.988 1394.726 1395.463 1396.201 1396.938 1397.676 1398.414 1399.151 1399.889 1400.62	1890 1393	393.988 1394.726	1394.726 1395.463	1396.201	1396.938	1397.676	1398.414	1399.151	1399.889	1400.626
1910 1408 740 1409 477 1410 215 1410 952 1411 690 1412 427 1413 165 1413 902 1414 640 1415 37	1910 1408	408 740 1409 477	1402.101 1402.039	1403.370	1411 690	1403.032	1403.769	1400.527	1414 640	1400.002
1920 1416.115 1416.853 1417.590 1418.328 1419.065 1419.803 1420.540 1421.278 1422.016 1422.75	1920 1416	416.115 1416.853	1416.853 1417.590	1418.328	1419.065	1419.803	1420.540	1421.278	1422.016	1422.753
1930 1423.491 1424.228 1424.966 1425.703 1426.441 1427.178 1427.916 1428.654 1429.391 1430.12	1930 1423	423.491 1424.228	1424.228 1424.966	1425.703	1426.441	1427.178	1427.916	1428.654	1429.391	1430.129
1940 1430.866 1431.604 1432.341 1433.079 1433.816 1434.554 1435.292 1436.029 1436.767 1437.50	1940 1430	430.866 1431.604	1431.604 1432.341	1433.079	1433.816	1434.554	1435.292	1436.029	1436.767	1437.504
	1950 1438	438.242 1438.979	1438.979 1439.717	1440.455	1441.192	1441.930	1442.667	1443.405	1444.142	1444.880
1950 1445.017 1440.333 1447.093 1447.093 1447.050 1440.306 1449.305 1450.043 1450.760 1451.516 1452.23	1960 1443 1970 1453	445.017 1440.355	1440.355 1447.093 1453 730 1454 468	1447.030	1440.000	1449.305	1450.043	1450.760	1451.516	1452.255
1980 1460.369 1461.106 1461.844 1462.581 1463.319 1464.056 1464.794 1465.531 1466.269 1467.00	1980 1460	460.369 1461.106	1461.106 1461.844	1462.581	1463.319	1464.056	1464.794	1465.531	1466.269	1467.007
1990 1467.744 1468.482 1469.219 1469.957 1470.695 1471.432 1472.170 1472.907 1473.645 1474.38	1990 1467	467.744 1468.482	1468.482 1469.219	1469.957	1470.695	1471.432	1472.170	1472.907	1473.645	1474.382
2000 1475.120 1475.857 1476.595 1477.333 1478.070 1478.808 1479.545 1480.283 1481.020 1481.75	2000 1475	475.120 1475.857	1475.857 1476.595	1477.333	1478.070	1478.808	1479.545	1480.283	1481.020	1481.758
2010 1482.495 1483.233 1483.970 1484.708 1485.446 1486.183 1486.921 1487.658 1488.396 1489.13	2010 1482	482.495 1483.233	1483.233 1483.970	1484.708	1485.446	1486.183	1486.921	1487.658	1488.396	1489.134
2020 1489.871 1490.809 1491.346 1492.884 1492.821 1493.559 1494.296 1495.034 1495.771 1496.50 2030 1497.247 1497.984 1498.722 1499.459 1500.107 1500.034 1501.672 1502.400 1503.147 1503.9	2020 1489	489.871 1490.609	1490.609 1491.346 1497.984 1498.722	1492.084	1492.821	1493.559	1494.296	1495.034	1495.771	1496.509
2040 1504.622 1505.360 1506.097 1506.835 1507 573 1508.310 1509.048 1509.785 1510.523 1511.26	2040 1504	504.622 1505.360	1505.360 1506.097	1506 835	1507 573	1508 310	1509.048	1502.409	1510 523	1511 260
2050 1511.998 1512.735 1513.473 1514.210 1514.948 1515.686 1516.423 1517.161 1517.898 1518.63	2050 151 ⁻¹	511.998 1512.735	1512.735 1513.473	1514.210	1514.948	1515.686	1516.423	1517.161	1517.898	1518.636
2060 1519.374 1520.111 1520.849 1521.586 1522.324 1523.061 1523.799 1524.536 1525.274 1526.01	2060 1519	519.374 1520.111	1520.111 1520.849	1521.586	1522.324	1523.061	1523.799	1524.536	1525.274	1526.011
2070 1526.749 1527.487 1528.224 1528.962 1529.699 1530.437 1531.174 1531.912 1532.649 1533.38	2070 1526	526.749 1527.487	1527.487 1528.224	1528.962	1529.699	1530.437	1531.174	1531.912	1532.649	1533.387
2080 1534.125 1534.862 1535.600 1536.337 1537.075 1537.812 1538.550 1539.288 1540.025 1540.76		534.125 1534.862	1534.862 1535.600	1536.337	1537.075	1537.812	1538.550	1539.288	1540.025	1540.763
2100 1548.876 1549.613 1550.351 1551.089 1551.826 1552.564 1553.301 1554.039 1554.776 1555.51	2080 1534	5/1 500 15/2 220	1077 700 1 1047 970	1040.710	1551.826	1552.564	1553.301	1554.039	1554.776	1555.514

Nm	0	1	2	3	4	5	6	7	8	9
2110	1556.251	1556.989	1557.727	1558.464	1559.202	1559.939	1560.677	1561.414	1562.152	1562.889
2120	1563.627	1564.365	1565.102	1565.840	1566.577	1567.315	1568.052	1568.790	1569.528	1570.265
2130	1571.003	1571.740	1572.478	1573.215	1573.953	1574.690	1575.428	1576.166	1576.903	1577.641
2140	1578.378	1579.116	1579.853	1580.591	1581.328	1582.066	1582.803	1583.541	1584.279	1585.016
2150	1585.754	1586.491	1587.229	1587.967	1588.704	1589.442	1590.179	1590.917	1591.654	1592.392
2160	1593.129	1593.867	1594.604	1595.342	1596.080	1596.817	1597.555	1598.292	1599.030	1599.768
2170	1600.505	1601.243	1601.980	1602.718	1603.455	1604.193	1604.930	1605.668	1606.406	1607.143
2100	1615 256	1615 994	1616 731	1617 469	1618 207	1618 944	1610 682	1620 419	1621 157	1621 894
2200	1622.632	1623.369	1624.107	1624.844	1625.582	1626.320	1627.057	1627.795	1628.532	1629.270
2210	1630.007	1630.745	1631.482	1632.220	1632.958	1633.695	1634.433	1635.170	1635.908	1636.646
2220	1637.383	1638.121	1638.858	1639.596	1640.333	1641.071	1641.808	1642.546	1643.283	1644.021
2230	1644.759	1645.496	1646.234	1646.971	1647.709	1648.447	1649.184	1649.922	1650.659	1651.397
2240	1652.134	1652.872	1653.609	1654.347	1655.084	1655.822	1656.560	1657.297	1658.035	1658.772
2250	1659.510	1660.247	1660.985	1661.722	1662.460	1663.198	1663.935	1664.673	1665.410	1666.148
2200	1674 261	167/ 000	1675 736	1676 474	1677 211	1677.040	1678 686	1670 424	1680 162	1680 800
2280	1681 637	1682 374	1683 112	1683 849	1684 587	1685 324	1686 062	1686 800	1687 537	1688 275
2290	1689.012	1689.750	1690.487	1691.225	1691.962	1692.700	1693.437	1694.175	1694.913	1695.650
2300	1696.388	1697.125	1697.863	1698.601	1699.338	1700.076	1700.813	1701.551	1702.288	1703.026
2310	1703.763	1704.501	1705.239	1705.976	1706.714	1707.451	1708.189	1708.926	1709.664	1710.401
2320	1711.139	1711.876	1712.614	1713.352	1714.089	1714.827	1715.564	1716.302	1717.040	1717.777
2330	1/18.515	1/19.252	1/19.990	1/20./2/	1/21.465	1722.202	1722.940	1/23.6//	1/24.415	1725.153
2340	1723.090	1720.020	1734 741	1720.103	1736 216	1729.070	1730.310	1738 420	1730 166	1732.520
2360	1740 641	1741 379	1742 116	1742 854	1743 592	1744 329	1745 067	1745 804	1746 542	1747 280
2370	1748.017	1748.755	1749.492	1750.230	1750.967	1751.705	1752.442	1753.180	1753.917	1754.655
2380	1755.393	1756.130	1756.868	1757.605	1758.343	1759.080	1759.818	1760.555	1761.293	1762.031
2390	1762.768	1763.506	1764.243	1764.981	1765.719	1766.456	1767.194	1767.931	1768.669	1769.406
2400	1770.144	1770.881	1771.619	1772.356	1773.094	1773.832	1774.569	1775.307	1776.044	1776.782
2410	1777.520	1778.257	1778.995	1779.732	1780.470	1781.207	1781.945	1782.682	1783.420	1784.157
2420	1784.895	1785.033	1780.370	1707.108	1705 221	1705.063	1789.320	1790.058	1790.795	1791.533
2440	1799 646	1800 384	1801 121	1801 859	1802 596	1803 334	1804 072	1804 809	1805 547	1806 284
2450	1807.022	1807.759	1808.497	1809.234	1809.972	1810.710	1811.447	1812.185	1812.922	1813.660
2460	1814.397	1815.135	1815.873	1816.610	1817.348	1818.085	1818.823	1819.560	1820.298	1821.035
2470	1821.773	1822.510	1823.248	1823.986	1824.723	1825.461	1826.198	1826.936	1827.674	1828.411
2480	1829.149	1829.886	1830.624	1831.361	1832.099	1832.836	1833.574	1834.312	1835.049	1835.787
2490	1836.524	1837.262	1837.999	1838.737	1839.474	1840.212	1840.949	1841.687	1842.425	1843.162
2500	1851 275	1852 013	1852 750	1853 488	1854 226	1854 963	1855 701	1856 438	1857 176	1857 914
2520	1858.651	1859.389	1860.126	1860.864	1861.601	1862.339	1863.076	1863.814	1864.552	1865.289
2530	1866.027	1866.764	1867.502	1868.239	1868.977	1869.714	1870.452	1871.189	1871.927	1872.665
2540	1873.402	1874.140	1874.877	1875.615	1876.353	1877.090	1877.828	1878.565	1879.303	1880.040
2550	1880.778	1881.515	1882.253	1882.990	1883.728	1884.466	1885.203	1885.941	1886.678	1887.416
2560	1888.153	1888.891	1889.628	1890.366	1891.104	1891.841	1892.579	1893.316	1894.054	1894.792
2570	1895.529	1890.207	1897.004	1897.742	1898.479	1899.217	1899.954	1900.692	1901.429	1902.167
2590	1902.905	1911 018	1911 755	1912 493	1913 230	1913 968	1914 706	1915 443	1916 181	1909.043
2600	1917.656	1918.393	1919.131	1919.868	1920.606	1921.344	1922.081	1922.819	1923.556	1924.294
2610	1925.031	1925.769	1926.507	1927.244	1927.982	1928.719	1929.457	1930.194	1930.932	1931.669
2620	1932.407	1933.145	1933.882	1934.620	1935.357	1936.095	1936.832	1937.570	1938.307	1939.045
2630	1939.783	1940.520	1941.258	1941.995	1942.733	1943.470	1944.208	1944.946	1945.683	1946.421
2640	1947.158	1947.896	1948.633	1949.371	1950.108	1950.846	1951.583	1952.321	1953.059	1953.796
2000	1954.554	1955.271	1950.009	1950.747	1957.464	1930.222	1956.959	1959.097	1960.434	1901.172
2670	1969 285	1970 022	1970 760	1971 498	1972 235	1972 973	1973 710	1974 448	1975 186	1975 923
2680	1976.661	1977.398	1978.136	1978.873	1979.611	1980.348	1981.086	1981.823	1982.561	1983.299
2690	1984.036	1984.774	1985.511	1986.249	1986.986	1987.724	1988.462	1989.199	1989.937	1990.674
2700	1991.412	1992.149	1992.887	1993.625	1994.362	1995.100	1995.837	1996.575	1997.312	1998.050
2710	1998.787	1999.525	2000.262	2001.000	2001.738	2002.475	2003.213	2003.950	2004.688	2005.426
2720	2006.163	2006.901	2007.638	2008.376	2009.113	2009.851	2010.588	2011.326	2012.063	2012.801
2730	2013.539	2014.270	2013.014	2013.731	2010.409	2017.220	2017.904	2010.701	2019.439	2020.177
2750	2028 290	2029 027	2029 765	2030 502	2031 240	2021.002	2032 715	2033 453	2034 190	2021.002
2760	2035.666	2036.403	2037.141	2037.878	2038.616	2039.353	2040.091	2040.828	2041.566	2042.303
2770	2043.041	2043.779	2044.516	2045.254	2045.991	2046.729	2047.466	2048.204	2048.941	2049.679
2780	2050.417	2051.154	2051.892	2052.629	2053.367	2054.104	2054.842	2055.580	2056.317	2057.055
2790	2057.792	2058.530	2059.267	2060.005	2060.742	2061.480	2062.218	2062.955	2063.693	2064.430
2800	2065.168	2065.905	2066.643	2067.380	2068.118	2068.856	2069.593	2070.331	2071.068	2071.806

Nm	0	1	2	3	4	5	6	7	8	9
2810	2072.543	2073.281	2074.019	2074.756	2075.494	2076.231	2076.969	2077.706	2078.444	2079.181
2820	2079.919	2080.656	2081.394	2082.132	2082.869	2083.607	2084.344	2085.082	2085.820	2086.557
2830	2087.295	2088.032	2088.770	2089.507	2090.245	2090.982	2091.720	2092.458	2093.195	2093.933
2840	2094.670	2095.408	2096.145	2096.883	2097.620	2098.358	2099.095	2099.833	2100.571	2101.308
2850	2102.046	2102.783	2103.521	2104.259	2104.996	2105.734	2106.471	2107.209	2107.946	2108.684
2870	2109.421	2110.139	2118 272	2119.010	2112.372	2113.109	2113.047	2121 960	21122 698	2123 435
2880	2124.173	2124.910	2125.648	2126.385	2127.123	2127.860	2128.598	2129.335	2130.073	2120.400
2890	2131.548	2132.286	2133.023	2133.761	2134.499	2135.236	2135.974	2136.711	2137.449	2138.186
2900	2138.924	2139.661	2140.399	2141.136	2141.874	2142.612	2143.349	2144.087	2144.824	2145.562
2910	2146.299	2147.037	2147.774	2148.512	2149.250	2149.987	2150.725	2151.462	2152.200	2152.937
2920	2153.675	2154.413	2155.150	2155.888	2156.625	2157.363	2158.100	2158.838	2159.575	2160.313
2930	2168 426	2169 164	2169 901	2103.203	2171 376	2172 114	2103.470	2173 589	2174 327	2107.009
2950	2175.802	2176.539	2177.277	2178.014	2178.752	2179.490	2180.227	2180.965	2181.702	2182.440
2960	2183.177	2183.915	2184.653	2185.390	2186.128	2186.865	2187.603	2188.340	2189.078	2189.815
2970	2190.553	2191.291	2192.028	2192.766	2193.503	2194.241	2194.978	2195.716	2196.453	2197.191
2980	2197.929	2198.666	2199.404	2200.141	2200.879	2201.616	2202.354	2203.092	2203.829	2204.567
2990	2205.304	2206.042	2006.779	2207.517	2208.254	2208.992	2209.729	2210.467	2211.205	2211.942
3010	2212.000	2213.417	2214.100	2214.093	2215.030	2210.300	2217.105	2217.043	2210.000	2219.310
3020	2227.431	2228.168	2228.906	2229.644	2230.381	2231.119	2231.856	2232.594	2233.332	2234.069
3030	2234.807	2235.544	2236.282	2237.019	2237.757	2238.494	2239.232	2239.969	2240.707	2241.445
3040	2242.182	2242.920	2243.657	2244.395	2245.132	2245.870	2246.608	2247.345	2248.083	2248.820
3050	2249.558	2250.295	2251.033	2251.771	2252.508	2253.246	2253.983	2254.721	2255.458	2256.196
3060	2256.933	2257.671	2258.408	2259.146	2259.884	2260.621	2261.359	2262.096	2262.834	2263.572
3070	2204.309	2205.047	2205.764	2200.522	2207.209	2207.997	2200.734	2209.472	2270.209	2270.947
3090	2279 060	2279 798	2280 535	2281 273	2282 010	2282 748	2283 486	2284 223	2284 961	2285 698
3100	2286.436	2287.173	2287.911	2288.648	2289.386	2290.124	2290.861	2291.599	2292.336	2293.074
3110	2293.811	2294.549	2295.287	2296.024	2296.762	2297.499	2298.237	2298.974	2299.712	2300.449
3120	2301.187	2301.925	2302.662	2303.400	2304.137	2304.875	2305.612	2306.350	2307.087	2307.825
3130	2308.562	2309.300	2310.038	2310.775	2311.513	2312.250	2312.988	2313.726	2314.463	2315.201
3140	2323 314	2310.070	2324 789	2325 526	2316.000	2319.020	2320.304	2328 477	2329 214	2322.570
3160	2330.689	2331.427	2332.165	2332.902	2333.640	2334.377	2335.115	2335.852	2336.590	2337.327
3170	2338.065	2338.802	2339.540	2340.278	2341.015	2341.753	2342.490	2343.228	2343.966	2344.703
3180	2345.441	2346.178	2346.916	2347.653	2348.391	2349.128	2349.866	2350.604	2351.341	2352.079
3190	2352.816	2353.554	2354.291	2355.029	2355.766	2356.504	2357.241	2357.979	2358.717	2359.454
3200	2360.192	2360.929	2301.007	2362.405	2303.142	2303.880	2304.017	2305.355	2300.092	2300.830
3220	2374.943	2375.681	2376.418	2377.156	2377.893	2378.631	2379.368	2380.106	2380.844	2381.581
3230	2382.319	2383.056	2383.794	2384.531	2385.269	2386.006	2386.744	2387.481	2388.219	2388.957
3240	2389.694	2390.432	2391.169	2391.907	2392.645	2393.382	2394.120	2394.857	2395.595	2396.332
3250	2397.070	2397.807	2398.545	2399.282	2400.020	2400.758	2401.495	2402.233	2402.970	2403.708
3260	2404.445	2405.183	2405.920	2406.658	2407.396	2408.133	2408.871	2409.608	2410.346	2411.083
3280	2411.021	2412.559	2413.290	2414.034	2414.771	2415.509	2410.240	2410.964	2417.721	2410.409
3290	2426.572	2427.310	2428.047	2428.785	2429.522	2430.260	2430.998	2431.735	2432.473	2433.210
3300	2433.948	2434.685	2435.423	2436.160	2436.898	2437.635	2438.373	2439.111	2439.848	2440.586
3310	2441.323	2442.061	2442.799	2443.536	2444.274	2445.011	2445.749	2446.486	2447.224	2447.961
3320	2448.699	2449.437	2450.174	2450.912	2451.649	2452.387	2453.124	2453.862	2454.599	2455.337
3330	2456.075	2456.812	2457.550	2458.287	2459.025	2459.762	2460.500	2461.238	2461.975	2462.713
3350	2403.450	2404.100	2404.925	2405.003	2400.400	2407.130	2407.875	2408.013	2409.351	2470.000
3360	2478.201	2478.939	2479.677	2480.414	2481.152	2481.889	2482.627	2483.364	2484.102	2484.839
3370	2485.577	2486.314	2487.052	2487.790	2488.527	2489.265	2490.002	2490.740	2491.478	2492.215
3380	2492.953	2493.690	2494.428	2495.165	2495.903	2496.640	2497.378	2498.115	2498.853	2499.591
3390	2500.328	2501.066	2501.803	2502.541	2503.278	2504.016	2504.754	2505.491	2506.229	2506.966
3400 3410	2515.070	2508.441 2515 817	2516 554	2509.917	2518.020	2519.392	2512.129	2512.867	2520 020	2514.342
3420	2572 455	2523 193	2523 930	2524 668	2525 405	2526 143	2526 880	2527 618	2528 355	2529 093
3430	2529.831	2530.568	2531.306	2532.043	2532.781	2533.518	2534.256	2534.993	2535.731	2536.469
3440	2537.206	2537.944	2538.681	2539.419	2540.156	2540.894	2541.632	2542.369	2543.107	2543.844
3450	2544.582	2545.319	2546.057	2546.794	2547.532	2548.270	2549.007	2549.745	2550.482	2551.220
3460	2551.957	2552.695	2553.433	2554.170	2554.908	2555.645	2556.383	2557.120	2557.858	2558.595
3470 3480	2559.333	2567 446	2568 194	2568 021	2560 650	2503.021	2503.758	2504.496	2505.233	2505.9/1
3490	2574 084	2574 822	2575 559	2576 297	2577 034	2577 772	2578 510	2579 247	2579 985	2580 722
3500	2581.460	2582.197	2582.935	2583.672	2584.410	2585.148	2585.885	2586.623	2587.360	2588.098

Nm	0	1	2	3	4	5	6	7	8	9
3510	2588.835	2589.573	2590.311	2591.048	2591.786	2592.523	2593.261	2593.998	2594.736	2595.473
3520	2596.211	2596.948	2597.686	2598.424	2599.161	2599.899	2600.636	2601.374	2602.112	2602.849
3530	2603.587	2604.324	2605.062	2605.799	2606.537	2607.274	2608.012	2608.750	2609.487	2610.225
3540	2610.962	2611.700	2612.437	2613.175	2613.912	2614.650	2615.387	2616.125	2616.863	2617.600
3550	2618.338	2619.075	2619.813	2620.551	2621.288	2622.026	2622.763	2623.501	2624.238	2624.976
3570	2023.713	2020.401	2027.100	2627.920	2020.004	2629.401	2630.139	2030.070	2631.014	2032.331
3580	2640 465	2641 202	2641 940	2642 677	2643 415	2644 152	2644 890	2645 627	2646 365	2647 103
3590	2647.840	2648.578	2649.315	2650.053	2650.791	2651.528	2652.266	2653.003	2653.741	2654.478
3600	2655.216	2655.953	2656.691	2657.428	2658.166	2658.904	2659.641	2660.379	2661.116	2661.854
3610	2662.591	2663.329	2664.066	2664.804	2665.542	2666.279	2667.017	2667.754	2668.492	2669.229
3620	2669.967	2670.705	2671.442	2672.180	2672.917	2673.655	2674.392	2675.130	2675.867	2676.605
3630	2677.343	2678.080	2678.818	2679.555	2680.293	2681.030	2681.768	2682.506	2583.243	2683.981
3640	2684.718	2685.456	2686.193	2686.931	2687.668	2688.406	2689.144	2689.881	2690.619	2691.356
3660	2692.094	2092.031	2093.509	2094.300	2095.044	2095.761	2090.519	2097.257	2097.994	2090.732
3670	2706.845	2707.583	2708.320	2709.058	2709.795	2710.533	2711.270	2712.008	2712.745	2713.483
3680	2714.221	2714.958	2715.696	2716.433	2717.171	2717.908	2718.646	2719.384	2720.121	2720.859
3690	2721.596	2722.334	2723.071	2723.809	2724.546	2725.284	2726.021	2726.759	2727.497	2728.234
3700	2728.972	2729.709	2730.447	2731.185	2731.922	2732.660	2733.397	2734.135	2734.872	2735.610
3710	2736.347	2737.085	2737.823	2738.560	2739.298	2740.035	2740.773	2741.510	2742.248	2742.985
3720	2743.723	2744.460	2745.198	2745.936	2746.673	2747.411	2748.148	2748.886	2749.624	2750.361
3730	2751.099	2751.830	2752.574	2753.311	2754.049	2754.780	2755.524	2750.201	2756.999	2757.737
3750	2765 850	2766 587	2767 325	2768.062	2768 800	2769 538	2702.900	2703.037	2704.375	2705.112
3760	2773.225	2773.963	2774.700	2775.438	2776.176	2776.913	2777.651	2778.388	2779.126	2779.864
3770	2780.601	2781.339	2782.076	2782.814	2783.551	2784.289	2785.026	2785.764	2786.501	2787.239
3780	2787.977	2788.714	2789.452	2790.189	2790.927	2791.664	2792.402	2793.139	2793.877	2794.615
3790	2795.352	2796.090	2796.827	2797.565	2798.302	2799.040	2799.778	2800.515	2801.253	2801.990
3800	2802.728	2803.465	2804.203	2804.940	2805.678	2806.416	2807.153	2807.891	2808.628	2809.366
3810	2810.103	2810.841	2811.579	2812.316	2813.054	2813.791	2814.529	2815.260	2816.004	2816.741
3830	2824 854	2825 592	2826 330	2827 067	2827 805	2828 542	2829 280	2830 018	2830 755	2831 493
3840	2832.230	2832.968	2833.705	2834.443	2835.180	2835.918	2836.656	2837.393	2838.131	2838.868
3850	2839.606	2840.343	2841.081	2841.818	2842.556	2843.293	2844.031	2844.769	2845.506	2846.244
3860	2846.981	2847.719	2848.457	2849.194	2849.932	2850.669	2851.407	2852.144	2852.882	2853.619
3870	2854.357	2855.094	2855.832	2856.570	2857.307	2858.045	2858.782	2859.520	2860.258	2860.995
3880	2861.733	2862.470	2863.208	2863.945	2864.683	2865.420	2866.158	2866.896	2867.633	2868.371
3900	2876 484	2877 221	2877 959	2878 697	2879 434	2880 172	2873.555	2881 647	2875.009	2883 122
3910	2883.859	2884.597	2885.334	2886.072	2886.810	2887.547	2888.285	2889.022	2889.760	2890.497
3920	2891.235	2891.973	2892.710	2893.448	2894.185	2894.923	2895.660	2896.398	2897.135	2897.873
3930	2898.611	2899.348	2900.086	2900.823	2901.561	2902.298	2903.036	2903.773	2904.511	2905.249
3940	2905.986	2906.724	2907.461	2908.199	2908.937	2909.674	2910.412	2911.149	2911.887	2912.624
3950	2913.362	2914.099	2914.837	2915.574	2916.312	2917.050	2917.787	2918.525	2919.262	2920.000
3960	2920.737	2921.475	2922.212	2922.950	2923.687	2924.425	2925.163	2925.900	2926.638	2927.375
3980	2926.113	2926.001	2929.566	2930.320	2938 439	2931.001	2932.556	2933.270	2934.013	2934.751
3990	2942.864	2943.602	2944.339	2945.077	2945.814	2946.552	2947.290	2948.027	2948.765	2949.502
4000	2950.240	2950.977	2951.715	2952.452	2953.190	2953.927	2954.665	2955.403	2956.140	2956.878
4010	2957.615	2958.353	2959.091	2959.828	2960.566	2961.303	2962.041	2962.778	2963.516	2964.253
4020	2964.991	2965.729	2966.466	2967.204	2967.941	2968.679	2969.416	2970.154	2970.891	2971.629
4030	2972.366	2973.104	2973.842	2974.579	2975.317	2976.054	2976.792	2977.530	2978.267	2979.005
4040	2979.742	2980.480	2981.217	2981.955	2982.692	2983.430	2984.167	2984.905	2985.643	2986.380
4050	2907.110	2907.000	2900.595	2909.331	2990.000	2990.000	2991.543	2992.201	2993.018	2993.750
4070	3001 869	3002 606	3003 344	3004 082	3004 819	3005 557	3006 294	3007 032	3007 770	3008 507
4080	3009.245	3009.982	3010.720	3011.457	3012.195	3012.932	3013.670	3014.407	3015.145	3015.883
4090	3016.620	3017.358	3018.095	3018.833	3019.570	3020.308	3021.046	3021.783	3022.521	3023.258
4100	3023.996	3024.733	3025.471	3026.208	3026.946	3027.684	3028.421	3029.159	3029.896	3030.634
4110	3031.371	3032.109	3032.846	3033.584	3034.322	3035.059	3035.797	3036.534	3037.272	3038.010
4120	3038.747	3039.485	3040.222	3040.960	3041.69/	3042.435	3043.1/2	3043.910	3044.64/	3045.385
4140	3053 498	3054 236	3054 973	3055 711	3056 448	3057 186	3057 924	3058 661	3059 399	3060 136
4150	3060.874	3061.611	3062.349	3063.086	3063.824	3064.562	3065.299	3066.037	3066.774	3067.512
4160	3068.249	3068.987	3069.725	3070.462	3071.200	3071.937	3072.675	3073.412	3074.150	3074.887
4170	3075.625	3076.363	3077.100	3077.838	3078.575	3079.313	3080.050	3080.788	3081.525	3082.263
4180	3083.000	3083.738	3084.476	3085.213	3085.951	3086.688	3087.426	3088.164	3088.901	3089.639
4190	3090.376	3091.114	3091.851	3092.589	3093.326	3094.064	3094.802	3095.539	3096.277	3097.014
4200	3097.752	3098.489	3099.227	3099.964	3100.702	3101.439	3102.177	3102.915	3103.652	3104.390

Nm	0	1	2	3	4	5	6	7	8	9
4210	3105.127	3105.865	3106.603	3107.340	3108.078	3108.815	3109.553	3110.290	3111.028	3111.765
4220	3112.503	3113.240	3113.978	3114.716	3115.453	3116.191	3116.928	3117.666	3118.404	3119.141
4230	3119.879	3120.616	3121.354	3122.091	3122.829	3123.566	3124.304	3125.042	3125.779	3126.517
4240	3127.254	3127.992	3128.729	3129.407	3130.204	3130.942	3131.079	3132.417	3133.155	3133.892
4260	3142.005	3142.743	3143.480	3144.218	3144.956	3145.693	3146.431	3147.168	3147.906	3148.643
4270	3149.381	3150.118	3150.856	3151.594	3152.331	3153.069	3153.806	3154.544	3155.281	3156.019
4280	3156.757	3157.494	3158.232	3158.969	3159.707	3160.444	3161.182	3161.919	3162.657	3163.395
4290	3164.132	3164.870	3165.607	3166.345	3167.083	3167.820	3168.558	3169.295	3170.033	3170.770
4300	31/1.508	3172.245	3172.983	31/3./20	31/4.458	31/5.196	3175.933	31/6.6/1	3177.408	31/8.146
4310	3186 259	3186 997	3187 734	3188 472	3189 209	3189 947	3190 684	3191 422	3192 159	3192 897
4330	3193.635	3194.372	3195.110	3195.847	3196.585	3197.322	3198.060	3198.798	3199.535	3200.273
4340	3201.010	3201.748	3202.485	3203.223	3203.960	3204.698	3205.436	3206.173	3206.911	3207.648
4350	3208.386	3209.123	3209.861	3210.598	3211.336	3212.073	3212.811	3213.549	3214.286	3215.024
4360	3215.761	3216.499	3217.237	3217.974	3218.712	3219.449	3220.187	3220.924	3221.662	3222.399
4370	3223.137	3223.875	3224.012	3225.350	3220.087	3220.825	3227.502	3228.300	3229.037	3229.775
4390	3237.888	3238.626	3239.363	3240.101	3240.838	3241.576	3242.313	3243.051	3243.789	3244.526
4400	3245.264	3246.001	3246.739	3247.477	3248.214	3248.952	3249.689	3250.427	3251.164	3251.902
4410	3252.639	3253.377	3254.115	3254.852	3255.590	3256.327	3257.065	3257.802	3258.540	3259.277
4420	3260.015	3260.752	3261.490	3262.228	3262.965	3263.703	3264.440	3265.178	3265.916	3266.653
4430	3267.391	3268.128	3268.866	3269.603	3270.341	32/1.0/8	32/1.816	3272.553	3273.291	3274.029
4440	3282 142	3282 879	3283 617	3284 354	3285 092	3285 830	3286 567	3279.929	3288 042	3288 780
4460	3289.517	3290.255	3290.992	3291.730	3292.468	3293.205	3293.943	3294.680	3295.418	3296.156
4470	3296.893	3297.631	3298.368	3299.106	3299.843	3300.581	3301.318	3302.056	3302.793	3303.531
4480	3304.269	3305.006	3305.744	3306.481	3307.219	3307.956	3308.694	3309.431	3310.169	3310.906
4490	3311.644	3312.382	3313.119	3313.857	3314.594	3315.332	3316.070	3316.807	3317.545	3318.282
4500	3319.020	3319.757	3320.495	3321.232	3321.970	3322.708	3323.445	3324.183	3324.920	3325.658
4520	3333 771	3334 509	3335 246	3335 984	3336 721	3337 459	3338 196	3338 934	3339 671	3340 409
4530	3341.146	3341.884	3342.622	3343.359	3344.097	3344.834	3345.572	3346.310	3347.047	3347.785
4540	3348.522	3349.260	3349.997	3350.735	3351.472	3352.210	3352.948	3353.685	3354.423	3355.160
4550	3355.898	3356.635	3357.373	3358.110	3358.848	3359.585	3360.323	3361.061	3361.798	3362.536
4560	3363.273	3364.011	3364.749	3365.486	3366.224	3366.961	3367.699	3368.436	3369.174	3369.911
4570	3378 025	3378 762	3379 500	3380 237	3380 975	3381 712	3382 450	3383 187	3383 925	3384 663
4590	3385.400	3386.138	3386.875	3387.613	3388.350	3389.088	3389.825	3390.563	3391.301	3392.038
4600	3392.776	3393.513	3394.251	3394.989	3395.726	3396.464	3397.201	3397.939	3398.676	3399.414
4610	3400.151	3400.889	3401.626	3402.364	3403.102	3403.839	3404.577	3405.314	3406.052	3406.789
4620	3407.527	3408.264	3409.002	3409.740	3410.477	3411.215	3411.952	3412.690	3413.427	3414.165
4630	3414.903	3415.040	3410.370	3417.115	3417.000	3416.590	3419.320	3420.005	3420.003	3421.041
4650	3429.654	3430.391	3431.129	3431.866	3432.604	3433.342	3434.079	3434.817	3435.554	3436.292
4660	3437.029	3437.767	3438.504	3439.242	3439.979	3440.717	3441.455	3442.192	3442.930	3443.667
4670	3444.405	3445.143	3445.880	3446.618	3447.355	3448.093	3448.830	3449.568	3450.305	3451.043
4680	3451.781	3452.518	3453.256	3453.993	3454.731	3455.468	3456.206	3456.943	3457.681	3458.419
4090	3466 532	3459.894	3468.007	3468 744	3469 482	3402.844	3403.362	3404.319	3405.057	3405.794
4710	3473.907	3474.645	3475.383	3476.120	3476.858	3477.595	3478.333	3479.070	3479.808	3480.545
4720	3481.283	3482.021	3482.758	3483.496	3484.233	3484.971	3485.708	3486.446	3487.183	3487.921
4730	3488.658	3489.396	3490.134	3490.871	3491.609	3492.346	3493.084	3493.822	3494.559	3495.297
4740	3496.034	3496.772	3497.509	3498.247	3498.984	3499.722	3500.459	3501.197	3501.935	3502.672
4750	3503.410	3504.147	3504.885	3505.622	3506.360	3507.098	3507.835	3508.573	3509.310	3510.048
4770	3518.161	3518.898	3519.636	3520.374	3521.111	3521.849	3522.586	3523.324	3524.062	3524.799
4780	3525.537	3526.274	3527.012	3527.749	3528.487	3529.224	3529.962	3530.699	3531.437	3532.175
4790	3532.912	3533.650	3534.387	3535.125	3535.862	3536.600	3537.337	3538.075	3538.813	3539.550
4800	3540.288	3541.025	3541.763	3542.500	3543.238	3543.976	3544.713	3545.451	3546.188	3546.926
4810	3547.663	3548.401	3549.138	3549.876	3550.614	3551.351	3552.089	3552.826	3553.564	3554.302
4830	3562 415	3463 152	3563 890	3564 627	3565 365	3566 102	3566 840	3567 577	3568 315	3569 052
4840	3569.790	3570.528	3571.265	3572.003	3572.740	3573.478	3574.216	3574.953	3575.691	3576.428
4850	3577.166	3577.903	3578.641	3579.378	3580.116	3580.854	3581.591	3582.329	3583.066	3583.804
4860	3584.541	3585.279	3586.016	3586.754	3587.492	3588.229	3588.967	3589.704	3590.442	3591.179
4870 4880	3591.917	3592.655	3593.392	3594.130	3594.867	3595.605	3596.342	3597.080	3597.817	3598.555
4890	3606.668	3607.406	3608.143	3608.881	3609.618	3610.356	3611.094	3611.831	3612.569	3613.306
4900	3614.044	3614.781	3615.519	3616.256	3616.994	3617.731	3618.469	3619.207	3619.944	3620.682

Nm	0	1	2	3	4	5	6	7	8	9
4910	3621.419	3622.157	3622.895	3623.632	3624.370	3625.107	3625.845	3626.582	3627.320	3628.057
4920	3628.795	3629.532	3630.270	3631.008	3631.745	3632.483	3633.220	3633.958	3634.695	3635.433
4930	3636.171	3636.908	3637.646	3638.383	3639.121	3639.858	3640.596	3641.333	3642.071	3642.809
4940	3643.546	3644.284	3645.021	3645.759	3646.496	3647.234	3647.971	3648.709	3649.447	3650.184
4950	3650.922	3651.659	3652.397	3653.135	3653.872	3654.610	3655.347	3656.085	3656.822	3657.560
4960	3658.297	3659.035	3659.772	3660.510	3661.248	3661.985	3662.723	3663.460	3664.198	3664.935
4970	3665.673	3666.410	3667.148	3667.886	3668.623	3669.361	3670.098	3670.836	3671.573	3672.311
4980	3673.049	3673.786	3674.524	3675.261	3675.999	3676.736	3677.474	3678.211	3678.949	3679.687
4990	3680.424	3681.162	3681.899	3682.637	3683.374	3684.112	3684.850	3685.587	3686.325	3687.062
5000	3687.800	3688.537	3689.275	3690.012	3690.750	3691.488	3692.225	3692.963	3693.700	3694.438

Conversions Tables Part 2

	Ра	bar	kg _f /m²	at	atm	Torr
1 Pa (= 1 N/m²)	1	10 ⁻⁵	0.102	0.102 x 10 ⁻⁴	0987 x 10 ⁻⁵	0.0075
1 bar (=0.1 Mpa)	$100000 = 10^5$	1 (= 1000 mbar)	10200	1.02	0.987	750
1 kg _f /m²	9.81	9.81 x 10⁻⁵	1	10 ⁻⁴	0.968 x 10 ⁻⁴	0.07356
1 at (= 1 kg _f /cm ²)	98100	0.981	10000	1	0.968	735.6
1 atm (= 760 Torr)	101325	1.01325 (= 1013.25 mbar)	10332	1.0332	1	760
1 Torr (= 1 mmHg)	133.3	0.001333	13.595	0.001359	0.001316	1

Conversion table for units of pressure in gases, steam and fluids

Conversion table for units of power, energy and heat quantity

	J	kJ	kWh	kcal	CVh	kg _f m
1 J (= 1 Nm = 1 Ws)	1	0.001	2.78 x 10 ⁻⁷	2.39 10 ⁻⁴	3.77 x 10 ⁻⁷	0.102
1 kJ	1000	1	2.78 x 10 ⁻⁴	0.239	3.77 x 10 ⁻⁴	102
1 kWh	3600000	3600	1	860	1.36	367000
1 kcal	4200	4.2	0.00116	1	0.00158	427
1 CVh	2650000	2650	0.736	632	1	270000
1 kg _f m	9.81	0.00981	2.72 x 10 ⁻⁶	0.00234	3.7 x 10 ⁻⁶	1

Conversion table for units of mechanical stress

	Ра	N/mm²	daN/cm ²	daN/mm²	kg _f /cm²	kg _f /mm²
1 Pa (= 1 N/m²)	1	10 ⁻⁶	10 ⁻⁵	10 ⁻⁷	0.102 x 10 ⁻⁴	0.102 x 10 ⁻⁶
1 N/mm² (= 1 Mpa)	1000000	1	10	0.1	10.2	0.102
1 daN/cm ² (= 1 bar)	100000	0.1	1	0.01	1.02	0.0120
1 daN/mm ² (= 1 hbar)	10000000	10	100	1	102	1.02
1 kg _f /cm ² (= 1 at)	98100	0.0981	0.981	0.00981	1	0.001
1 kg _f /mm²	9810000	9.81	98.1	0.981	100	1

$III = 0, IKg_f$ IKg				
1 daN/mm²	1 daN/cm ²	1 kN/cm ²	1 kg _f /mm²	1 kg _f /cm²
≅ 1 kg _f /mm² = 1 kN/cm² = 1 hbar	≅ 1 kg _f /cm² ≅ 1 at = 1 bar	= 1 daN/mm ² = 1 hbar \cong 1 kg _f /mm ²	\cong 1 daN/mm ² \cong 1 kN/cm ² \cong 1 hbar	= 1 at ≅ 1 daN/cm² ≅ 1 bar

Practically equivalent units for pressure and mechanical stress (strength)

 $1~N\cong 0,1~kg_f~~1~kg_f\cong 10~N$ = 1 daN

1 kbar	1 hbar	1 bar	1 mbar	1 bar
= 1 hN/mm² = 10 kN/cm²	= 1 daN/mm ² = 1 kN/cm ²	= 1 daN/cm² ≅ 1 kg _f /cm²	= 1 cN/cm² ≅ 1 g _f /cm²	= 1 dN/mm²
\cong 1 Mg _f /cm ²	≅ 1 kg _f /mm²	≅ 1 at		≅ <u>1 kg_f/mm</u> ² 100

Units of temperature and conversion formulars

Measurement units	Conversion to							
Symbol denomination	К	°C	°R	°F				
Kelvin (K)	1	(K-273.16)	4/5(K-273.16)	9/5(K-273.16)+32				
Celsius (°C)	°C + 273.16	1	4/5 °C	9/5 °C+32				
Réaumur (°R)	5/4 °R + 273.16	5/4 °R	1	9/4 °C+32				
Fahrenheit (°F)	5/9(°F-32) + 273.16	5/9(°F-32)	4/9(°F-32)	1				

Example:

conversion from

°R in °C: °C=5/4 °R

The fundamental temperature unit is the Kelvin (K).

The symbol used is the T.

The equally used Rankine temperature scale for absolute temperaturs is related to K as follows:

°Rank = 9/5 K

Power, Energy and heat flow

Nm/s = 1/9.81	l kg _f m/s = 0.102	kg _f m/s
---------------	-------------------------------	---------------------

 $1 \text{ kg}_{\text{f}} \text{m/s} = 3600 \text{ kg}_{\text{f}} \text{m/h}$

	W	kW	kcal/s	kcal/h	kg _f m/s	CV	HP
1 W (= 1 Nm/s = 1 J/s)	1	0.001	2.39 x 10 ⁻⁴	0.860	0.102	0.00136	0.001341
1 kW	1000	1	0.239	860	102	1.36	1.341
1 kcal/s	4184	4.184	1	3600	426.65	5.69	5.61
1 kcal/h	1.162	0.001162	1/3600	1	0.1185	0.00158	0.00156
1 kg _f m/s	9.81	0.00981	0.002344	8.438	1	0.0133	0.0131
1 CV	736	0.736	0.176	633	75	1	0.98632
1 HP	746	0.746	0.178	641.6	76.04	1.01387	1

Speed					
1 km/h	=	0.27778 m/s	1 m/s	=	3.6 km/h
1 mph (mile/h)	=	1.60934 km/h	1 km/h	=	0.62137 mph
1 kn (Knot)	=	1.852 km/h	1 km/h	=	0.53996 kn
1 ft/min	=	0.3048 m/min	1 m/min	=	3.28084 ft/min

	km/h	m/s	km/h	mph	kn	ft/min	km/h	mph	km/h
	in m/s	in km/h	in mile/h	in km/h	in km/h	in m/min	in Time/km	in Time/km	in Time / 100km
10 20 30 40	2.78 5.56 8.33 11.1	36.0 72.0 108 144	6.21 12.4 18.6 24.9	16.1 32.2 48.3 64.4	18.52 37.04 55.56 74.08	3.05 6.10 9.14 12.2	6 min 3 min 2 min 1 min 30 s	3 min 44 s 1 min 52 s 1 min 15 s 55.9 s	10 h 5 h 3 h 20 min 2 h 30 min
50 60 70 80 90	13.9 16.7 19.4 22.2 25.0	180 216 252 288 324	31.1 37.3 43.5 49.7 55.9	80.5 96.6 113 129 145	92.60 111 130 148 167	15.2 18.3 21.3 24.4 27.4	1 min 12 s 1 min 51.4 s 45 s 40 s	44.7 s 37.3 s 32.0 s 28.0 s 24.9 s	2 h 1 h 40 min 1 h 26 min 1 h 15 min 1 h 6.7 min
100 110 120 130 140	27.8 30.6 33.4 36.1 38.9	360 396 432 468 504	62.1 68.4 74.6 80.8 87.0	161 177 193 209 225	185 	30.5 33.5 36.6 39.6 42.7	36 s 32.7 s 30 s 27.7 s 25.7 s	22.0 s 20.3 s 18.6 s 17.2 s 16.0 s	1 h 54 min 33 s 50 min 46 min 9 s 42 min 51s
150 160 170 180 190	41.7 44.4 47.2 50.0 52.8	540 576 612 648 684	93.2 99.4 106 112 118	241 257 274 290 306	 	45.7 48.8 51.8 54.9 57.9	24 s 22.5 s 21.2 s 20.0 s 18.9 s	14.9 s 14.0 s 13.2 s 12.4 s 11.8 s	40 min 37 min 30 s 35 min 18 s 33 min 20 s 31 min 35 s
200 250 300 400 500	55.6 59.4 83.3 111 139	720 900 1080 1440 1800	124 155 186 249 311	322 402 483 644 805	 	61.0 76.2 91.4 122 152	18 s 14.4 s 12 s 9 s 7.2 s	11.2 s 8.9 s 7.5 s 5.8 s 4.5 s	30 min 26 min 20 min 15 min 12 min
600 800 1000 1200 1400	167 222 278 333 1) 389	2160 2880 3600 	373 497 621 746 870	966 1287 1609 	 	183 244 305 366 427	6 s 4.5 s 3.6 s 3 s 2.6 s	3.7 s 2.8 s 2.2 s 	10 min 7 min 30 s 6 min 5 min 4 min 17 s

The Mach number "Ma" (no official unit of measurement) gives the factor by which a body is faster, than the speed of sound.

Thus "Ma" = 1.3 means 1.3 times as fast as the speed of sound.

1) Approximate velocity of sound in the air.

Units of mass (weight)

	grain	dram	oz	lb	long cwt	sh cwt	long tn	sh tn
	in g	in g	in g	in kg	in kg	in kg	in t	in t
1.0	0.0648	1.77	28.3	0.454	50.8	45.4	1.02	0.907
1.1	0.0713	1.95	31.2	0.499	55.9	49.9	1.12	0.998
1.2	0.0778	2.13	34.0	0.544	61.0	54.4	1.22	1.09
1.3	0.0842	2.30	36.9	0.590	66.0	59.0	1.32	1.18
1.4	0.0907	2.48	39.7	0.635	71.1	63.5	1.42	1.27
1.5	0.0972	2.66	42.5	0.680	76.2	68.0	1.52	1.36
1.6	0.104	2.83	45.4	0.726	81.3	72.6	1.63	1.45
1.7	0.110	3.01	48.2	0.771	86.4	77.1	1.73	1.54
1.8	0.117	3.19	51.0	0.816	91.4	81.6	1.83	1.63
1.9	0.123	3.37	53.9	0.862	96.5	82.2	1.93	1.72
2.0	0.130	3.54	56.7	0.907	102	90.7	2.03	1.81
2.1	0.136	3.72	59.5	0.953	107	95.3	2.13	1.91
2.2	0.143	3.90	62.4	0.998	112	99.8	2.24	2.00
2.3	0.149	4.08	65.2	1.04	117	104	2.34	2.09
2.4	0.156	4.25	68.0	1.09	122	109	2.44	2.18
2.5	0.162	4.43	70.9	1.13	127	113	2.54	2.27
2.6	0.168	4.61	73.7	1.18	132	118	2.64	2.36
2.7	0.175	4.78	76.5	1.22	137	122	2.74	2.45
2.8	0.181	4.96	79.4	1.27	142	127	2.84	2.54
2.9	0.188	5.14	82.2	1.32	147	132	2.95	2.63
3.0	0.194	5.32	85.0	1.36	152	136	3.05	2.72
3.2	0.207	5.67	90.7	1.45	163	145	3.25	2.90
3.4	0.220	6.02	96.4	1.54	173	154	3.45	3.08
3.6	0.233	6.38	102	1.63	183	163	3.66	3.27
3.8	0.246	6.73	108	1.72	193	172	3.86	3.45
4.0	0.259	7.09	113	1.81	203	181	4.06	3.63
4.2	0.272	7.44	119	1.91	213	191	4.27	3.81
4.4	0.285	7.80	125	2.00	224	200	4.47	3.99
4.6	0.298	8.15	130	2.09	234	209	4.67	4.17
4.8	0.311	8.50	136	2.18	244	218	4.88	4.35
5.0	0.324	8.86	142	2.27	254	227	5.08	4.54
5.2	0.337	9.21	147	2.36	264	236	5.28	4.72
5.4	0.350	9.57	153	2.45	274	245	5.49	4.90
5.6	0.363	9.92	159	2.54	284	254	5.69	5.08
5.8	0.376	10.3	164	2.63	295	263	5.89	5.26
6.0	0.389	10.6	170	2.72	305	272	6.10	5.44
6.5	0.421	11.5	184	2.95	330	295	6.60	5.90
7.0	0.454	12.4	198	3.18	356	318	7.11	6.35
7.5	0.486	13.3	213	3.40	381	340	7.62	6.80
8.0	0.518	14.2	227	3.63	406	363	8.13	7.26
8.5	0.551	15.1	241	3.86	432	386	8.64	7.71
9.0	0.583	15.9	255	4.08	457	408	9.14	8.16
9.5	0.616	16.8	269	4.31	483	431	9.65	8.62

The table is also valid for decimal multiples and fractions.

Example: 1 lb = 0.454 kg; 5 long ton = 5.08 t; 42 oz = 1190 g.

Units of volume, flow rates

	cu in	cu ft	cu yd	pt (UK)	pt (US)	gal (UK)	gal (US)	cu ft/min cfm
	in cm³	in l	in m³	in l	in l	in l	in l	in m³/h
1.0	16.4	28.3	0.765	0.568	0.473	4.55	3.79	1.70
1.1	18.0	31.2	0.841	0.625	0.520	5.00	4.16	1.87
1.2	19.7	34.0	0.918	0.682	0.568	5.46	4.54	2.04
1.3	21.3	36.8	0.994	0.739	0.615	5.91	4.92	2.21
1.4	22.9	39.6	1.07	0.796	0.662	6.36	5.30	2.38
1.5	24.6	42.5	1.15	0.852	0.710	6.82	5.68	2.55
1.6	26.2	45.3	1.22	0.909	0.757	7.27	6.06	2.72
1.7	27.9	48.1	1.30	0.966	0.804	7.73	6.44	2.89
1.8	29.5	51.0	1.38	1.02	0.852	8.18	6.81	3.06
1.9	31.1	53.8	1.45	1.08	0.899	8.64	7.19	3.23
2.0	32.8	56.6	1.53	1.14	0.946	9.09	7.57	3.40
2.1	34.4	59.5	1.61	1.19	0.994	9.55	7.95	3.57
2.2	36.1	62.3	1.68	1.25	1.04	10.0	8.33	3.74
2.3	37.7	65.1	1.76	1.31	1.09	10.5	8.71	3.91
2.4	39.3	68.0	1.83	1.36	1.14	10.9	9.09	4.08
2.5	41.0	70.8	1.91	1.42	1.18	11.4	9.46	4.25
2.6	42.6	73.6	1.99	1.48	1.23	11.8	9.84	4.42
2.7	44.3	76.5	2.06	1.53	1.28	12.3	10.2	4.59
2.8	45.9	79.3	2.14	1.59	1.32	12.7	10.6	4.76
2.9	47.5	82.1	2.22	1.65	1.37	13.2	11.0	4.93
3.0	49.2	85.0	2.29	1.70	1.42	13.6	11.4	5.10
3.2	52.4	90.6	2.45	1.82	1.51	14.6	12.1	5.44
3.4	55.7	96.3	2.60	1.93	1.61	15.5	12.9	5.78
3.6	59.0	102	2.75	2.05	1.70	16.4	13.6	6.12
3.8	62.3	108	2.91	2.16	1.80	17.3	14.4	6.46
4.0	65.6	113	3.06	2.27	1.89	18.2	15.1	6.80
4.2	68.8	119	3.21	2.39	1.99	19.1	15.9	7.14
4.4	72.1	125	3.36	2.50	2.08	20.0	16.7	7.48
4.6	75.4	130	3.52	2.61	2.18	20.9	17.4	7.82
4.8	78.7	136	3.67	2.73	2.27	21.8	18.2	8.16
5.0	81.9	142	3.82	2.84	2.37	22.7	18.9	8.50
5.2	85.2	147	3.98	2.96	2.46	23.6	19.7	8.84
5.4	88.5	153	4.13	3.07	2.56	24.6	20.4	9.18
5.6	91.8	159	4.28	3.18	2.65	25.5	21.2	9.52
5.8	95.1	164	4.43	3.30	2.74	26.4	22.0	9.85
6.0	98.3	170	4.59	3.41	2.84	27.3	22.7	10.2
6.2	102	176	4.74	3.52	2.93	28.2	23.5	10.5
6.4	105	181	4.89	3.64	3.03	29.1	24.2	10.9
6.6	108	187	5.05	3.75	3.12	30.0	25.0	11.2
6.8	111	193	5.20	3.86	3.22	30.9	25.7	11.6
7.0	115	198	5.35	3.98	3.31	31.8	26.5	11.9
7.5	123	212	5.73	4.26	3.55	34.1	28.4	12.7
8.0	131	227	6.12	4.55	3.79	36.4	30.3	13.6
8.5	139	241	6.50	4.83	4.02	38.6	32.2	14.4
9.0	148	255	6.88	5.11	4.26	40.9	34.1	15.3
9.5	156	269	7.26	5.40	4.50	43.2	36.0	16.1

Example: 1 cu in = 16.4 cm^3 ; 3 gal (UK) = 13.6 I

Fuel consumption

1 g/CVh	=	1.3569 g/kWh	1 g/kWh	=	0.7355 g/CVh
1 lb/HPh	=	608.277 g/kWh	1 g/kWh	=	0.001644 lb/HPh
1 pt (US)/HPh	=	634.545 cm³/kWh	1 cm³/kWh	=	0.001576 pt (US)/HPh
1 pt (UK)/HPh	=	762.049 cm³/kWh	1 cm³/kWh	=	0.001312 pt (UK)/HPh

Conversion from				
	g/CVh	g/kWh		
	in g/kWh	in g/CVh		
100	136.0	73.55		
120	163.2	88.26		
140	190.3	103.0		
160	217.5	117.7		
180	244.7	132.4		
200	271.9	147.1		
220	299.1	161.8		
240	326.3	176.5		
260	353.5	191.2		
280	380.7	205.9		
300	407.9	220.6		
320	435.1	235.4		
340	462.3	250.1		
360	489.5	264.8		
380	516.6	279.5		
400	543.8	294.2		
420	571.0	308.9		
440	598.2	323.6		
460	625.4	338.3		
480	652.6	353.0		
500	679.8	367.7		
520	707.0	382.5		
540	734.2	397.2		
560	761.4	411.9		
580	788.6	426.6		
600	815.8	441.3		
650	883.7	478.1		
700	951.7	514.8		
750	1020	551.6		
800	1088	588.4		
900	1224	661.9		
Example				
240 g/CVh = 326.3 g/kWh				

Conversion from					
	lb/HPh	pt (US) /HPh	pt (UK) /HPh		
	in	in	in		
	g/kWh	cm³/kWh	cm³/kWh		
0.10	60.83	63.45	76.20		
0.15	91.24	95.18	114.3		
0.20	121.7	126.9	152.4		
0.25	152.1	158.6	190.5		
0.30	182.5	190.4	228.6		
0.32	194.6	203.1	243.9		
0.34	206.8	215.7	259.1		
0.36	219.0	228.4	274.3		
0.38	231.1	241.1	289.6		
0.40	243.3	253.8	304.8		
0.42	255.5	266.5	320.1		
0.44	276.6	279.2	335.3		
0.46	279.8	291.9	350.5		
0.48	292.0	304.6	365.8		
0.50	304.1	317.3	381.0		
0.52	316.3	330.0	396.3		
0.54	328.5	342.7	411.5		
0.56	340.6	355.3	426.7		
0.58	352.8	368.0	442.0		
0.60	365.0	380.7	457.2		
0.62	377.1	393.4	472.5		
0.64	389.3	406.1	487.7		
0.66	401.5	418.8	503.0		
0.68	413.6	431.5	518.2		
0.70	425.8	444.2	533.4		
0.75	456.2	475.9	571.5		
0.80	486.6	507.6	609.6		
0.85	517.0	539.4	647.7		
0.90	547.4	571.1	685.8		
0.95	577.9	602.8	723.9		
Example					
0.68 pt (US)/HPh = 431.5 cm ³ /kWh					

Conversion from					
	miles/gal (US)	miles/gal (UK)			
	In I/100km	in I/100km			
10	23.5	28.2			
11	21.4	25.7			
12	19.6	23.5			
13	18.1	21.7			
14	16.8	20.2			
15	15.7	18.8			
16	14.7	17.7			
17	13.8	16.6			
18	13.1	15.7			
19	12.4	14.9			
20	11.8	14.1			
22	10.7	12.8			
24	9.80	11.8			
26	9.05	10.9			
28	8.40	10.1			
30	7.84	9.42			
32	7.35	8.83			
34	6.92	8.31			
36	6.53	7.85			
38	6.19	7.43			
40	5.89	7.06			
42	5.60	6.73			
44	5.35	6.42			
46	5.11	6.14			
48	4.90	5.88			
50	4.70	5.65			
55	4.28	5.14			
60	3.92	4.71			
70	3.36	4.04			
80	2.94	3.53			
90	2.61	3.14			
Example					
18 miles/gal (US) = 13.1 l/100 km					

Calculation Examples

Angles of Slope

Fig. 3

Travel Speed

$$V = \frac{360}{t}$$

V = km/h

t = seconds needed for 100 m

Example: At a constant speed, a travel time of 18 seconds is needed for a distance of 100 meters.

$$V_{(km/h)} = \frac{360}{18} \ 20 \ km/h$$
Hydraulic outputs (pumps/motors)

$$P = \frac{p \cdot Q}{600}$$

P =kW

Example: For a pump with an effective discharge rate of Q = 80 l/min, at a pressure of p = 300 bar the output is to be calculated.

$$P_{(kW)} = \frac{300 \cdot 80}{600} = 40 \ kW$$

Stroking times of cylinders

$$t = \frac{V_{Zyl.} \cdot 60}{Qp}$$

t = Seconds

 V_{Zyl} . = Volume of the cylinder(s) in dm³

Qp = theoretical discharge rate of the pump(s) in l/min

Example: For a given pump discharge rate of Qp = 80 l/min and a cylinder

volume of $V_{Zyl.}$ = 10 dm³ we obtain.

$$t_{(s)} = \frac{10.60}{80} \quad 7.5 \ s$$

Speeds of hydraulic motors

$$n = \frac{Vp \cdot np}{VM}$$

n = motor speed in rpm

Vp = geometrical displacement of the pump in cm³/rev

np = turning speed of the pump in rpm

VM = geometrical displacement of the motor in cm³/rev

Example: For a given pump speed np = 2,150 rpm,

a geometrical displacement of the pump Vp = 11 cm³/rev

and a geometrical displacement of the motor of $VM = 8 \text{ cm}^3/\text{rev}$ we obtain:

$$n = \frac{11 \cdot 2150}{8} = 2956 \ rpm$$

Tightening Torques

General information

The following tables contain the tightening torques for screws with a DIN 13 - 13 metric thread.

The construction dept. may specify in certain cases tightening torques other than those set out in the standard. The values set out in the tables are therefore applicable unless otherwise specified in the "Inspection and servicing" chapter of the operating instructions, the Technical Handbook or the drawings.

The tightening torques specified do not only depend on the screw grade, but also on the friction at the thread and the bearing face of the screw head. Therefore, different friction coefficients (total) depending on the type and condition of the screws used must be applied when calculating tightening torques.

- Friction coefficient total = 0.10: screw and/or nut electro-galvanized (surface protection A3B).
- 2. Friction coefficient total = 0.12: screw black-plated or phosphatized nut bright thread oiled
- Friction coefficient total = 0.16: screws with liquid screw fixer, e.g. Loctite 242, 243, in acc. with application instructions. The corresponding column is marked in the tables with an "L".

The three figures given are mean friction coefficients.

The calculated tightening torques MA are valid for tightening of the screws by hand.

Units of measurement

The tightening torques specified in the tables are expressed in Nm (newtonmeter). If older torque wrenches are used for tightening, the Nm values must be converted to the formerly used kg_f (kilogrammeter) unit. The conversion is simple since 1 kg_fm is almost exactly the same as 10 Nm (exact conversion factor: 1 kg_f = 9.81 Nm). The small difference can be ignored so that for conversion purposes the Nm value must only be divided by 10.

Example:

$$1840 \text{ Nm} = \frac{1840}{10} \quad 184 \text{ kg}_{\text{fm}}$$

Bolts with standard thread DIN 13 – 13

Thread nominal Ø	Material quality	Tightening torques M _A in Nm				
		total 0.10 ¹⁾	total 0.12 ²⁾	total 0.16 (L) ³⁾		
M 5	8.8	4.9	5.5	6.5		
	10.9	7.3	8.1	9.5		
	12.9	8.5	9.5	11.2		
M 6	8.8	8.5	9.5	11.2		
	10.9	12.5	14	16.5		
	12.9	14.5	16.5	19.5		
M 8	8.8	20.5	23	27		
	10.9	30	34	40		
	12.9	35	40	47		
M 10	8.8	41	46	55		
	10.9	60	68	80		
	12.9	71	79	94		
M 12	8.8	71	79	94		
	10.9	104	117	140		
	12.9	195	215	260		
M 16	8.8	170	195	230		
	10.9	250	280	340		
	12.9	300	330	400		
M 20	8.8	350	390	470		
	10.9	490	560	670		
	12.9	580	650	780		
M 24	8.8	600	670	800		
	10.9	850	960	1140		
	12.9	1000	1120	1350		
M 30	8.8	1190	1350	1600		
	10.9	1700	1900	2300		
	12.9	2000	2250	2700		
M 36	8.8	2100	2350	2800		
	10.9	3000	3300	4000		
	12.9	3500	3900	4700		

¹⁾Screw and/or nut electro-galvanized.

²⁾Screw black-plated or phosphatized, thread oiled.

³⁾Screws with liquid screw fixer, e.g. Loctite 242, 243.

Bolts with metric fine thread DIN 13 – 13

Thread nominal Ø	Material quality	Tightening torques M _A in Nm					
		total 0.10 ¹⁾	total 0.12 ²⁾	total 0.16 (L) ³⁾			
M 8x1	8.8	22	24.5	30			
	10.9	32	36	43			
	12.9	38	43	51			
M 10x1	8.8	45	52	62			
	10.9	67	76	91			
	12.9	78	89	107			
M 10x1.25	8.8	43	49	58			
	10.9	64	72	86			
	12.9	74	84	100			
M 12x1.25	8.8	77	87	104			
	10.9	112	125	150			
	12.9	130	150	180			
M 14x1.5	8.8	121	135	165			
	10.9	175	200	240			
	12.9	205	235	280			
M 16x1.5	8.8	180	205	250			
	10.9	270	300	370			
	12.9	310	360	430			
M 20x1.5	8.8	380	430	530			
	10.9	540	620	750			
	12.9	630	720	880			
M 22x1.5	8.8	510	580	700			
	10.9	720	820	1000			
	12.9	840	960	1170			
M 24x2	8.8	640	730	890			
	10.9	920	1040	1250			
	12.9	1070	1220	1500			
M 27x2	8.8	940	1070	1300			
	10.9	1350	1500	1850			
	12.9	1550	1800	2150			
M 30x2	8.8	1370	1490	1740			
	10.9	1940	2120	2480			
	12.9	2270	2480	2900			

¹⁾Screw and/or nut electro-galvanized.

²⁾Screw black-plated or phosphatized, thread oiled.

³⁾Screws with liquid screw fixer, e.g. Loctite 242, 243.

Tightening torques for SAE flange – system

Fig. 1

Tighten bolts in several stages. ¹⁾ Sequence: 1, 2, 3, 4

¹⁾ See Fittings, pipes and hoses

Tightening angles

Special tools for cylinders

Screwed hex insert for piston nut

380001228

Scraper ring – Assembly

Fly. S	
Boom cylinder	380001033
Stick cylinder	380001032
Bucket cylinder	380001033

Sealing kit – Assembly

110 mm

Boom cylinder	380001035
Stick cylinder	8488399
Bucket cylinder	380001090

Bushes - Dismantling

~ •••	2001110,000	
Ø 95 mm	Stick cylinder	1494091
Ø 75 mm	Bucket cylinder	1494092

Rod guide assembly

Fig. 5

Boom cylinder	8488409
Stick cylinder	8488410
Bucket cylinder	8488409

Piston nut loosening and tightening

Fig. 6

All cylinders 380000812

Special tools for axles and gearboxes

Axial stress meter

Fig. 1

Part number 2897001

Bearing friction moment adjusting device

Fig. 2

Part number 2897002

Driving tool for bushing

Driving tool for bushing

Fig. 4

Part number 2897004

Assembly aid for shaft seals

Fig. 5

Part number 2897005

Master shaft

Part number 2897006

Master shaft

Fig. 7

Part number 2897007

Extraction device

Fig. 8

Part number 2897008

Driving tool

Driving tool

Fig. 10

Part number 2897010

Fig. 11 Part number 2897011

Assembly aid

Fig. 12 Part number 2897012

Assembly aid

Fig. 13

Part number 2897013

Brake centering device

Fig. 14

Part number 2897014

Tool handle

Hydraulic pump

Fig. 16

Part number 1424974

Measuring device

Fig. 17

Part number 2494917

Threaded studs

Part number 1148413 (M12x220)

0421225 (M12X260)

Driving tool for shaft seals

Fig. 19

Part number 2897015

Driving tool

Fig. 20

Part number 2897016

Driving tool

Fig. 21

Part number 2897017

Spacers

Fig.	1
------	---

No.	а	i	t	P/N.	No.	а	i	t	P/N	No.	а	i	t	P/N
1	240	101	1	3024380	21	150	81	3	3032014	41	200	131	2	3032034
2	240	101	2	3024381	22	150	91	1	3032015	42	200	131	3	3032035
3	240	101	3	3024382	23	150	91	2	3032016	43	220	101	1	3032036
4	240	131	1	3024383	24	150	91	3	3032017	44	220	101	2	3032037
5	240	131	2	3024384	25	120	71	1	3032018	45	220	101	3	3032038
6	240	131	3	3024385	26	120	71	2	3032019	46	160	71	1	3032039
7	240	111	1	3032000	27	120	71	3	3032020	47	160	71	2	3032040
8	240	111	2	3032001	28	130	81	1	3032021	48	160	71	3	3032041
9	240	111	3	3032002	29	130	81	2	3032022	49	120	61	1	3032042
10	240	121	1	3032003	30	130	81	3	3032023	50	120	61	2	3032043
11	240	121	2	3032004	31	190	91	1	3032024	51	120	61	3	3032044
12	240	121	3	3032005	32	190	91	2	3032025	52	160	61	1	3032045
13	260	141	1	3032006	33	190	91	3	3032026	53	160	61	2	3032046
14	260	141	2	3032007	34	190	101	1	3032027	54	160	61	3	3032047
15	260	141	3	3032008	35	190	101	2	3032028	55	180	111	1	3033104
16	150	101	1	3032009	36	190	101	3	3032029	56	180	111	2	3033105
17	150	101	2	3032010	37	200	121	1	3032030	57	180	111	3	3033106
18	150	101	3	3032011	38	200	121	2	3032031	58	240	151	1	3033107
19	150	81	1	3032012	39	200	121	3	3032032	59	240	151	2	3033108
20	150	81	2	3032013	40	200	131	1	3032033	60	240	151	3	3033109

SECTION 2 MACHINE STRUCTURE

INDEX

MACHINE CONSTRUCTION2-	-1
Description of the machine (boom-adjusting equipment) 2- Machine layout 2- Undercarriage 2- Superstructure 2- Hydraulic system 2- Steering 2- Service brake 2- Parking brake 2-	-2 2-3 2-3 2-3 2-3 2-3 2-3 2-3
Floating axle 2 Electrical system 2 Working equipment 2	2-3 2-3 2-3
Description of the machine (monoblock-boom equipment) 2 Machine layout 2 Undercarriage 2 Superstructure 2 Hydraulic system 2 Steering 2 Service brake 2 Parking brake 2 Floating axle 2 Electrical system 2 Working equipment 2 Switches / Keys 2 Control elements / ISO 2-2 Multifunction display 2-2	-4 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-6 20 24
Superstructure components, overview2-3	34
Engine assembly components, overview2-3	35
Hydraulic system components, overview2-3	36
Drive unit components, overview2-3	37
Undercarriage components, overview2-3	38

MACHINE CONSTRUCTION

The following chapters describe the construction of the machine:

- Overview components MH 6.6 / MH 8.6 (boom adjusting equipment) MH 6.6 / MH 8.6 (monoblock boom equipment)
- Overview switches and pushbuttons
- Overview control elements
- Overview multifunction display
- Overview superstructure components
- Overview engine assembly components
- Overview undercarriage components
- Overview equipment components
- Overview optional components

Description of the machine (boom-adjusting equipment)

Machine layout

Key

- 1 Refuelling station / optional equipment
- 2 Fuel tank
- 3 Hydraulic oil reservoir
- 4 Hydraulic pumps
- 5 Engine
- 6 Counterweight
- 7 Combined radiator
- 8 Air intake system
- 9 Batteries
- 10 Slewing gearbox
- 11 Rotor
- 12 Backhoe bucket
- 13 Connecting rod
- 14 Toggle link
- 15 Bucket cylinder
- 16 Stick
- 17 Stick cylinder
- 18 Upper boom section
- 19 Boom cylinder
- 20 Boom adjusting cylinder
- 21 Lower boom section
- 22 Stabilizers
- 23 Rigid axle
- 24 Slewing ring
- 25 Tool box
- 26 Access ladder
- 27 Cardan shaft
- 28 Steered axle
- 29 Stabilization / levelling blade
- 30 Driver's cab

Undercarriage

The undercarriage of the hydraulic excavator is used as a stable base and for travelling.

The undercarriage is moreover equipped with components permitting stabilization of the machine during working operations, such as the levelling blade and the supporting legs.

The machine is driven hydraulically by oil motors and travel gearboxes acting on both axles.

Undercarriage and superstructure are connected by a slewing ring.

Superstructure

The superstructure accommodates the drive engine and part of the hydraulic and electrical systems.

The superstructure carries also the working equipment.

Hydraulic system

All travelling and working movements are executed hydraulically. The working commands are initiated manually and transmitted electronically. The oil flow between superstructure and undercarriage is ensured by the rotor. The hydraulic system is protected against overloading by pressure relief valves.

Steering

The machine is equipped with a hydrostatic power steering system, i.e it can be steered by hand with increased force when the engine is not running or when the hydraulic steering pump has failed.

Service brake

The machine is braked by means of hydraulically operated multiple-disk brakes on all four twin wheels. The service brake can be blocked in braked position.

Parking brake

The parking brake can be applied by blocking the brake disks with spring pressure.

The parking brake is incorporated in the travel gearbox and therefore acts on all the wheels.

Floating axle

The steered axle is a floating axle that can be blocked hydraulically with two cylinders during the work.

Electrical system

The electrical system operates on 24 Volts. An electronic voltage regulator supplies also 12 Volts. Electronic modules (Power Control System) ensure that the available engine power is converted in the best possible way into hydraulic performance.

Working equipment

The working equipment is composed of the boom (lower and upper) or monoblock boom, stick, toggle link with connecting rod and bucket. Other digging or working equipment can also be attached to the machine.

Machine layout

Key

- 1 Refuelling station / optional equipment
- 2 Fuel tank
- 3 Hydraulic oil reservoir
- 4 Hydraulic pumps
- 5 Engine
- 6 Counterweight
- 7 Combined radiator
- 8 Air intake system
- 9 Batteries
- 10 Slewing gearbox
- 11 Rotor
- 12 Backhoe bucket
- 13 Connecting rod
- 14 Toggle link
- 15 Bucket cylinder
- 16 Stick
- 17 Stick cylinder
- 18 Boom
- 19 Boom cylinder
- 20 Stabilizers
- 21 Rigid axle
- 22 Slewing ring
- 23 Tool box
- 24 Access ladder
- 25 Cardan shaft
- 26 Steered axle
- 27- Stabilization / levelling blade
- 28 Driver's cab

Undercarriage

The undercarriage of the hydraulic excavator is used as a stable base and for travelling.

The undercarriage is moreover equipped with components permitting stabilization of the machine during working operations, such as the levelling blade and the supporting legs.

The machine is driven hydraulically by oil motors and travel gearboxes acting on both axles.

Undercarriage and superstructure are connected by a slewing ring.

Superstructure

The superstructure accommodates the drive engine and part of the hydraulic and electrical systems. The superstructure carries also the working equipment.

Hydraulic system

All travelling and working movements are executed hydraulically. The working commands are initiated manually and transmitted electronically. The oil flow between superstructure and undercarriage is ensured by the rotor. The hydraulic system is protected against overloading by pressure relief valves.

Steering

The machine is equipped with a hydrostatic power steering system, i.e it can be steered by hand with increased force when the engine is not running or when the hydraulic steering pump has failed.

Service brake

The machine is braked by means of hydraulically operated multiple-disk brakes on all four twin wheels. The service brake can be blocked in braked position.

Parking brake

The parking brake can be applied by blocking the brake disks with spring pressure.

The parking brake is incorporated in the travel gearbox and therefore acts on all the wheels.

Floating axle

The steered axle is a floating axle that can be blocked hydraulically with two cylinders during the work.

Electrical system

The electrical system operates on 24 Volts. An electronic voltage regulator supplies also 12 Volts. Electronic modules (Power Control System) ensure that the available engine power is converted in the best possible way into hydraulic performance.

Working equipment

The working equipment is composed of the boom (lower and upper) or monoblock boom, stick, toggle link with connecting rod and bucket. Other digging or working equipment can also be attached to the machine.

Switches / Keys (Fig. 1)

No.	Designation		Function	Symbol
1	Multifunction display		Control and monitoring of machine func- tions (detailed description, see "Multifunc- tion display")	
2	Rocker switch	Shifted boom operation (hinged joint upper boom section option)	 shifted boom operation to activate - depress switch face without symbol to deactivate - depress symbol face of switch (see: "Upper boom section, shifted opera- tion") 	1 452
3	Rocker switch	Hydraulic shears (option)	 Hydraulic shears to activate - depress switch face without symbol to deactivate - depress symbol face of switch 	7436
4	Rocker switch	Hydraulic rotary cutter (option)	 Hydraulic rotary cutter to activate - depress switch face without symbol to deactivate - depress symbol face of switch 	9 T451
5	Rocker switch	Hydraulic hammer (Option)	 Hydraulic hammer to activate - depress switch face without symbol to deactivate - depress symbol face of switch 	T448
6	Rocker switch	Rotary beacon (option)	 Rotary beacon to activate - depress switch face without symbol to deactivate - depress symbol face of switch 	T444
7	Key-switch	Electrical system	Activation / deactivation of electrical sys- tem, starting / stopping the engine Activation / deactivation of part of the elec- trical system (P) (Radio, cab interior lighting)	
8	Rocker switch	Floodlamp at the rear (option)	 Floodlamp to activate - depress switch face without symbol to deactivate - depress symbol face of switch 	T450
9	Rocker switch	Floodlamp on cab / equipment	 Floodlamp to activate - depress switch face without symbol to deactivate - depress symbol face of switch 	T449

Switches / Keys (Fig. 2)

No.	Designation		Function	Symbol	
10	Rocker switch	Screen-wiper automatic wipe / wash function	Activates the screen-washer pump and the wiper as long as the switch face without symbol is kept depressed	((T25	
11	Rocker switch	Screen-wiper	Screen-wiper with multistage switch stage 0 = screen-wiper OFF stage I = intermittent wiping stage II = continuous wiping	T26	
			To deactivate the screen-wiper - depress the symbol face of the switch until the pilot lamp in the switch is off		
12	Кеу	Engine speed control	Engine speed reduction in 7 steps (power stages see No. 13)	T400	
13	Кеу	Engine speed control	Engine speed increase up to max. speed in 7 steps (7 power stages with fixed speed levels)		
			Power stage 1 Power stage 2 Power stage 3 Power stage 4 Power stage 5 Power stage 5 Power stage 7	1401	
14	Кеу	Auto-Idle	Activation / deactivation of automatic speed reduction. After activation, the speed of the diesel engine is automatically reduced to a lower speed during no-work phases lasting longer than 6 seconds. (see "Activating / deactivating the automatic speed reduc- tion")	т433	
15	Кеу	Low-Idle	Sets engine to idling speed. If Auto-Idle and Low-Idle are on at the same time, Low-Idle has higher priority.	<u>П</u> Т434	
12-15	Keypad module	C5.1			
16	Кеу	Gearshift	LED1 on = 1 st gear fixed (off-road travel) LED1 off = automatic gearshift (depending on travel speed and travel resistance, the machine shifts automatically into off-road gear (1 st gear) or into 2 nd gear) (see: "Shifting the travel gearbox")	T 430	

Switches / Keys (Fig. 3)

No.	Designation		Function	Symbol
17	Key	Superstructure holding brake	The key is equipped with 2 LEDs LED1 and LED2 = off holding brake released, super- structure free to turn LED1 = on holding brake applied, superstruc- ture braked LED2 = on automatic mode, holding brake is applied and released automatically, exact braking in difficult working conditions, see: "Applying / releas- ing the superstructure holding brake")	T431
18	Кеу	Overload warning system (option)	 LED = off overload warning system off LED1 = on overload warning system on (machine not additionally stabi- lized) LED2 = on overload warning system on (machine additionally stabilized, option) 	T 405
19	Кеу	Slewing movent braking action	The key is equipped with 2 LEDs LED = off soft braking of superstructure slewing movement LED1 = on standard braking of super- structure slewing movement LED1 and 2 = on harsh braking of superstructure slewing movement see: "Slewing and braking the superstructure")	Т 432
16-19 20	Keypad module Rocker switch	C5.2 Quick tool coupler (option)	Quick tool coupler - to activate - depress switch face without symbol - to deactivate - depress symbol face of switch (see: "Quick tool coupler, bydraulie")	F T T442

Switches / Keys (Fig. 4)

No.	Designation		Function	Symbol
21	Rocker switch	Electromagnet (option)	Electromagnet - to activate - depress switch face without symbol	1 466
			 to deactivate - depress symbol face of switch (see: "Working with the electromagnet" 	
22	Socket outlet		12 V	
24	Rotary switch	Blower	Switches the blower into stages: 0 = off,1, 2, 3	
25	Pushbutton/white	Air conditioner / heating (option)	Recirculated air on / off	T454
26	Pushbutton /blue	Air conditioner / heating (option)	Air conditionder on / off (See "Air conditioner, switching on / off")	×,↑,× ×,↓× T453
27	Control knob	Heating	Heating performance control: fully left - min. heating performance (blue) fully right - max. heating performance (red)	
28	Rocker switch	Independent con- trol of stabilizer (option)	Rear stabilizer, right Activates/deactivates the stabilizer to be moved	Т 445
29	Rocker switch	Independent con- trol of stabilizer (option)	Rear stabilizer, right Activates/deactivates the stabilizer to be moved	T446
30	Rocker switch	Independent con- trol of stabilizers / levelling blade	Front stabilizer, left or front levelling blade	 T446
		(option)	Depending on the option, the stabilizer / levelling blade is activated or deactivated.	T443
31	Rocker switch	Independent con- trol of stabilizer (option)	Front stabilizer, left Activates/deactivates the stabilizer to be moved	Т 445

Switches / Keys (Fig. 5)

No.	Designation		Function	Symbol
32	Rocker switch	Parking brake	To apply the parking brake: (activate only when the machine is station- ary) press switch face with locking slide (the rocker switch is latched at the same time; the lightstrip on the switch lights up red; at the same, the floating axle is being blocked)	(P) T447
			To release the parking brake: unlock switch and press switch face beside the light strip (the light switch goes out; the floating axle is free to move if not blocked with key (33) see: "Blocking the floating axle").	
			Attention:	
			When the ignition is off (key-switch No. 7), the parking brake is applied independent of the position of switch (32).	
			If switch (32) is in the	
			"Release parking brake",	
			position when the ignition is switched on (key-switch No. 7), the parking brake re- mains nevertheless applied (light strip on rocker switch lit up red and floating axle is blocked) until switch (32) has first been set to position	
			"Apply parking brake"	
			and then to position	
			"Release parking brake"	
33	Кеу	Floating axle blocking	 To block the floating axle - depress symbol face of switch; LED2 lights up To unblock the floating axle - depress symbol face of switch; LED2 is off 	T409
34	Кеу		- not used -	Т 406

Switches / Keys (Fig. 6)

35 Key Road travel Attention: Safety lever (72, Fig. 2 in "Control ments") must be at 0 pos (see Fig. 1 "Starting the engine (electro-hydraulic pilot control = OFF) To activate road travel:	ele- ne")/
To activate road travel	
- depress symbol face of key; LED2 lights up.	
To deactivate road travel:	
- depress symbol face of key; LED2 is off.	
36 Key Creep speed To activate creep speed: depress symbol face of key; LED 1 and the symbol light up	T412
To deactivate creep speed: depress symbol face of key; LED 1 and the symbol are off	
33-36 Keypad module C5.3	
37 Multifunction lever Lighting Lighting OFF (steering column)	O T413
38 Multifunction lever (steering column) Lighting Sidemarker lights ON	- , , ,-,
39 Multifunction lever (steering column) Lighting Dipped beam ON	
40 Multifunction lever (steering column) Signal horn Acoustic warning signal Old symbol	T507 T416
41 Multifunction lever (steering column) Turn signal Turn signal	Т4 17
42 Multifunction lever (steering column) Turn signal Turn signal Turn signal "to the right" on/off	T418
43 Multifunction lever Lighting Switches over between:	
(steering column) (option) Headlamp flasher - lever upwards (m	∘₋║་҇҇҇҇҇҇҇҇҇҇҇
Dipped beam - lever in center po tion and	si- D
High beam - lever downwards	

Switches / Keys (Fig. 7)

No.	Designation		Function	Symbol
44	Кеу	Hazard warning system	Hazard warning system on/off	T34
	Buzzer		Individual acoustic warning signals when:	
			 the self-test routine of the electronic control is in progress after "Ignition ON" 	
			 the return-flow filters of the hydraulic system are contaminated 	
			- the machine is switched over from stick func- tion to levelling blade / stabilizer function	
			- during hydraulic hammer or cutter operation the machine has been switched over by means of pedal (77) temporarily to neck cylinder for repositioning movements	
			- faults in the electronic control unit have oc- curred that do not constitute a severe threat to the safety of the operator and of the machine	
			Further short acoustic warning signals:	
			- triple tone in the event of operating errors	
			- double tone on switching over to forward travel	
			- single tone on switching over to reverse travel	
			 prolonged single tone when travel direction is shifted to neutral 	
			- single tone when key (33, Fig. 7) is pressed while the parking or the service brake is ap- plied	
			Periodic acoustic warning signals when:	
			- the brake pressure too low	
			- the engine oil pressure insufficient	
			- the coolant temperature too high	
			- the admissible load moment is exceeded (with overload warning option)	
			- no voltage is supplied by the alternator	
			- the temperature of the hydraulic oil too high	
			 the "Stabilizers / levelling blade" raising and lowering function is on 	
			- severe faults have occurred in the electronic control module	
			- emergency operation has been activated	

Control elements / ISO

Control elements (Fig. 1)

Page 1 of 2

No.	Designation		Function	
60	Steering column and steering wheel		Transfer of steering movement to steered axle	
61	Pedal	Travelling	Control of machine travel	
62	Pedal	Service brake	Braking of travelling movements. The locking lever blocks the service brake in braked position and, at the same time, the floating axle. Unblocking the brake pedal automatically unblocks the floating axle.	
63	Pushbutton	Grab rotation / Adjustable boom upper section (op- tional)	Selects sense of grab rotation: right (with option "Upper boom section shift operation": slew to the right	
64	Pushbutton	Signalhorn	Acoustic warning signal	
65	Pushbutton	Travel direction	Selects forward travel	
			(No. 101 lit up)	
66	Pushbutton	Travel direction	Selects reverse travel	
			(No. 107 lit up)	
67	Pushbutton	Travel direction	Selects neutral travel	
68	Locking bolt	Oberwagen- Verriegelung	Locks up the superstructure and the undercarriage	
69	Control lever	Boom	forward - lowering the boom backward - raising the boom	
		Bucket	to the right - emptying the bucket to the left - fillng the bucket	
		Grab	With grab option: to the right - opening the grab to the left - closing the grab	
70	Steuerhebel	Slewing	to the right - superstructure slewing to the right to the left- superstructure slewing to the left	
		Stick	forward -	
		Levelling blade / stabilizers	lowering but stick - lowering the levelling blade / the stabilizers backwards - retracting the stick - raising the levelling blade / the stabilizers. (see also Nos. 22 - 25)	
71	Pushbutton	Levelling	Supplementary activation of the "levelling" mode (see: "Switching over to "levelling")	

Control elements

Control elements (Fig. 2)

Page 2 of 2

No.	Designation	Function	
72	Safety lever	Electro-hydraulic pilot control	Pull up - Electro-hydraulic pilot control OFF Push down - Electro-hydraulic pilot control ON (see: "Switching on the pilot control")
73	Pushbutton	Power-Boost	Brief working with increased engine speed and higher pressure. (see: "Power-Boost, function")
74	Pushbutton		Switches over between "Stick" and "Stabilizers / level- ling blade". The buzzer sounds when the "Stabilizers / levelling blade" function is activated.
75	Pushbutton	Hydraulic hammer (optional equip- ment)	Activation of hydraulic hammer
76	Pushbutton	Grab rotation / Adjustable upper boom section (op- tional equipment)	Selects sense of grab rotation: to the left (with option "Upper boom section shift operation": slew to the left
77	Pedal (for equipment options)		Examples: - with upper boom section shifting equipment in / out of shifting cylinder - with hydraulic hammers: hammer operation - with hydraulic rotary cutters rotary cutter operation - for hydraulic shears control of hydraulic shears
78	Foot-rest		
79	Lever	Steering column lock	Locks up the steering column in the desired inclination: push down - steering column can be adjusted. release lever - steering column locked

Multifunction display

Multifunction display (Fig. 1)

No.	Designation		Function	Symbol
101	Pilot lamp	Travel direction indicator	Lights up when forward travel is active (see No. 65 in "Control elements")	Т <u>т</u> Т
102	Pilot lamp	Travel direction indicator	Lights up when turn signal left (No. 41 in "Switches/Keys") is activated	Т 421
103	Pilot lamp	Preheating	Lit up during the preheating cycle (preheating timer active)	(00) T422
104	Pilot lamp	Main beam	Lit up blue when the headlamps are on main beam (No. 43 in "Switches/Keys" is on)	
105	Pilot lamp	Superstructure holding brake	Lit up when the superstructure holding brake (No. 17) is activated	1 404
106	Pilot lamp	Travel direction indicator	Lights up when turn signal right (No. 42 in "Switches/Keys") is activated	T423
107	Pilot lamp	Travel direction indicator	Lights up when reverse travel is active (see No. 66 in "Control elements")	▼ ¹⁴²⁴
108a	Multifunction dis- play	Time/ operating hours / fuel re- serve	Time of day in hours and minutes / display of machine operating hours / fuel reserve. Fuel level above horizontal line = OK Fuel level below horizontal line = fill up fuel tank	12:07 pm 12 hr mfa01k-en
108b	Multifunction dis- play	Time / engine power level	Time of day in hours and minutes / graphic display of respective engine power level.	12:07
108c	Multifunction dis- play	Coolant tem- perature / hy- draulic oil tem- perature	Displays the coolant temperature and the hydraulic oil temperature	129°F → 203°F → mfa03k-en

Page 1 of 5

2-25

Multifunction display

2-26

Multifunction display (Fig. 2)

No.	Designation		Function	Symbol
108d	Multifunction display	Code	Input of secret code number for electronic immobilizer. (See: "Immobilizer, entering the code")	
108e	Multifunction display	Operating hours	Display of operating hours as: - total of operating hours - partial count - day count	OPERATING HRS
108f	Multifunction display	Machine	 Setting: of hydraulic oil pressure and of volumetric flow for up to 4 different hydraulic hammers of hydraulic oil pressure and of volumetric flow for up to 4 different rotary cutters and other attachments (not applicable to hydraulic shears). slewing power limiting degree of damping for equipment movements and travel function activation of the "Auto Power-Boost" function See working settings of the machine) 	OPERATING HRS
108g	Multifunction display	Display	Setting of display contrast and brightness, clock, language and measuring units. (See: "Display, settings")	DISPLAY
108h	Multifunction display	Information	Displays operating data of the machine and the control system (central unit (CU), power control system (PCS), electro-hydraulic control system (ESX), display (C4) and keypad modules (C51,C52,C53). (See operating data)	INFORMATION

Page 2 of 5

Multifunction display

Multifunction display (Fig. 3)

No.	Designation		Function	Symbol
108i	Multifunction display	Tester	Monitoring and display of proc- ess data and settings / operating status. This menu is reserved for our Service Dept. and not accessible in normal machine operation.	TESTER
108j	Multifunction display Display	Service	 Display of operating hours (in detail) Display and setting of servicing intervals Calibration of proportional valves and control valves (control levers), pumps and speedometer Fault treatment fault recording fault details fault reset (erasing) This menu is reserved for our Service Dept. and not accessible in normal machine operation. 	Image: Service mfa11k-de_en_fr_it
108k	Multifunction display	Fault memory	 Fault memory Faults occurred are stored in detail for the individual elec- tronic control units 	FAULT RETRIEVAL
109	Key	SET key	Key for selection and confirma- tion of items in function and navi- gation menus	SET T425
110	Key	Arrow key	Key for selection and scroll-down in function and navigation menus	Т426
111	Кеу	Arrow key	Key for selection and scroll-up or escape key in function and navi- gation menus	T427

Page 3 of 5

Multifunction display

Multifunction display (Fig. 4)

No.	Designation		Function	Symbol
112	Warning lamp	Fault message	Lights up yellow in the event of faults which are not safety- or function-relevant.	
			When a yellow fault occurs, a fault number is displayed and a buzzer warning is sounded in addition to the yellow warning lamp lighting up.	
			If several yellow faults have oc- curred, they are displayed one after another at certain intervals. Instantaneous calling is possible by depressing the SET key.	
			The cause of the fault should be rectified as soon as possible. In most cases, the machine can continue to be used with all its functions. (See: "Fault codes")	

Multifunction display

2-32

Multifunction display (Fig. 5)

Page 5 of 5

No.	Designation		Function	Symbol
113	Warning lamp	Fault message	Lights up red , when the safety of persons (e.g. safety lever defec- tive, overload warning) and the functioning of main assemblies of the machine is endangered. This is the case, for instance, when there is no engine oil pres- sure or when the admissible load moment is being exceeded (with overload warning option) and when pressure-relief valves open. When a red fault occurs, a fault number is displayed and an in- termittent buzzer warning is sounded in addition to the red warning lamp lighting up.	
			In some fault cases, certain ma- chine functions are deactivated or can be switched over to emer- gency operation.	
			There is also the possibility of several faults being indicated at the same time. If 2 red faults occur, both are indicated. If a yellow and red fault occur at the same time, only the red fault will be indicated. After removal of the cause of the red fault, the yellow fault is indicated. (See: "Fault codes")	

Superstructure components, overview

Fig. 1

- 1 Superstructure frame
- 2 Counterweight
- 3 Diesel engine
- 4 Fuel tank

- 5 Hydraulic tank
- 6 Control block
- 7 Combined radiator
- 8 Ball-mounted slewing ring

Engine assembly components, overview

Fig. 2

- 1 Diesel engine
- 2 Combined radiator
- 3 Coolant expansion tank

- 4 Air filter
- 5 Exhaust system
- 6 Engine bearing

- 1 Hydraulic tank
- 2 Control block
- 3 Servo control unit

- 4 Operating elements
- 5 Slewing gearbox
- 6 Hydraulic rotor

Drive unit components, overview

Fig. 4

- 1 Diesel engine
- 2 Resilient coupling
- 3 Main pumps A 8 V
- 4 Suction line
- 5 Slewing pump A 4 V

- 6 Gear pump
- 7 Speed adjustment motor
- 8 Intake air temperature sensor
- 9 Speed sensor
- 10 Start and grid heater relay

Undercarriage components, overview

Key

- 1 Undercarriage frame
- 2 Support
- 3 Floating axle support

- 4 Rotor, hydraulic and electrical
- 5 Ball-mounted slewing ring
- 6 Control block

SECTION 3 ELECTRICAL SYSTEM

INDEX

CONTROL	3-1
Introduction	3-1
THE ELECTRICAL SYSTEM	3-2
Fundamental notions	3-2
Automotive electrical systems	3-2
Cable harnesses	3-2
Fuses Checking / replacing the fuses Table of fuses	3-3 3-3 3-5
ELECTRICAL CIRCUIT DIAGRAMS	3-7
Electrical circuit diagrams, part number 8900299, 1-39	3-7
Table of contents, page 1	
Table of contents, page 2	3-9
Power supply / engine starter	
Grid Heater / Filter Heater	
Power supply for sensors	
Tank sensor / Refuelling system	
Pilot-control shutoff	
PCS	
Switches	
Speed adjusting motor	
Horn / CU power supply	
Driver's cab / Voltage converter	3-19
Driver's cab / Wiper and washer	3-20
Driver's cab	3-21
Driver's cab	3-22
Driver's cab	3-23
Driver's cab	
Steering column lever switch C5.3	
Lighting	
Lighting	
Speedometer – creep speed	
1 + 2 Gear / Floating-axie / Brake	
Biower and air conditioner	
Auxiliary rieating (option)	
Stabilization / Levelling blade	

ESX power supply	3-35
ESX: CAN1, CAN2, diagnostics	3-36
ESX coding	3-37
ESX valve control	3-38
ESX - PCS valve control	3-39
ESX valve stacking	3-40
ESX valve control	3-41
ESX slewing initiator	3-42
ESX pressure sensors	3-43
Power supply / CAN BUS, overview	3-44
Fuses, overview	3-45
Grounding points, overview	3-46
Electrical circuit diagrams for supplementary functions	3-47
Electrical circuit diagram, hammer equipment	3-48
Electrical circuit diagram, shears equipment	
Electrical circuit diagram, cutter equipment	
Electrical circuit diagram, hammer / shears equipment	
Electrical circuit diagram, hammer / cutter equipment	
Electrical circuit diagram, shears / cutter equipment	
Electrical circuit diagram, hammer / shears / cutter equipment	
Layout of electrical components	3-55
Electrical system – central electronics (behind driver's seat)	3-56
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control	3-56 3-57
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches	3-56 3-57 3-58
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment	3-56 3-57 3-58 3-59
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block	3-56 3-57 3-58 3-59 3-60
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block Electrical system for undercarriage stabilization	3-56 3-57 3-58 3-59 3-60 3-60
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block Electrical system for undercarriage stabilization Electrical components by code numbers	3-56 3-57 3-58 3-59 3-60 3-60 3-61
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block Electrical system for undercarriage stabilization Electrical components by code numbers Connector pin assignment tables	3-56 3-57 3-58 3-59 3-60 3-60 3-61 3-61 3-69
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block Electrical system for undercarriage stabilization Electrical components by code numbers Connector pin assignment tables Connector X33A	3-56 3-57 3-58 3-59 3-60 3-60 3-61 3-61 3-69 3-69
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block Electrical system for undercarriage stabilization Electrical components by code numbers Connector pin assignment tables Connector X33A. Connector X33B.	3-56 3-57 3-58 3-59 3-60 3-60 3-61 3-69 3-69 3-69 3-70
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block Electrical system for undercarriage stabilization Electrical components by code numbers Connector pin assignment tables Connector X33A Connector X33B Connector X33B Connector X33C.	3-56 3-57 3-58 3-59 3-60 3-60 3-61 3-61 3-69 3-69 3-70 3-71
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block Electrical system for undercarriage stabilization Electrical components by code numbers Connector pin assignment tables Connector X33A Connector X33B Connector X33D.	3-56 3-57 3-58 3-59 3-60 3-60 3-61 3-61 3-69 3-69 3-70 3-71 3-72
Electrical system – central electronics (behind driver's seat) Electrical system for electro-hydraulic pilot control Electrical system of pilot control-unit, solenoid valves, sensors and switches Electrical system in engine compartment Electrical system for undercarriage control block Electrical system for undercarriage stabilization Electrical components by code numbers Connector pin assignment tables Connector X33A Connector X33B Connector X33B Connector X33D Connector X33E	3-56 3-57 3-58 3-59 3-60 3-60 3-61 3-61 3-69 3-69 3-69 3-70 3-71 3-72 3-73

CONTROL

Introduction

The description of the machine control is divided into 3 parts:

- Automotive electrical system
- Electronic systems with:
 - the central electronic unit,
 - the electro-hydraulic pilot control and
 - the electronic load-limit regulation.
- Hydraulic system described according to the power flow in the machine and the individual functions and combined functions.

THE ELECTRICAL SYSTEM

Fundamental notions

See Technical Handbook 'Fundamentals of electrical engineering" in the Annex.

Part number: 2440049.00

Automotive electrical systems

See Technical Handbook 'Automotive electrical systems in construction machinery' in the Annex.

Part number: 2440047.01

Cable harnesses

Cable harnesses are described in the spare-parts lists from assembly no.

32.000 onwards.

A code number found in the electrical circuit diagram can be looked up in the table 'Electrical components by code numbers' with reference to the corresponding spare-parts sheet for ordering purposes.

Fuses

Checking / replacing the fuses

Shut off the engine and turn keyswitch to 0 before removing a fuse.

Replace defective fuses only by fuses of the same rating.

The fuses are housed in a fuse-box in the right-hand cover panel (Fig. 1).

• Remove the transparent cover of the fuse-box by unsnapping the clips on both sides. The fuses are now accessible (Fig. 2). Fuse assignment and rating see: "Table of fuses".

If an electrical circuit fails, check first the corresponding fuse:

• Withdraw the fuse from the holder. For this purpose, the fuse-box contains a special fuse removal tool. (Fig. 2).

 Check the fuse. In most cases, a blown fuse wire can be seen with the naked eye (Fig. 3). In case of doubt, check the fuse with an ohmmeter

• If the fuse is defective, insert a new one of the

 If the fuse is not defective, check the electrical components, the connectors and the cables (or

or replace right away by a new one.

same rating into the fuse holder.

have them checked).

Fig. 1

3-3

Fig. 4

Location of fuses and modules in the cab and in the engine compartment, key of Fig. 4:

- 1 Fuel tank
- 2 Hydraulic oil reservoir
- 3 Hydraulic pumps
- 4 Engine
- 5 Counterweight
- 6 Combined radiator
- 7 Starter

- Grid-Heater fuse
- 8 9 Batteries
- Fuse-box 2, driver's cab 10
- 11 Fuse-box 1, driver's cab
- 12 Driver's seat
- 13 Driver's cab

Table of fuses

FA.1	5 A	Power relay (main switch function), central electronics, Restraining coil engine stop magnet
FA.2	5 A	Start relay, option: Grid-Heater-Controller
FA.3	5 A	- not used -
FA.4	2 A	ESX ¹⁾ ground for sensors
FA.5	15 A	Option: refuelling system
FA.6	5 A	Safety switch electro-hydraulic pilot control, Relay for power supply of central unit, Pilot control working system pressure switch, pilot control travelling pressure switch
FA.7	5 A	Power supply PCS ²⁾ - Box,
FA.8	5 A	Parking brake switch, brake pressure switch (stop-light), Alternator (exciter voltage)
FA.9	10 A	Option: driver's seat compressor, auxiliary heating timer
FA.10	5 A	Option: stabilizers / levelling blade
FA.11	10 A	Main beam via relay
FA.12	1 A	Power supply for joystick left and right
FA.13	2 A	Power supply (ESX)
FA.14	30 A	Power supply (ESX)
FA.15	1 A	Power supply for travel pedal and keyboard module on steering wheel
FA.16	5 A	Option : Power supply for greasing pump
FA.17	-	Option : auxiliary heating - 15 A
FA.18	-	Option : auxiliary heating - 5 A
FA.19	-	Option : blower stage 1 for auxiliary heating – 7.5 A
FA.20	-	Option: quick-change device - 5 A
FA.21	5 A	Option : heating filter relay, Grid-Heater-Controller
FA.22	30 A	Option: heating filter
FA.23	25 A	Stop magnet energizing coil
FA.24	5 A	Diagnosis socket CAN1 and CAN2 ³⁾
FA.25	10 A	24 V/12 V voltage converter supply Radio and socket, Option : conditioner actuator (electrically operated flap for switch- ing between recirculated and fresh air)
FA.26	2 A	Relay for cab interior lighting
FA.27	2 A	Power relay (main switch function)
FA.28	15 A	to ignition/starter switch

Pedestal (Fuse box 2 on the right behind the driver's seat, Fig. 1)

¹⁾ **ESX** : Electro-hydraulic Controller

²⁾ PCS: Power Contol System

³⁾ CAN: Acronym for Control Area Network (2-wire bus)

redestal (ruse box 2 on the right bennit the univers seat, rig. 1)			
FA.29	5 A	Hazard warning signal switch	
FA.30	15 A	Blower / air conditioner compressor	
FA.31	-	- not used -	
FA.32	-	- not used -	

Pedestal (Fuse box 2 on the right behind the driver's seat, Fig. 1)

Driver's cab (fuse-box 1 on the right beside the driver's seat, Fig. 2)

FB.1	10 A	Option: rotary beacon
FB.2	10 A	Option: floodlamp at the rear of driver's cab
FB.3	10 A	Floodlamp in front of driver's cab
FB.4	10 A	Wiper motor and wash pump
FB.5	5 A	Cab interior lighting
FB.6	7.5 A	24 V/12 V voltage converter supply for radio and socket
FB.7	2 A	Power supply for display and keyboard modules in cab
FB.8	5 A	Option: frequency switching solenoid
FB.9	5 A	Illumination of switches
FB.10	-	- not used -
FB.11	-	- not used -
FB.12	-	- not used -
FB.13	-	- not used -
FB.14	-	- not used -
FB.15	-	- not used -
FB.16	-	- not used -

Engine compartment

125 A

F 20

Grid-Heater

ELECTRICAL CIRCUIT DIAGRAMS

Electrical circuit diagrams, part number 8900299, 1-39

- Table of contents
- Power supply / Starter engine
- Grid heater / Filter heater
- Sensor power supply
- Tank sensor / Refuelling system
- Pilot control shutoff
- PCS
- Switches
- Speed adjusting motor
- Horn / Engine power supply CU
- Driver's cab / Voltage converter
- Driver's cab / Wiper and washer
- Driver's cab
- Steering column lever switch
- Lighting
- Speedometer creep speed
- Valves / Air filter control
- 1st + 2nd Gear / Floating axle / Brake
- Blower and air conditioner
- Auxiliary heating (option)
- Hammer / Shears / Frequency (option)
- Stabilizers / Levelling blade
- ESX power supply
- ESX CAN1 CAN2 diagnosis
- ESX coding
- ESX valve control
- ESX PCS valve control
- ESX valve stacking
- ESX slewing initiator
- ESX pressure sensors
- CAN BUS / Power supply, overview
- Fuses, overview
- Grounding points, overview

c	-	ĥ	~	3	e		_	r	a	σ
	4	4			1	-			,	
	Inhaltsver;	zeichni	S							
Seite	Seitenbenennung				Seitenzusat:	zfeld		Datum	Bear.	×
-	Inhaltsverzeichnis				A3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
2	Inhaltsverzeichnis				H3 919 01	Semlin	20.11.03	04.07.03	Semlin	
m	STROMVERSORGUNG / ANL	ASSER MOTOR			A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
t	GRID HEATER / FILTER	HERTER			A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
ى ا	SPANNUNGSVERSORGUNG F	TÜR SENSOREN			A3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
G	TANKSENSOR / BETANKUN	IGSANLAGE			A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
2	RBSCHALTUNG VORSTEUEF	SUNG			H3 919 01	Semlin	20.11.03	04.07.03	Semlin	
80	PCS				A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
51	SCHALTER				H3 919 01	Semlin	20.11.03	04.07.03	Semlin	
10	DREHZAHLVERSTELLMOTOF	~			A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
11	HORN / SPANNUNGSVEROF	GUNG -CU-			10 019 01	Semlin	20.11.03	04.07.03	Semlin	
12	FAHRERHAUS / SPANNUNG	SWANDLER			A3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
13	FAHRERHAUS / WISCHER	+ WASCHER			A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
14	FAHRERHAUS				A3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
15	FAHRERHAUS				A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
16	FAHRERHAUS				H3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
17	FAHRERHAUS				A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
18	LENKSTOCKSCHALTER / C	5.3			H3 919 01	Semlin	20,11,03	04. 07. 03	Semlin	
19	BELEUCHTUNG				H3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
20	BELEUCHTUNG				R3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
21	TACHO - KRIECHGANG				H3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
22	HUBKRAFIVERSTÄRKER /	SCHMIERPUMPE			A3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
23	1. + 2. GANG - PENDELF	RCHSE - BREMSE			10 019 CH	Semlin	20.11.03	04. 07. 03	Semlin	
24	GEBLÅSE UND KLIMAANLF	IGE			A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
25	STANDHEIZUNG [OPTION]				R3 919 01	Semlin	20.11.03	04.07.03	Semlin	
26	HAMMER/SCHERE/FREDUEN	(NOILO) ZI			A3 919 01	Semlin	20.11.03	04.07.03	Semlin	
27	ABSTÜTZUNG / PLANIEF	SCHILD			R3 919 01	Semlin	20.11.03	04, 07, 03	Semlin	
28	ESX: SPANNUNGSVERSORC	BUNG			R3 919 01	Semlin	20.11.03	04.07.03	Semlin	
29	ESX: CAN1, CAN2, DIAC	RNDSE			H3 919 01	Semlin	20,11,03	04, 07, 03	Semlin	
ΟE	ESX: CODIERUNG				A3 919 01	Semlin	20.11.03	04. 07. 03	Semlin	
Eigensch./kritisch Vlasse Eigensch	a/tatala aft	EIGENTUN DE	R CNH GLOBRL N. Y. UND	FILIALEN. OHNE UNSERE ZUS	STINNUNG, UEBERLASSU	NG AN ORITIE P	ERSONEN DOER VERC	DEFFENTLICHUNG NACH	I DEN GESETZLICHEN BESTINN	UNGEN VERBOTEN.
CNH0 0 /		Bearb. /written	Ostve/Oste Mamo	Eigentu Tochter	m einer gesellschaft	nnung/Desc	ription	Sach 1 20 1 20 1 20	-Nr ** 8900299	C 81att 1
Hodel	01 01 01 01 00 00	Gerr. /Chacked			ohal N. V. SCH	ALTPLAN				F.K. 59 Blätte B.S.Mo 59 Blätte
MH6. 6/MH8	3, G Real of Semartin 120	LL. V.S. Neveration and Market And	l Liten department: 5550	Urser, /Oråqån,	Tuha.	ltsverzeic	hnis	Crs. Tel Sebstát	r Ers. ourcn uttor Substituted	

Table of contents, page 1

0	1	2	m	Ŧ	In I	_		2	8	σ
	Inhaltsverzei	.chnis								
Seite	Seitenbenennung				Seitenzus	atzfeld		Datum	Bear.	×
Β	ESX: VENTILSTEUERUNG				A3 919	oi Semlin	20.11.03	04.07.03	Semlin	
32	ESX - PCS: VENTILSTEUERU	NG			A3 919	oi Semlin	20.11.03	04, 07, 03	Semlin	
m m	ESX: VENTILE VERKETTUNG				A3 919	01 Semlin	20.11.03	04.07.03	Semlin	
nt Ut	ESX: VENTILSTEUERUNG				A3 919	01 Semlin	20.11.03	04.07.03	Semlin	
35	ESX: INITIATOR SCHWENKEN				A3 919	01 Semlin	20.11.03	04.07.03	Semlin	
36	ESX: DRUCK-SENSOREN				A3 919	oi Semlin	20.11.03	04.07.03	Semlin	
37	ÜBERSICHT: SPGVERSORG.	/ CAN-BUS			H3 919	01 Semlin	24.11.03	04.07.03	Semlin	
αο m	ÜBERSICHT SICHERUNGEN				A3 919	o1 Semlin	20.11.03	04.07.03	Semlin	
6E	ÜBERSICHT: MASSEPUNKTE AU	F GERĤT			H3 919	01 Semlin	20.11.03	20.11.03	Semlin	
klace Ciencohaft		EIGENTUN DER CH	NH GLOBRL N. Y. UND F	FILIRLEN. DHME UNSERE ZUS	TINNUNG, UEBERLAS	SUNG AN ORITIC	PERSONEN DOER VER	DEFFENTLICHUNG NACH	DEN GESETZLICHEN BESTINNU Vi	NGEN VERBOTEN.
CNHO 0 / 0		Bearb./Hritten 21	0.11.03 Semlin	Tochters 1 ochters	resellschaft	san/gunuuau	CLIPTION	Part	-Nr -No 8900299	
Hodel		Ger. /Ehschad Mare/St. Chack			obal N. V. SC	HALTPLAN		· · ·	2	E.S. No 59 Sheets
MH6.6/MH8.		Bearb. Rbt. /Hritten	department: 5550	Urser. /Oriein.	II	raltsverzeı	chnis	Substitu	t for Substituted	

Table of contents, page 2

Power supply for sensors

Fig. 5

Nodel

Tank sensor / Refuelling system

x30.2: 3.6/30 +

Fig. 7

FR. 5:1 6.3/15.

X67.1:4 6.3/31 🖶

1

A100

Ers. durch Substituted

Ers. für Substitut for

Bearb. Rbt. /Hrit Ger. /Chacked Nore/St. Chack

> 20.11.03 latue/0ste

Semlin 01 R3 919 EC N/CI 0

c

6/HH8. HH B. Nodel

itaan sch. / kritische/tatalo itassa

CNH0 0 / 0

ELECTRICAL SYSTEM

Speed adjusting motor

Horn / CU power supply

Driver's cab

Driver's cab

Fig. 17

23 F.K. 53 Blätte D.S.No 53 Blätte UND FILIALEN. DAME UNSERE ZUSTIMMUNG, UEBERLASSUNG AN ORITTE PERSOMEN DDER VERDEFERTLICHUNG MACH DER BESETZAMUNGEN VERDOTEN -+31/X31.P: 24.1 the sheet 25. #15/X10: 24.1 • 307×30. 2: Ers. durch Substituted XS1.1011 X31. P¢ 8900299 FESTSTELLBREMSE I-1 -> BRENSE RUS 57 \bowtie E32 & R 8 S XS1.1010 32 KC16₿3 kC16∮2 XE32 🔒 8 œ Sach-Nr Part-No FR. 8: 2 19. Z 19 X82 Ц Ers. für Substitut for kC1697 КС16∮4 (S1.1<u></u>99 5 Y16 BREMSE ł NMOD XE32 🛉 0 X31.0 LOCKED Position: E32 + R 16 + S X82 = 16 ലഗ . S16 SCHALTPLAN 1. + 2.6ANG - PENDELACHSE X31. U∮ Benennung/Description Γ <u>H100X28417 H100X28419</u> XE32 P 1 28 X31. 0∮ E32 & R 15 & S X82 @ 15 XS1. ഹര ŝ X31. 1 27 XS1.1 τιΖΖ Ζ:τιθ#λ/95Ζ I-1 -> PENDELACHSE FREI PENDELACHS-BLOCKIERUNG Ν. Υ. Eigentum einer Tochtergesellschaft von \square t en ₽ сv Global E32 + KE32 👌 X82 H100X748 5 Y62 HNU \bowtie GRNG Ë αv XE32 👌 6 """ () E32-X82 (X33C Н ÷ J Y21. NACHSPEISUNG Semlin EIGENTUN DER CNH GLOBAL N.V. Ma. FAHRMOTOR (OPTION) 21 H100X749 Ostve/Oste 04.07.03 ц Я X31.0 X33B Y295 Bearb./Hritten Geer. /Chacked Nore/St. Check DRUCK SCHAL TER PENDELACHS-Blockierung А100Х2Н∮22 \$22 52 bar X31.00 20.11.03 stue/0ste **UEEX** A100 Semlin ESX⁸32 П7. 3 29. 2 ЕSX 10 FAHRDRUCK 0-450BAR ٦ Γ T _ J R3 919 ' **⊦**~ x330:13 36.2 Z12 • B10 | L 22. 8/31 --iaam sch. / kritische/talala lassa Eigenschaft X10: 22.6/15 FR. 29: 1 19. 3/30 c CNH0 0 / 0 6/HH8. X31. D: Nodel. HH B. Fig. 23

Stabilization / Levelling blade

ESX power supply

ESX coding

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

ESX valve stacking

ESX valve control

ESX pressure sensors

Fuses, overview

Ø) 00			LICHUME ANCH DEN GESETZLICHER BESTIMMUNGEN VERBUTEN. Sach-Nr Part-No 8900299 4 814430 Fart-No 8900299 4 8144430 Farture for familie
r.	 FRABE FRABE FRABU BEIGE BEIGE GRUN GRUN		DOER VERDEFFER
5	ля. а стана и на поли и н		suns an oritic reasonen ennung/Descriptic HALTPLAN RSICHT SICHERUNGE
'n	/ FARRE / FARRE BEIGE BEIGE BEIGE BEIGE BEIGE BEIGE ROT ROT ROT ROT ROT ROT ROT ROT	л на ве кот кот кот кот кот кот кот кот	E ZUSTIMMUNG, UEDERLINS setum ator htergestischaft SC [Global N. V. UBE
+	мя. FA 1 - 54 FA 1 - 54 FA 2 - 54 FA 2 - 54 FA 3 - 54 FA 3 - 54 FA 3 - 54 FA 1 - 54 FA 1 - 104 FA 1 - 1	м. м. м. м. м. м	
m	(13) (14) (15) (18) FA29 FA30		ER EMH SLUBBL M. V. UMI 5544/1344 Bin 04.07.03 Semiin 1444.44444. 5531
Ę	FR17 FR17 FR20 C FR21 FR21 C FR20 FR21 C FR20 FR21 C FR20 FR21 FR20 C		EIGENTUN UE Baarb./Antitia Baarb./Antitia Gent./Chackad 03 Mere/St.Chack
1	(113) (14) (15) (10) FA13 FA14 FA15 FA16 H H H H H H H H H H H H H H H H H H H H H H H H H H H H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 21 20 20 20 20 20 20 20 20 20 20 20 20 20
0			CUHO 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0

Fig. 38

Grounding points, overview

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Electrical circuit diagrams for supplementary functions

- Electrical circuit diagram hammer equipment
- Electrical circuit diagram shears equipment
- Electrical circuit diagram cutter equipment
- Electrical circuit diagram hammer / shears
- Electrical circuit diagram hammer / cutter
- Electrical circuit diagram shears / cutter
- Electrical circuit diagram hammer / shears / cutter

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Fig. 1

Electrical circuit diagram, shears equipment

MH6.6 / MH8.6

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Electrical circuit diagram, hammer / shears equipment

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

y Blatter (OPTION) DOPPEL-Berufschi Agung UFBERLASSUNG AN DRITTE PERSONEN ODER VERDEFFENTI TCHUNG NACH DEN BESETZI TCHEN BESTTHMUNGEN VERBOTEN \bowtie B_att Sheet ب_ا \bigcirc S. No m Y239. ESX durch Stuted \bowtie Er s. Subs: DRUCK-Begrenzung ESX 🔓 64 (] H7.3 / ESX Y239. Sach-Nr Part-No SENSOR 1 AST -DRUCK Ers. für Substitut for 8239 7-7-1 ESX 🔶 9 SENSOR Druck Pumpe 2 ESX 🔶 29 -> ok -> ok (Shears) -> ok (Shears) -> ERROR (Hammer) 27, 26 1. L <u>_</u>___o UMSCHALTUNG T=0: HAMNFR T=1: FRÅSE \bowtie L _ HAMMER/FRÄSE _ Benennung/Description SIEHE RUCH BLATT 1 UND 3 (|| × 0 . - - - - - 0 Y39. 1 er TANK-RÜCKLAUF с 9X --0 Т AUSRŪSTUNG: esoto (5 39.9 P 2C. 21 0...+Qmax 0...+0max 1 HAMMER FEINSTEUERUNG: NUR 6 00ER 7) \bowtie í Eigentum einer Tochtergesellscheft von N. V. FRÄSE FEINSTEUERUNG: POWER-LEVEL OHNF UNSERF ZUSTINNUNG, SLAVE-PEDAL (NACKENZ...) Œ (1 🔒 2 D HIN Global **n61.1** C HN 1 2 110 CBN HN Ŷ \bowtie A61 Master-pedal (fahren) ~ UND FTITRIEN. PDS. Ē 574 L, 2//3, 4 Y207. 1 Semlin FTBFNTUM DER CNH BLOBAL N.V. **3350** 5 Ŕ х 305 🔓 8 0 Biarb. Abt. /Writter department: tو 33 ÷ 69 FRÄSE Beerb, /Written Beer, /Checked FRASE X307 Nora/SU. Check

ELECTRICAL SYSTEM

Electrical circuit diagram, shears / cutter equipment

(OPTION) DOPPEL-Berufschirgung 7 Blätte THE FERENTH DER CH. B.DR.H. V. UND FTTERLEN. DHNE UNSER ZUSTTMHUNG, UFRERINSSUMB EN DETTE PERSDAEN DER VERDEFEHNTTHUNG MACH DEN BESETZTTEHEN VERDTEN B.att Sheet \blacksquare . к. . Ne m Y 239. esx 🌢 Ers. durch Substituted \bowtie DRUCK-Begrenzung ESX 🔓 64 ESX (H ~ Y239. A7.3 Sach-Nr Part-No SENSOR I AST -DRUCK B239 ESX 🔓 9 Ers. für Substitut 1 SENSOR Druck Pumpe 2 ESX 🖕 29 -> ok -> ok (Shears) -> ok (Shears) -> ERROR (Hammer) AUSRÜSTUNG: HAMMER/SCHERE/FRÄSE 27, 26 F. L <u>_</u>____0 \bowtie UMSCHALTUNG T=0: HAMMFR T=1: S.o.F. Benennung/Description Œ -----SIEHE RUCH BLATT 1 - 6 39. TANK-RÜCKLAUF ΥR C -0max...0...+0max 00 Œ 5 39.9 P esoto (27. ZI 0...+Qmax 0...+Qmax . 1 SCHERE FEINSTEUERUNGB: HAMMER FEINSTEUERUNG: \bowtie N. V. Eigentum einer Tochtergesellschaft von FRÄSE FEINSTEUERUNG: POWER-LEVEL SLAVE-PEDAL (NACKEN/HAMMER) e i S MIN Global n61.1 ٦ 2 110 CHN CAN \bowtie SPDOL 7 NFG. (Schere) LNH -----Œ E HILY t ×207. MASTER-PEDAL (FAHREN) SPOOL POS. (H HMA 1, 2//3, 4 4, L//-, Н61 1²¹ 21²¹ 21 Y207. Т Vano Semlin \oplus +K X305 🖨 09.03 ē FRÄSE 11. X307 🔓 6 FRASE /Gritten Chucked /SL. Eneck 339.8 h 0-850 x 305 🖨 E . 1.9 Nar. Einstellung über Display: - Huswehl Typ 1.4 - Volumenstrom - Druck 55 off off on erre Æ K TASTER VORNE UNTEN - HAMMER GETASTET: D=AUS / 1=EIN (Qmax) 1 SCHERE DISPLAY (C4) 0 4 0 4 30.6 SCHERE 239.5 F UMSCHALTUND: SCHERE/NACKEN FRÅSE/NACKEN 2 СЯN CAN X 305 🔓 5 off on error not 俳 JOYSTIK LINKS UNSCHALTUNG: 1 HAMMER ~ 1, 2//9, 4 H. _//+. A57 0 HAMMER -74 ees X306 Т 1.115cho// 1.1enschoft L | x306 🔓 2 1, 200 1, T Model : igonsch. / Alesse L. - 1

ELECTRICAL SYSTEM

Electrical circuit diagram, hammer / shears / cutter equipment

Fig. 7

 \bowtie

3-54

EPZ7

Layout of electrical components

Electrical system and central electronics (behind the driver's seat) and layout of electrical components such as fuses, diagnosis sockets, relays, diodes, connectors and terminals

Electrical system – central electronics (behind driver's seat)

Layout of central electronic unit A100 and PCS load-limit regulator A10

Electrical system for electro-hydraulic pilot control

ESX controller, proportional valves and pressure sensors on control block, proportional valves and slewing angle sensor on slewing pump

N₁₀ ନ୍ତି GIB+ 66 Π

Electrical system in engine compartment

7

Electrical system for undercarriage control block

Fig. 6

Electrical system for undercarriage stabilization

The figure shows individual stabilization variant A4

Electrical components by code numbers

BMK	Deutsch	Englisch	Bgr	Ugr	Bezeichnung	Bezeichnung EN
A10	GRENZLASTREGLER	LOAD LIMIT GOVERNOR				
A100	ZENTRALELEKTRONIK BEDIENPULT	CENTRAL ELECTRONIC UNIT				
A100X1	STECKVERBINDUNG ZENTRALELEKT-	PLUG/SOCKET CENTRAL ELECTRONIC	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A100X2A	RONIK STECKVERBINDUNG ZENTRALELEKT-	PLUG/SOCKET CENTRAL ELECTRONIC	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A100X3A	RONIK STECKVERBINDUNG ZENTRALELEKT-	PLUG/SOCKET CENTRAL ELECTRONIC	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A100X6	RONIK STECKVERBINDUNG ZENTRALELEKT-	PLUG/SOCKET CENTRAL ELECTRONIC	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A100X7	RONIK STECKVERBINDUNG ZENTRALELEKT-	PLUG/SOCKET CENTRAL ELECTRONIC	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A10X1	RONIK STECKVERBINDUNG GRENZLASTREG-	PLUG/SOCKET LOAD LIMIT GOVER-	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A10X31	GEHAEUSE-MASSE GRENZLASTREGLER	NOR 15 POLE HOUSING_EARTH LOAD LIMIT GOV-	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A10X4	DIAGNOSESTECKDOSE PMS	DIAGNOSTIC UNIT CONNECTOR	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A17	GRID HEATER CONTROLLER				TRALELEKTRONIK	ELECTRONIC
A400	DISPLAY-MODUL	DISPLAY-MODUL	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
A501	TASTATUR-MODUL 1	KEYBOARD-MODUL 1	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
A502	TASTATUR-MODUL 2	KEYBOARD-MODUL 2	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
A503	TASTATUR-MODUL 3	KEYBOARD-MODUL 3	18	100	LENKUNGSSAEULE	STEERING COLUMN
A56	VORSTEUERHEBEL HYDRAULIK RECHTS	PILOT CONTROL-LEVER HYDRAULIC	32	470	BETAETIGUNG EINBAU	CONTROL DEVICE INSTALLA-
A56	VORSTEUERHEBEL HYDRAULIK RECHTS	PILOT CONTROL-LEVER HYDRAULIC	34	142	KONSOLE	BRACKET
A56X1	STECKVERBINDUNG VORSTEUERHEBEL		32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET
A56X1	STECKVERBINDUNG VORSTEUERHEBEL	PLUG/SOCKET PILOT CONTROL-	32	470	BETAETIGUNG EINBAU	CONTROL DEVICE INSTALLA-
A56X2	STECKVERBINDUNG VORSTEUERHEBEL	PLUG/SOCKET PILOT CONTROL-	32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET
A56X2	STECKVERBINDUNG VORSTEUERHEBEL	PLUG/SOCKET PILOT CONTROL-	32	470	BETAETIGUNG EINBAU	CONTROL DEVICE INSTALLA-
A57	VORSTEUERHEBEL HYDRAULIK LINKS	PILOT CONTROL-LEVER HYDRAULIC	32	470	BETAETIGUNG EINBAU	CONTROL DEVICE INSTALLA-
A57	VORSTEUERHEBEL HYDRAULIK LINKS	PILOT CONTROL-LEVER HYDRAULIC	34	142	KONSOLE	BRACKET
A57X1	STECKVERBINDUNG VORSTEUERHEBEL	PLUG/SOCKET PILOT CONTROL-	32	470	BETAETIGUNG EINBAU	CONTROL DEVICE INSTALLA-
A57X1	STECKVERBINDUNG VORSTEUERHEBEL	PLUG/SOCKET PILOT CONTROL-	32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET
A61	FAHRPEDAL / MASTER	ACCELERATOR PEDAL / MASTER	32	470	BETAETIGUNG EINBAU	CONTROL DEVICE INSTALLA-
A61.1	PEDAL / SLAVE1	PEDAL / SLAVE1	32	470	BETAETIGUNG EINBAU	CONTROL DEVICE INSTALLA-
A61X1	STECKVERBINDER FAHRPEDAL/MASTER	PLUG/SOCKET ACCELERATOR PEDAL	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
A61X2	STECKVERBINDER FAHRPEDAL/MASTER	PLUG/SOCKET ACCELERATOR PEDAL	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
A67	SCHALTKASTEN BETANKUNGSANLAGE					ON THE REPORT OF
A7.3	HAUPT-STEUERGERAET ELEKTRO-					
A7.3X4	STECKVERBINDUNG HAUPT-	PLUG/SOCKET MAIN CONTROLLER	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
A90.2	RADIO	RADIO				
A90.3	LAUTSPRECHER	LOUDSPEAKER	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
B10	DRUCKGEBER FAHREN	PRESSURE SENSOR - TRAVEL	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
B10.1	DREHZAHLSENSOR	SPEED SENSOR	13	011	MOTOR ANBAUTEILE	MOTOR MOUNTING PARTS
B10.1	DREHZAHLSENSOR	SPEED SENSOR	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
B116	THERMOSTAT VORWÄRMUNG KRAFT- STOFF	THERMOSTAT VORWÄRMUNG	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
B116	THERMOSTAT VORWÄRMUNG KRAFT- STOFF	THERMOSTAT VORWÄRMUNG	95	246	KRAFTSTOFFFILTER ANBAUTEILE	FUEL FILTER MOUNTING PARTS
B13.1	KUEHLWASSERTEMPGEBER	COOLING-WATER TEMPERATURE SENSOR	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
B13.1	KUEHLWASSERTEMPGEBER	COOLING-WATER TEMPERATURE SENSOR	95	475	THERMOSTAT	THERMOSTAT
B2	TANKSENSOR	TANK SENSOR	10	202	KRAFTSTOFFTANK	FUEL TANK
B210	DRUCKGEBER HAUPTPUMPE 2	PRESSURE SENSOR - MAINPUMP 2	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
B211	DRUCKGEBER HAUPTPUMPE 1	PRESSURE SENSOR - MAINPUMP 1	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
B212	DRUCKGEBER SCHWENKPUMPE	PRESSURE SENSOR - SWING PUMP	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
B213	WINKELGEBER SCHWENKPUMPE	ANGEL TRANSMITTER - SWING PUMP	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
B213	WINKELGEBER SCHWENKPUMPE	ANGEL TRANSMITTER - SWING PUMP	22	030	SCHWENKPUMPE	SWING PUMP

BMK	Deutsch	Englisch	Bgr	Ugr	Bezeichnung	Bezeichnung EN
B239	DRUCKSENSOR	SENSOR LOAD	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
B35.2	DREHZAHLSENSOR SCHWENKEN					CARRIAGE
B7	DREHZAHLGEBER GETRIEBESCHAL-	REV. TRANSMITTER ACUTUATING	20	020	HYDRAULIKANLAGE	HYDRAULIC SYSTEM LOWER
B7	DREHZAHLGEBER GETRIEBESCHAL-	REV. TRANSMITTER ACUTUATING	32	123	KABELBAUM UNTER-	CARRIAGE CABLE HARNESS LOWER
B74	TUNG DRUCKGEBER AUSLEGER KOL-	ELEMENT PRESSURE SENSOR - BOOM PISTON	32	113	WAGEN KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER
E1	BENFLAECHE SCHEINWERFER LINKS	SIDE LH HEADLIGHT	32	201	BELEUCHTUNG FRONT	CARRIAGE
F12 1					ANBAUTEILE	TING PARTS
E12.1						
E1E1		BULB, HEADLIGHT	32	201	BELEUCHTUNG FRONT	ILLUMINATION FRONT MOUN-
E1E2			32	201	ANBAUTEILE BELEUCHTUNG ERONT	
E 1 E 2			20	201	ANBAUTEILE	TING PARTS
EZ			32	201	ANBAUTEILE	ING PARTS
E22.1	BLINKLEUCHTE VORNE LINKS					
E23.1	BLINKLEUCHTE VORNE RECHTS					
E2E2						
E3	LINKS	WORKING LIGHT, BOOM LEFT				
E3.4	ARBEITSSCHEINWERFER FAHRERHAUS LINKS	WORKING LIGHT CAB L.H.	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
E3.6	ARBEITSSCHEINWERFER FAHRERHAUS HINTEN LINKS	HEADLAMP DRIVER`S CAB,	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
E32	SCHLEIFRINGKOERPER	SLIP RING	33	012	SCHLEIFRINGKOERPER	SLIPRING UNIT
E36	RUNDUMKENNLEUCHTE	ROTARY BEACON	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
E36.1	RUNDUMKENNLEUCHTE	ROTARY BEACON	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
E4	ARBEITSSCHEINWERFER AUSLEGER	WORKING LIGHT, BOOM RIGHT				
E4.4	ARBEITSSCHEINWERFER FAHRERHAUS	WORKING LIGHT CAB R.H.	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
E4.6	ARBEITSSCHEINWERFER FAHRERHAUS	HEADLIGHT DRIVER' CAB	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
E5	HINTEN RECHTS SCHLUSSLEUCHTE LINKS	TAIL LIGHT, LEFT	32	212	BELEUCHTUNG HECK	CAB ILLUMINATION REAR
E5E1	GLUEHLAMPE SCHLUSSLICHT	LAMP - TAIL LIGHT	32	212	BELEUCHTUNG HECK	ILLUMINATION REAR
E5E2	GLUEHLAMPE BREMSLICHT	LAMP - STOP LIGHT	32	212	BELEUCHTUNG HECK	ILLUMINATION REAR
E6	SCHLUSSLEUCHTE RECHTS	TAIL LIGHT, RIGHT	32	212	BELEUCHTUNG HECK	ILLUMINATION REAR
E6E1	GLUEHLAMPE SCHLUSSLICHT	LAMP - TAIL LIGHT	32	212	BELEUCHTUNG HECK	ILLUMINATION REAR
E6E2	GLUEHLAMPE BREMSLICHT	LAMP - STOP LIGHT	32	212	BELEUCHTUNG HECK	ILLUMINATION REAR
E7	BLINKLEUCHTE LINKS	BLINKER LEFT	32	860	BLINKLEUCHTE EINBAU	TURN SIGNAL LIGHT IN-
E72	KLIMAANLAGE	AIR CONDITION				STALL.MATERIAL
E8	BLINKLEUCHTE RECHTS	BLINKER RIGHT	32	860	BLINKLEUCHTE EINBAU	TURN SIGNAL LIGHT IN-
E9	INNENLEUCHTE	INTERIOR LIGHT	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
ESX	HAUPT-STEUERGERAET ELEKTRO-	MAIN CONTROLLER ELECTRIC-	34	101	PODESTPLATTE ANBAU-	PLATFORM PLATE MOUNTING
ESX-	HYDRAULIK GEHAEUSEMASSE	HYDRAULIC HOUSING EARTH	32	113	TEILE KABELBAUM OBERWAGEN	PARTS CABLE HARNESS UPPER
GEHM F20	SICHERUNG: KALTSTARTANLAGE	FUSE: COLD STARTING SYSTEM				CARRIAGE
FA.1	SICHERUNG	FUSE	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
FA.10	SICHERUNG	FUSE	32	153	TRALELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
EA 11		ELISE	32	153	ELEKTRONIK KARELBALIM ZEN	ELECTRONIC
54.40		FUGE	02	450		
FA.12	SICHERUNG	FUSE	32	155	ELEKTRONIK	ELECTRONIC
FA.13	SICHERUNG	FUSE	32	153	KABELBAUM ZEN- TRALELEKTRONIK	CABLE HARNESS CENTRAL ELECTRONIC
FA.14	SICHERUNG	FUSE	32	153	KABELBAUM ZENTRAL- ELEKTRONIK	CABLE HARNESS CENTRAL ELECTRONIC
FA.15	SICHERUNG	FUSE	32	153	KABELBAUM ZEN- TRALELEKTRONIK	CABLE HARNESS CENTRAL ELECTRONIC
FA.16	SICHERUNG	FUSE	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
FA.17	SICHERUNG	FUSE	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
FA.18	SICHERUNG	FUSE	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
FA.19	SICHERUNG	FUSE	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
FA.2	SICHERUNG	FUSE	32	153	TRALELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
					ELEKTRONIK	ELECTRONIC

BMK	Deutsch	Englisch	Bgr	Ugr	Bezeichnung	Bezeichnung EN
FA.21	SICHERUNG	FUSE	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
FA.22	SICHERUNG	FUSE	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
FA.23	SICHERUNG	FUSE	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
FA.24	SICHERUNG	FUSE	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
FA.25	SICHERUNG	FUSE	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
FA.26	SICHERUNG	FUSE	32	153	ELEKTRONIK KABELBAUM ZEN-	ELECTRONIC CABLE HARNESS CENTRAL
FA.27	SICHERUNG	FUSE	32	153	TRALELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
FA.28	SICHERUNG	FUSE	32	153	ELEKTRONIK KABELBAUM ZEN-	ELECTRONIC CABLE HARNESS CENTRAL
FA.29	SICHERUNG	FUSE	32	153	TRALELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
FA.3	SICHERUNG	FUSE	32	153	ELEKTRONIK KABELBAUM ZEN-	ELECTRONIC CABLE HARNESS CENTRAL
FA.30	SICHERUNG	FUSE	32	153	TRALELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
FA.4	SICHERUNG	FUSE	32	153	ELEKTRONIK KABELBAUM ZEN-	ELECTRONIC CABLE HARNESS CENTRAL
FA 5	SICHERUNG	FUSE	32	153	TRALELEKTRONIK	
EA 6	SICHERUNG	EUSE	32	153	ELEKTRONIK	
FA.0		FUSE	32	153	TRALELEKTRONIK	ELECTRONIC
FA.7	SICHERUNG	FUSE	32	155	ELEKTRONIK	ELECTRONIC
FA.8	SICHERUNG	FUSE	32	153	KABELBAUM ZEN- TRALELEKTRONIK	CABLE HARNESS CENTRAL ELECTRONIC
FA.9	SICHERUNG	FUSE	32	153	KABELBAUM ZENTRAL- ELEKTRONIK	ELECTRONIC
FB.1	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
FB.2	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
FB.3	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
FB.4	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
FB.5	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
FB.6	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
FB.7	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
FB.8	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
FB.9	SICHERUNG	FUSE	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
G1	GENERATOR	ALTERNATOR	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
G1	GENERATOR	ALTERNATOR	95	612	GENERATOR	GENERATOR
G1.1	BATTERIE	BATTERY	31	300	BATTERIE EINBAU	BATTERY INSTALL.MATERIAL
G1.2		BATTERY	31	300		
п/ H7	SIGNALHORN	HORN	32	0/4		
K-ESX	RELAISESY	RELAYESY	32	153		
K-LOA			22	153	ELEKTRONIK	ELECTRONIC
			32	155	ELEKTRONIK	ELECTRONIC
K1.5			32	253		ELECTRICAL SYSTEM FRAME
K1.5			13	011		
K1.5	RELAIS KAI TSTARTANI AGE	RELAY COLD STARTING SYSTEM	13	011		MOTOR MOUNTING PARTS
K1.7	RELAIS KALTSTARTANLAGE	RELAY COLD STARTING SYSTEM	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
K10.1	HAUPTLEISTUNGSRELAIS	MAIN POWER RELAY	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
K100	RELAIS SPANNUNGSVERSORGUNG	RELAY POWER SUPPLY CENTRAL	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
K20.3	RELAIS FILTER HEATER	RELAY FILTER HEATER	32	153	ELEKTRONIK KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
K20.4	RELAIS FILTER HEATER	RELAY FILTER HEATER	32	153	ELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
K202.A	FREIGABE ABSTUETZUNG	RELAY-STABILIZER ENABLE	32	153	ELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
K202.B	FREIGABE ABSTUETZUNG	RELAY-STABILIZER ENABLE	32	153	ELEKTRONIK KABELBAUM ZEN-	ELECTRONIC CABLE HARNESS CENTRAL
K31	RELAIS STANDHEIZUNG	AUXILIARA HEATING RELAY	32	153	TRALELEKTRONIK KABELBAUM ZEN-	ELECTRONIC CABLE HARNESS CENTRAL
K33	RELAIS SPANNUNGSWANDLER	RELAY - VOLTAGE CONVERTER	32	153	TRALELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
K5.1	RELAIS AUFBLENDLICHT	RELAY - TRAVELLING LIGHT	32	153	ELEKTRONIK KABELBAUM ZFN-	ELECTRONIC CABLE HARNESS CENTRAL
					TRALELEKTRONIK	ELECTRONIC

BMK	Deutsch	Englisch	Bgr	Ugr	Bezeichnung	Bezeichnung EN
K67	RELAIS BETANKUNGSANLAGE	RELAY FUELLING SYSTEM				
K67.1	RELAIS BETANKUNGSANLAGE	RELAY FUELLING SYSTEM				
M1	STARTER	STARTER	95	660	ANLASSER	STARTER
M1	STARTER	STARTER	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
M10	DREHZAHLVERSTELLMOTOR	SPEED ADJUSTING ACTUATOR	13	110	VERSTELLUNG MOTOR DREHZAHL	REGULATION MOTOR SPEED
M10	DREHZAHLVERSTELLMOTOR	SPEED ADJUSTING ACTUATOR	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
M2	GEBLAESE	FAN	27	012	HEIZUNG	HEATING
M3	SCHEIBENWISCHERMOTOR	WINDSCREEN WIPER MOTOR	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
M4	SCHEIBENWASCHPUMPE	W/S WASHER PUMP	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
M67	BETANKUNGSPUMPE	FILLING PUMP				
R10.3	TEMPERATURFUEHLER LADELUFT	CHARGE AIR TEMP.SENSOR	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
R10.3	TEMPERATURFUEHLER LADELUFT	CHARGE AIR TEMP.SENSOR	13	011	MOTOR ANBAUTEILE	MOTOR MOUNTING PARTS
R14	TEMPERATURFUEHLER HYDRAULIKOEL	TEMPERATURE PROBE - HYDRAULIC	10	102	HYDRAULIKTANK	HYD. OIL TANK
R14	TEMPERATURFUEHLER HYDRAULIKOEL	TEMPERATURE PROBE - HYDRAULIC	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
R17	HEIZWIDERSTAND VORWAERMUNG	HEATING RESISTOR PREHEATING	95	380	ANSAUGLEITUNG ANBAU-	INLET PIPE MOUNTING PARTS
R17	HEIZWIDERSTAND VORWAERMUNG	HEATING RESISTOR PREHEATING	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
R19	KRAFTSTOFFVORWÄRMUNG	FUEL PREHEATING	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
R19	KRAFTSTOFFVORWÄRMUNG	FUEL PREHEATING	95	246		FUEL FILTER MOUNTING
R21	FILTER HEATER	FILTER HEATER	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
R21	FILTER HEATER	FILTER HEATER	95	246	KRAFTSTOFFFILTER	FUEL FILTER MOUNTING
S1	STARTSCHALTER	START BUTTON	32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET
S1	STARTSCHALTER	START BUTTON	34	142	KONSOLE	BRACKET
S113	ENDTASTER ABSCHALTUNG VORSTEU-	LIMIT SWITCH PILOT PRESSURE CUT-	34	142	KONSOLE	BRACKET
S113	ENDROCK ENDTASTER ABSCHALTUNG VORSTEU-	LIMIT SWITCH PILOT PRESSURE CUT-	32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET
S113.4	DRUCKSCHALTER UEBERWACHUNG	PRESSURE SWITCH - PILOT PRES-	23	240	VENTILVERKETTUNG	VALVE INTERCONN. IN-
S113.4	DRUCKSCHALTER UEBERWACHUNG	PRESSURE SWITCH - PILOT PRES-	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
S12	VORSTEUERDRUCK OELDRUCKSCHALTER	SURE MONITOR OIL PRESSURE SWITCH	95	414	OELMESSTAB ANBAUTEILE	CARRIAGE DIPSTICK MOUNTING PARTS
S12	OELDRUCKSCHALTER	OIL PRESSURE SWITCH	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
S13.2	NIVEAUSCHALTER KUEHLWASSER	LEVEL SWITCH - WATER MIN	10	012	BEHAELTER	CONTAINER
S15	MINIMUM FILTERSCHALTER HYDRAULIK	FILTER SWITCH	10	102	HYDRAULIKTANK	HYD. OIL TANK
S15	FILTERSCHALTER HYDRAULIK	FILTER SWITCH	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
S15.1	SCHALTER LUFTFILTERVERSCHMUT-	SWITCH - AIR FILTER CONTAMINATED	32	253	KABELBAUM MOTOR	CARRIAGE CABLE HARNESS MOTOR
S15 1	ZUNG SCHALTER LUETEILTERVERSCHMUT-	SWITCH - AIR FILTER CONTAMINATED	13	230	ANSAUGANI AGE EINBAU	INTAKE SYSTEM IN-
S16		HANDBRAKE SWITCH	34	142		STALL.MATERIAL
S16		HANDBRAKE SWITCH	32	413		CABLE HARNESS BRACKET
S16.1	HANDBREMSSCHALTER	HANDBRAKE SWITCH	32	123	KABELBAUM UNTERWA-	CABLE HARNESS LOWER
S16 1		HANDBRAKE SWITCH	23	612	GEN STELIERBLOCK	
S17	DRUCKSCHALTER LENKUNG	PRESSURE SWITCH - STEERING	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
S18	BREMSLICHTSCHALTER	BRAKE LIGHT SWITCH	32	113	KABELBAUM OBERWAGEN	CARRIAGE
C10 1			22	112		CARRIAGE
000		PRESSURE	32	113		
520	VARNBLINKSCHALTER		32	463	SCHALTER	CABLE HARNESS SWITCH
\$23	LENKSTOCKSCHALTER	DIRECTION SWITCH	32	463	SCHALTER	CABLE HARNESS SWITCH
\$23.6	WISCHER VORN	WISHER-FRONT	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
S290	DRUCKSCHALTER UEBERWACHUNG VORSTEUERDRUCK	PRESSURE SWITCH - PILOT PRES- SURE MONITOR	23	240	VENTILVERKETTUNG EINBAU	VALVE INTERCONN. IN- STALL.MATERIAL
S290	DRUCKSCHALTER UEBERWACHUNG VORSTEUERDRUCK	PRESSURE SWITCH - PILOT PRES- SURE MONITOR	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
S3.3	SCHALTER SCHEIBENWISCHER VORN	SWITCH - WINDSREEN WIPER	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
S30.1	SCHALTER MAGNETANLAGE	SWITCH - ELECTRO-MAGNET	32 510 KABELBAUM FAHRERHAUS		KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
S35.2	DREHZAHLSENSOR SCHWENKWERK-	SPEED SENSOR - SLEWING-GEAR	16	030	SCHWENKGETRIEBE	SLEWING GEAR IN-
S36	SCHALTER RUNDUMKENNLEUCHTE	SWITCH - GIRATORY BEACON	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
						CAB

BMK	Deutsch	Englisch		Ugr	Bezeichnung	Bezeichnung EN
S37.7	SCHALTER UMSCHALTUNG GREIFER	SWITCH - CHANGING DEVICE GRAB /	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
S39	SCHALTER HAMMER	SWITCH HAMMER	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
S39.3	SCHALTER FREQUENZUMSCHALTUNG	FREQUENCY SWITCH-OVER FOR	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
S39.5	SCHALTER SCHERE	SWITCH FOR SHEARS	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
S39.8	SCHALTER FRAESE	SWITCH MILL	32	510	KABELBAUM FAHRERHAUS	CAB CABLE HARNESS OPERATORS
S39.9	DRUCKSCHALTER UMSCHALTUNG	PRESSURE SWITCH - CHANGING	32	113	KABELBAUM OBERWAGEN	CAB CABLE HARNESS UPPER
S4	HAMMER/SCHERE SCHALTER SCHEIBENWASCHANLAGE	DEVICE HAMMER / SHEARS SWITCH - WINDSREEN WASHER	32	510	KABELBAUM FAHRERHAUS	CARRIAGE CABLE HARNESS OPERATORS
S48.1	SCHALTER ABSTUETZUNG VORNE	SWITCH - STABILIZER FRONT LEFT OR	32	413	KABELBAUM KONSOLE	CAB CABLE HARNESS BRACKET
S48.2	LINKS ODER PLANIERSCHILD SCHALTER ABSTUETZUNG VORNE	DOZER BLADE SWITCH - STABILIZER FRONT RIGHT	32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET
S48.3	RECHTS SCHALTER ABSTUETZUNG HINTEN	SWITCH - STABILIZER REAR LEFT	32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET
S48.4	LINKS SCHALTER ABSTUETZUNG HINTEN	SWITCH - STABILIZER REAR RIGHT	32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET
S50.1	RECHTS TASTER SCHNELLWECHSLER	BUTTON - QUICK-HITCH	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
S53.1	SCHALTER ARBEITSSCHEINWERER	SWITCH - WORKING LIGHT, FRONT	32	510	KABELBAUM FAHRERHAUS	CAB CABLE HARNESS OPERATORS
\$53.2	VORN	SWITCH - WORKING LIGHT REAR	32	510	KABEL BALIM FAHRERHALIS	CAB CABLE HARNESS OPERATORS
S62 1			32	113		
872.1			27	422		CARRIAGE
S74		PRESSURE SWITCH - BOOM	27	310		HYDRAULIC SYSTEM HIGH
59	SCHALTER INNENI EUCHTE	SWITCH - INTERIOR LIGHT	32	510	HOCHDRUCK	PRESSURE
T33	SPANNI INGSWANDI ER 241/121/	SPANNUNGSVERSORGUNG 24V/12V	32	510		CABLE HARNESS OPERATORS
100			22	152		
V I	ENTROFFELDIODE		52	100	ELEKTRONIK	ELECTRONIC
V67 1		RELEASING DIODE	32	153	KABELBALIM ZENTRAL-	CABLE HARNESS CENTRAL
V67.1			52	100	ELEKTRONIK	ELECTRONIC
W16		CABLE BATTERY	32	173	KABELBAUM BATTERIE	CABLE HARNESS BATTERY
W17	MASSEKABEL PODEST	PLATFORM EARTH CABLE	32	110	ELEKTROANLAGE RAHMEN	ELECTRICAL SYSTEM FRAME
W22	MASSEBAND BATTERIEN	BATTERY EARTH	32	173	OBERWAGEN KABELBAUM BATTERIE	UPPER CARRIAGE CABLE HARNESS BATTERY
W23	MASSEBAND MOTOR	ENGINE EARTH	32	110	ELEKTROANLAGE RAHMEN	ELECTRICAL SYSTEM FRAME
X10	B+ VERTEILER	B+ DISTRIBUTOR	32	153	OBERWAGEN KABELBAUM ZENTRAL-	UPPER CARRIAGE CABLE HARNESS CENTRAL
X100B	STECKVERBINDUNG MOTOR	PLUG/SOCKET MOTOR	32	253	ELEKTRONIK KABELBAUM MOTOR	ELECTRONIC CABLE HARNESS MOTOR
X103	STECKVERBINDUNG	PLUG/SOCKET	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
X103	STECKVERBINDUNG	PLUG/SOCKET	32	463	KABELBAUM LENKSTOCK-	CARRIAGE CABLE HARNESS SWITCH
X103.1	STECKVERBINDUNG LENKSTOCK-	PLUG/SOCKET DIRECTION SWITCH	32	113	SCHALTER KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
X103.1	SCHALTER STECKVERBINDUNG LENKSTOCK-	PLUG/SOCKET DIRECTION SWITCH	32	463	KABELBAUM LENKSTOCK-	CARRIAGE CABLE HARNESS SWITCH
X110	SCHALTER STECKVERBINDUNG FAHRERSITZ	PLUG/SOCKET OPERATORS SEAT	32	413	SCHALTER KABELBAUM KONSOLE	CABLE HARNESS BRACKET
X12.31	MASSEVERBINDUNG FAHRERHAUS	EARTH CAB				
X12A	STECKVERBINDUNG FAHRERHAUS	PLUG/SOCKET CAB	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
X12A	STECKVERBINDUNG FAHRERHAUS	PLUG/SOCKET CAB	32	510	KALELEK I KUNIK KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
X12B	STECKVERBINDUNG FAHRERHAUS	PLUG/SOCKET CAB	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
X12B	STECKVERBINDUNG FAHRERHAUS	PLUG/SOCKET CAB	32	510	I KALELEK I RONIK KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
X12CAN	STECKVERBINDUNG FAHRERHAUS	PLUG/SOCKET CAB	32	153	KABELBAUM ZENTRAL-	CAB CABLE HARNESS CENTRAL
X201	STECKVERBINDUNG FAHREN	PLUG/SOCKET TRAVEL	32	153	ELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
X30.2	B+ VERTEILER	B+ DISTRIBUTOR	32	153	ELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
X30.CU	B+ VERTEILER	B+ DISTRIBUTOR	32	153	ELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
X305	STECKVERBINDUNG DISPLAY	PLUG/SOCKET DISPLAY	32	510	ELEKTRONIK KABELBAUM FAHRERHAUS	ELECTRONIC CABLE HARNESS OPERATORS
X306	STECKVERBINDUNG DISPLAY	PLUG/SOCKET DISPLAY	32	510	KABELBAUM FAHRERHAUS	CAB CABLE HARNESS OPERATORS
X307	STECKVERBINDUNG DISPLAY	PLUG/SOCKET DISPLAY	32	510	KABELBAUM FAHRERHAUS	CAB CABLE HARNESS OPERATORS
X31	MASSESTERN	FLAT-PIN PLUG	32	113	KABELBAUM OBERWAGEN	CAB CABLE HARNESS UPPER
X31	MASSESTERN	FLAT-PIN PLUG	32	113		
			52		TO DELEGROW ODERWAGEN	CARRIAGE

ELECTRICAL SYSTEM

BMK	Deutsch	Englisch	Bgr	Ugr	Bezeichnung	Bezeichnung EN
X31	MASSESTERN	FLAT-PIN PLUG	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
X31.0	MASSEVERBINDUNG OBERWAGEN	EARTH UPPERCARRIAGE	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
X31.FH	MASSEVERBINDUNG FAHRERHAUS	EARTH CAB	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
X31.P	MASSEVERBINDUNG PODESTPLATTE	EARTH PLATFORM	32	153	ELEKTRONIK KABELBAUM ZENTRAL-	ELECTRONIC CABLE HARNESS CENTRAL
X31.U	MASSEVERBINDUNG UNTERWAGEN	EARTH UNDERCARRIAGE	32	123	ELEKTRONIK KABELBAUM UNTERWA-	ELECTRONIC CABLE HARNESS LOWER
X31 U1		FARTH UNDERCARRIAGE	32	123	GEN KABELBAUM UNTERWA-	CARRIAGE
X31A					GEN	CARRIAGE
X33.6	STECKDOSE 12V		32	510	KAREL BALIM FAHRERHALIS	CABLE HARNESS OPERATORS
¥33A			32	153		
VOOA			32	100		
XJJA		PLUG/SOCKET UPPERCARRIAGE	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
х33В	STECKVERBINDUNG MOTOR	PLUG/SOCKET MOTOR	32	153	KABELBAUM ZEN- TRALELEKTRONIK	CABLE HARNESS CENTRAL ELECTRONIC
X33B	STECKVERBINDUNG MOTOR	PLUG/SOCKET MOTOR	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
X33C	STECKVERBINDUNG MH-FUNKTION	- FUNTION	32	153	KABELBAUM ZENTRAL- ELEKTRONIK	CABLE HARNESS CENTRAL ELECTRONIC
X33C	STECKVERBINDUNG MH-FUNKTION	PLUG/SOCKET WHEELED HYDRAULIC - FUNTION	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
X33D	STECKVERBINDUNG ESX	PLUG/SOCKET ESX	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
X33D	STECKVERBINDUNG ESX	PLUG/SOCKET ESX	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
X33E	STECKVERBINDUNG ESX	PLUG/SOCKET ESX	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
X33E	STECKVERBINDUNG ESX	PLUG/SOCKET ESX	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
X33P	STECKVERBINDUNG EINSPEISUNG	PLUG/SOCKET INCOMING SUPPLY	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL
X33P	STECKVERBINDUNG EINSPEISUNG	PLUG/SOCKET INCOMING SUPPLY	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
ХЗА	FAHRERHAUS STECKVERBINDUNG	PLUG/SOCKET	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
X46	STECKDOSE BEGRENZUNGSLEUCHTEN	SOCKET POSITION LAMP	32	110	ELEKTRONIK ELEKTROANLAGE RAHMEN	ELECTRONIC ELECTRICAL SYSTEM FRAME
X48 1		PLUG/SOCKET SIDE BRACKET LEET	32	413	OBERWAGEN KABELBALIM KONSOLE	UPPER CARRIAGE
Y/8 1			32	153		
XE01			52	155	ELEKTRONIK	ELECTRONIC
X501	1					
X502	2	PLUG/SOCKET KEYBOARD-MODUL 2				
X503	STECKVERBINDUNG TASTATUR-MODUL	PLUG/SOCKET KEYBOARD-MODUL 3	32	463	KABELBAUM LENKSTOCK- SCHALTER	CABLE HARNESS SWITCH
X52.1	STECKVERBINDUNG SCHMIERANLAGE	PLUG/SOCKET LUBRICATION	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
X6.1	STECKVERBINDUNG	PLUG/SOCKET	32	153	KABELBAUM ZENTRAL- ELEKTRONIK	CABLE HARNESS CENTRAL ELECTRONIC
X67.1	STECKVERBINDUNG BETANKUNGSAN- LAGE	PLUG / SOCKET FILLING PUMP	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
X72	STECKVERBINDUNG KLIMAANLAGE	PLUG/SOCKET AIR CONDITION	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL
X72.1	STECKVERBINDUNG KLIMAANLAGE	PLUG/SOCKET AIR CONDITION	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
X82	STECKVERBINDUNG UNTERWAGEN	PLUG/SOCKET UNDERCARRIAGE	32	123	KABELBAUM UNTER-	CABLE HARNESS LOWER
X82.1	STECKVERBINDUNG UNTERWAGEN	PLUG/SOCKET UNDERCARRIAGE	32	123	KABELBAUM UNTER-	CABLE HARNESS LOWER
X90	STECKVERBINDUNG RADIO	PLUG/SOCKET RADIO	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
X90.1	STECKVERBINDUNG RADIO LAUTSPRE-	PLUG/SOCKET RADIO LOUDSPEAKER	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS
XA17	CHER STECKVERBINDUNG GRID HEATER	PLUG/SOCKET GRID HEATER CONT-	32	153	KABELBAUM ZENTRAL-	CAB CABLE HARNESS CENTRAL
XB2	CONTROLLER STECKVERBINDUNG TANKSENSOR	ROLLER PLUG/SOCKET TANK SENSOR	32	113	ELEKTRONIK KABELBAUM OBERWAGEN	ELECTRONIC CABLE HARNESS UPPER
XB35.2	STECKVERBINDUNG DREHZAHLSENSOR	PLUG/SOCKET SPEED SENSOR	32	113	KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER
	SCHWENKEN DREHZAHLSENSOR SCHWENKEN	SLEWING-GEAR				CARRIAGE
XB35.2	STECKVERBINDUNG DREHZAHLSENSOR	PLUG/SOCKET SPEED SENSOR SI EWING-GEAR	32	300	ELEKTROANLAGE GE- TRIEBE	ELECTRICAL SYSTEM TRANS- MISSION GEAR
YC1			20	112		
XOD		PLUG/SOCKET ESX-CODING	32	113		CABLE HARNESS UFFER CARRIAGE
×02	STECKVERDINDUNG ESA-CUDIERUNG		32	113		CARRIAGE
XC3	STECKVERBINDUNG ESX-CODIERUNG	PLUG/SUCKET ESX-CODING	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
XC5.1	STECKVERBINDUNG TASTATURMODUL	#	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
XC5.2	STECKVERBINDUNG TASTATURMODUL	#	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
XCAN	STECKVERBINDUNG CAN- KOMMUNIKATION	PLUG/SOCKET CAN-COMMUNICATION	32	510	KABELBAUM FAHRERHAUS	CABLE HARNESS OPERATORS CAB
					1	

BMK	Deutsch	Englisch	Bgr	Ugr Bezeichnung Bezeichnung EN					
XCAN2.2	STECKVERBINDUNG CAN-	PLUG/SOCKET CAN-COMMUNICATION	32	433	KABELBAUM PODEST	CABLE HARNESS PLATFORM			
XCAN2.2	STECKVERBINDUNG CAN-	PLUG/SOCKET CAN-COMMUNICATION	32	433	KABELBAUM PODEST	CABLE HARNESS PLATFORM			
A XCAN2.3	KOMMUNIKATION STECKVERBINDUNG CAN-	PLUG/SOCKET CAN-COMMUNICATION	32	153	KABELBAUM ZEN-	CABLE HARNESS CENTRAL			
XCAN2.3	KOMMUNIKATION STECKVERBINDUNG CAN-	PLUG/SOCKET CAN-COMMUNICATION	32	413	TRALELEKTRONIK KABELBAUM KONSOLE	ELECTRONIC CABLE HARNESS BRACKET			
YE1	KOMMUNIKATION		32	113					
VE12	VORN LINKS		22	110		CARRIAGE			
AE 12	LEUCHTE		32	113		CABLE HARNESS UPPER CARRIAGE			
XE2	RECHTS	PLUG/SOCKET HEADLIGHT RIGHT	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
XE2.1			32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
XE22	STECKVERBINDUNG BLINKLEUCHTE VORNE LINKS	PLUG/SOCKET TURN SIGNAL FRONT LEFT	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
XE23									
XE23.1	STECKVERBINDUNG BLINKLEUCHTE VORNE RECHTS	PLUG/SOCKET TURN SIGNAL FRONT RIGHT	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
XE3	STECKVERBINDUNG ARBEITSSCHEIN-	PLUG/SOCKET WORKINGLIGHT BOOM	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
XE32	STECKVERBINDUNG SCHLEIFRING-	PLUG/SOCKET SLIP RING	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
XE5	STECKVERBINDUNG SCHLUSSLEUCHTE	PLUG/SOCKET TAIL LIGHT LEFT	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
XE6	LINKS STECKVERBINDUNG SCHLUSSLEUCHTE	PLUG/SOCKET TAIL LIGHT RIGHT	32	253	KABELBAUM MOTOR	CARRIAGE CABLE HARNESS MOTOR			
XE7	RECHTS STECKVERBINDUNG STANDLICHT LINKS	PLUG/SOCKET PARKING LIGHT LEFT							
XE7 1	SCHWEIZ	SWISS	32	113	KABEL BALIM OBERWAGEN				
				110					
XE7.CH			32	113	KABELBAUM OBERWAGEN	CARRIAGE			
XE8	STECKVERBINDUNG STANDLICHT RECHTS SCHWEIZ	PLUG/SOCKET PARKING LIGHT RIGHT SWISS							
XE8.1			32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
XE8.CH			32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
XESX	STECKVERBINDUNG ESX	#	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
XG1									
XS1.1	STECKVERBINDUNG SEITENKONSOLEN	PLUG/SOCKET SIDE BRAKET LH/RH	32	413	KABELBAUM KONSOLE	CABLE HARNESS BRACKET			
XS1.1	STECKVERBINDUNG SEITENKONSOLEN	PLUG/SOCKET SIDE BRAKET LH/RH	32	153	KABELBAUM ZENTRAL-	CABLE HARNESS CENTRAL			
XS7.7	STECKVERBINDUNG INITIATOR RÜCK-	#	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
XSTVZO	STECKVERBINDUNG STANDLICHT	PLUG/SOCKET PARKING LIGHT AT-	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
Y1.4	HUBMAGNET MOTOR STOP	LIFTING MAGNET MOTOR STOP	95	336	EINSPRITZANLAGE AN-	INJECT.EQUIPMENT MOUNT-			
Y1.4	HUBMAGNET MOTOR STOP	LIFTING MAGNET MOTOR STOP	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR			
Y10	PROPORTIONALVENTIL	PROPOTIONAL VALVE	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
Y10	PROPORTIONALVENTIL	PROPOTIONAL VALVE	23	242	VENTILVERKETTUNG	CARRIAGE VALVE INTERCONN.			
Y113	MAGNETVENTIL VORSTEUERDRUCK	SOLENOID FOR PILOT CONTROL	23	242	VENTILVERKETTUNG	VALVE INTERCONN.			
Y113	MAGNETVENTIL VORSTEUERDRUCK	PRESSURE SOLENOID FOR PILOT CONTROL	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
Y131		PRESSURE SOLENOID FOR OIL COOLER	32	253	KABELBAUM MOTOR	CARRIAGE CABLE HARNESS MOTOR			
Y16	MAGNETVENTIL FESTSTELLBREMSE	SOLENOID - PARKING BRAKE	32	123	KABELBAUM UNTER-	CABLE HARNESS LOWER			
Y16	MAGNETVENTIL FESTSTELL BREMSE	SOLENOID - PARKING BRAKE	23	612	WAGEN STELIERBI OCK				
Y201A	PROPORTIONALVENTIL FAHREN	PROPORTIONAL VALVE TRAVEL	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
V201B			32	113					
V202A				110					
1202A		STABILISERS	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
Y202B	PROPORTIONALVENTIL PRATZEN	PROPORTIONAL VALVE OUTRIGGER STABILISERS	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
Y203A	PROPORTIONALVENTIL AUSLEGERZY- LINDER	PROPORTIONAL VALVE BOOM CYLIN- DER	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
Y203B	PROPORTIONALVENTIL AUSLEGERZY- LINDER	PROPORTIONAL VALVE BOOM CYLIN- DER	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE			
Y204A	PROPORTIONALVENTIL LOEFFELZYLIN- DER	PROPORTIONAL VALVE BACKHOE	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
Y204B	PROPORTIONALVENTIL LOEFFELZYLIN-	PROPORTIONAL VALVE BACKHOE	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
Y205A	PROPORTIONALVENTIL STIELZYLINDER	PROPORTIONAL VALVE STICK CYLIN-	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER			
Y205B	PROPORTIONALVENTIL STIELZYLINDER	DER PROPORTIONAL VALVE STICK CYLIN-	32	113	KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER			
Y206A	PROPORTIONALVENTIL NACKENZYLIN-	DER PROPORTIONAL VALVE NECK CYLIN-	32	113	KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER			
	DER	DER	-			CARRIAGE			

BMK	Deutsch	Englisch	Bgr	Ugr	Bezeichnung	Bezeichnung EN
Y206B	PROPORTIONALVENTIL NACKENZYLIN- DER	PROPORTIONAL VALVE NECK CYLIN- DER	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER CARRIAGE
Y207A	PROPORTIONALVENTIL HAM-	PROPORTIONAL VALVE HAM-	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y207B	PROPORTIONALVENTIL HAM-	PROPORTIONAL VALVE HAM-	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y209	PROPORTIONALVENTIL SCHWENKEN	PROPORTIONAL VALVE SWING LEFT	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y209	PROPORTIONALVENTIL SCHWENKEN	PROPORTIONAL VALVE SWING LEFT	22	030	SCHWENKPUMPE	SWING PUMP
Y21.2	MAGNETVENTIL KRIECHGANG	SOLENOID VALVE - CRAWL GEAR	32	123	KABELBAUM UNTER-	CABLE HARNESS LOWER
Y21.2	MAGNETVENTIL KRIECHGANG	SOLENOID VALVE - CRAWL GEAR	23	612	STEUERBLOCK	CONTROL BLOCK
Y21.4	MAGNETVENTIL 1. GANG	SOLENOID VALVE - 1.GEAR	32	123	KABELBAUM UNTER-	CABLE HARNESS LOWER
Y21.4	MAGNETVENTIL 1. GANG	SOLENOID VALVE - 1.GEAR	23	612	STEUERBLOCK	CONTROL BLOCK
Y212	PROPORTIONALVENTIL SCHWENKEN	PROPORTIONAL VALVE SWING RIGHT	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y212	PROPORTIONALVENTIL SCHWENKEN	PROPORTIONAL VALVE SWING RIGHT	22	030	SCHWENKPUMPE	SWING PUMP
Y239.1	PROPORTIONALVENTIL FLOW SUMMA-	PROPORTIONAL VALVE FLOW SUM-	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y239.2	PROPORTIONALVENTIL HAMMER DRUCK	PROPORTIONAL VALVE HAMMER	32	113	KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER
Y241	PROPORTIONALVENTIL PUMPE1	PRESSURE PROPORTIONAL VALVE PUMP1	32	113	KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER
Y241	PROPORTIONALVENTIL PUMPE1	PROPORTIONAL VALVE PUMP1	23	312	PROPORTIONALVENTIL	CARRIAGE PROPORTIONAL VALVE
Y242	PROPORTIONALVENTIL PUMPE2	PROPORTIONAL VALVE PUMP2	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y242	PROPORTIONALVENTIL PUMPE2	PROPORTIONAL VALVE PUMP2	23	312	PROPORTIONALVENTIL	PROPORTIONAL VALVE
Y290	MAGNETVENTIL VORSTEUERDRUCK	SOLENOID FOR PILOT CONTROL	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y290	MAGNETVENTIL VORSTEUERDRUCK	SOLENOID FOR PILOT CONTROL	23	232	MAGNETVENTIL	SOLENOID VALVE
Y295	FAHREN MAGNETVENTIL NACHSPEISUNG FAHR-	FEEDING VALVE DRIVING MOTOR	23	060	SPEISEDRUCKVENTIL	FEED. PRESS. VALVE
Y295	MOTOR MAGNETVENTIL NACHSPEISUNG FAHR-	FEEDING VALVE DRIVING MOTOR	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
Y35	MOTOR MAGNETVENTIL SCHWENKWERKBREM-	SOLENOID - SLEWING-GEAR BRAKE	23	242	VENTILVERKETTUNG	VALVE INTERCONN.
Y35	SE MAGNETVENTIL SCHWENKWERKBREM-	SOLENOID - SLEWING-GEAR BRAKE	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y37.1	SE MAGNETVENTIL GREIFERDREHWERK	SOLENOID VALVE - GRAB ROTATOR	23	232	MAGNETVENTIL	CARRIAGE SOLENOID VALVE
Y37.1	MAGNETVENTIL GREIFERDREHWERK	SOLENOID VALVE - GRAB ROTATOR	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y37.2	MAGNETVENTIL GREIFERDREHWERK	SOLENOID VALVE - GRAB ROTATOR	32	113	KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER
Y37.2	MAGNETVENTIL GREIFERDREHWERK	SOLENOID VALVE - GRAB ROTATOR	23	232	MAGNETVENTIL	CARRIAGE SOLENOID VALVE
Y39.3	MAGNETVENTIL FREQUENZUMSCHAL-	SOLENOID VALVE - FREQUENCY	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y39.3	MAGNETVENTIL FREQUENZUMSCHAL-	SOLENOID VALVE - FREQUENCY	32	113	KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER
Y39.9	MAGNETVENTIL UMSCHALTUNG HAM-	SOLENOID VALVE - SWITCH OVER	32	113	KABELBAUM OBERWAGEN	CARRIAGE CABLE HARNESS UPPER
Y48.1	MAGNETVENTIL ABSTUETZUNG VORNE	SOLENOID VALVE - STABILZER FRONT	32	123	KABELBAUM UNTER-	CARRIAGE CABLE HARNESS LOWER
Y48.1	LINKS MAGNETVENTIL ABSTUETZUNG VORNE	SOLENOID VALVE - STABILZER FRONT	23	182	WEGEVENTIL	CONTROL VALVE
Y48.2	LINKS MAGNETVENTIL ABSTUETZUNG VORNE	LEFT SOLENOID VALVE - STABILZER FRONT	23	182	WEGEVENTIL	CONTROL VALVE
Y48.2	RECHTS MAGNETVENTIL ABSTUETZUNG VORNE	RIGHT SOLENOID VALVE - STABILZER FRONT	32	123	KABELBAUM UNTER-	CABLE HARNESS LOWER
Y48.3	RECHTS MAGNETVENTIL ABSTUETZUNG HINTEN	RIGHT SOLENOID VALVE - STABILZER REAR	23	182	WAGEN WEGEVENTIL	CARRIAGE CONTROL VALVE
Y48.3	LINKS MAGNETVENTIL ABSTUETZUNG HINTEN	LEFT SOLENOID VALVE - STABILZER REAR	32	123	KABELBAUM UNTER-	CABLE HARNESS LOWER
Y48.4	LINKS MAGNETVENTIL ABSTUETZUNG HINTEN	LEFT SOLENOID VALVE - STABILZER REAR	23	182	WAGEN WEGEVENTIL	CARRIAGE CONTROL VALVE
Y48.4	RECHTS MAGNETVENTIL ABSTUETZUNG HINTEN	RIGHT SOLENOID VALVE - STABILZER REAR	32	123	KABELBAUM UNTER-	CABLE HARNESS LOWER
Y62	RECHTS MAGNETVENTIL PENDELACHSBLOCKIE-	RIGHT SOLENOID VALVE - AXLE BLOCK	32	123	WAGEN KABELBAUM UNTER-	CARRIAGE CABLE HARNESS LOWER
Y62	RUNG MAGNETVENTIL PENDELACHSBLOCKIE-	SOLENOID VALVE - AXLE BLOCK	23	612	WAGEN	CARRIAGE CONTROL BLOCK
Y63	RUNG	POWER BOOSTER	32	113	KABELBAUM OBERWAGEN	CABLE HARNESS UPPER
Y63	KRAFTVERSTAFRKUNG	POWER BOOSTER	23	232	MAGNETVENTII	CARRIAGE
Y72	ELEKTROMAGNETKUPPLUNG KLIMAAN-	ELECTR. MAGNETCLUTCH AIR CONDI-	32	253	KABELBAUM MOTOR	CABLE HARNESS MOTOR
	LAGE	TION				

Connector pin assignment tables

Connector X33A

<--- INTERNAL CU

EXTERNAL Machine--->

Remark	Target 2	Target 1	Designation	Con- nector	PIN	Designation	Target 1	Target 2	Remark
Central electronics		A100X3a:7	A100X3a:7 - X33A:1	X33A	1	X33A:1 - Y63:1	Y63:1		Lifting force amplifier
ESX	XESX:24	X33D:18	X33A:2 - X33D:18	X33A	2	X33A:2 - Y35:1	Y35:1		Slewing brake
Frequency switchover	S39.3:3	X12A:15	X12A:15 - X33A:3	X33A	3	X33A:3 - Y39.3:1	Y39.3:1		Frequency switchover
Fuse array FA	X10	FA.6:2	FA.6:2 - X33A:4	X33A	4	X33A:4 - S290:1	S290:1	X33A:5	Pressure switch pilot pressure travelling
ESX	XESX:41	X33D:29	X33A:5 - X33D:29	X33A	5	X33A:5 - S290:2	S290:2	X33A:4	Pressure switch pilot pressure travelling
Load-limit regulator		A10X1:2	A10X1:2 - X33A:6	X33A	6	X33A:6 - Y10:1	Y10:1	X31.O2	Proportional valve
ESX	XESX:63	X33D:38	X33A:7 - X33D:38	X33A	7	X33A:7 - Y113:1	Y113:1		Working hydraulics pilot control shutoff
ESX	XESX:62	X33D:30	X33D:30 - X33A:8	X33A	8	X33A:8 - Y290:1	Y290:1		Travelling pilot control shutoff
ESX	XESX:18	X33D:39	X33A:9 - X33D:39	X33A	9	X33A:9 - S113.4:1	S113.4:1	X33A:12	Pressure switch pilot pressure working hydraulics
ESX	XESX:47	X33D:37	X33A:10 - X33D:37	X33A	10	X33A:10 - Y242:1	Y242:1		Proportional valve pump 2
ESX	XESX:46	X33D:36	X33D:36 - X33A:11	X33A	11	X33A:11 - Y241:1	Y241:1		Proportional valve pump 1
Fuse array FA	X10	FA.6:2	FA.6:2 - X33A:12	X33A	12	X33A:12 - S113.4:2	S113.4:2	X33A:9	Pressure switch pilot pressure working hydraulics
Central electronics		A100X6:8	A100X6:8 - X33A:13	X33A	13	X33A:13 - X52.1:3	X52.1:3		Greasing pump
Load-limit regulator		A10X1:7	A10X1:7 - X33A:14	X33A	14	X33A:14 - R14:1	R14:1	X31.O2	Hydraulic oil temperature
Central electronics		A100X2a:2	A100X2a:2 - X33A:15	X33A	15	X33A:15 - S15:1	S15:1		Hydraulic oil filter
Fuse array FA	X10	FA.16:2	FA.16:2 - X33A:16	X33A	16	X33A:16 - X52.1:1	X52.1:1		Greasing pump
Central electronics	A100X6:14	X6.1:1	X6.1:1 - X33A:17	X33A	17	X33A:17 - B35.2:1	B35.2:1		Slewing brake initiator
ESX	XESX:14	X33D:28	X33A:18 - X33D:28	X33A	18	X33A:18 - B35.2:4	B35.2:4		Slewing brake initiator
ESX	XESX:36	X33D:35	X33A:19 - X33D:35	X33A	19	X33A:19 - B35.2:3	B35.2:3		Slewing brake initiator
Central electronics		A100X1:9	A100X1:9 - X33A:20	X33A	20	X33A:20 - XE3:1	XE3:1	X31.A	Boom floodlamp
Tank sensor	X6.1:1	V67.1:K	V67.1:K - X33A:21	X33A	21	X33A:21 - XB2:1	XB2:1		Tank sensor
Central electronics		A100X2a:13	A100X2a:13 - X33A:22	X33A	22	X33A:22 - XB2:3	XB2:3		Tank sensor
Fuse array FA	X30.2	FA.5:2	FA.5:2 - X33A:23	X33A	23	X33A:23 - X67.1:2	X67.1:2	K67:87	Refuelling system
Tank sensor	X6.1:1	V67.1:K	V67.1:K - X33A:24	X33A	24	X33A:24 - X67.1:3	X67.1:3	V67.2:K	Refuelling system
				X33A	25				
				X33A	26				
ESX	XESX:3	X33D:33	X33A:27 - X33D:33	X33A	27	X33A:27 - Y37.1:1	Y37.1:1	X31.O2	Grab rotation left
ESX	XESX:25	X33D:34	X33A:28 - X33D:34	X33A	28	X33A:28 - Y37.2:1	Y37.2:1	X31.O2	Grab rotation right
				X33A	29				
Central electronics		A100X3a:13	A100X3a:13 - X33A:30	X33A	30	X33A:30 - H7:1	H7:1	X31.O2	Horn
				X33A	31				
Central electronics		A100X3a:1	A100X3a:1 - X33A:32	X33A	32	X33A:32 - XE23:1	XE23:1	XE23:2	Turn signal front right
Central electronics	A100X3a:4	X3A:1	X3A:1 - X33A:33	X33A	33	X33A:33 - XE2:2	XE2:2	XE2:1	Sidemarker lamp right
Fuse array FA	FA.11:2	K5.1:87	X33A:34 - K5.1:87	X33A	34	X33A:34 XE2:4	XE2:4	XE2:1	Main beam right
Central electronics		A100X1:8	A100X1:8 - X33A:35	X33A	35	X33A:35 - XE2:3	XE2:3	XE2:1	Dipped beam right
Central electronics		A100X3a:9	A100X3a:9 - X33A:36	X33A	36				
				X33A	37				
				X33A	38				
ESX	XESX:8	X33D:40	X33A:39 - X33D:40	X33A	39	X33A:39 - B74:1	B74:1		Boom pressure sensor
Central electronics		A100X7:4	A100X7:4 - X33A:40	X33A	40	X33A:40 - B74:3	B74:3		Boom pressure sensor

Connector X33B

<--- INTERNAL CU

EXTERNAL Machine--->

Remark	Target 2	Target 1	Designation	Con- nector	PIN	Designation	Target 1	Target 2	Remark
Central electronics	A100X3a:4	X3A:1	X3A:1 - X33B:1	X33B	1	X33B:1 - XE6:2	XE6:2		Tail lamp right
Central electronics		A100X3a:1	A100X3a:1 - X33B:2	X33B	2	X33B:2 - XE6:4	XE6:4		Turn signal rear right
Central electronics		A100X7:16	A100X7:16 - X33B:3	X33B	3	X33B:3 - XE6:3	XE6:3		Stop lamp right
				X33B	4				
Fuse array FA	FA.2:2	K1:87	X33B:5 - K1:87	X33B	5	X33B:5 - K1.5:86	K1.5:86	X31.O	Starter relay
				X33B	6				
Central electronics		A100X2a:24	A100X2a:24 - X33B:7	X33B	7				
Load-limit regulator		A10X1:24	A10X1:24 - X33B:8	X33B	8	X33B:8 - B10.1:A	B10.1:A	X101:3	Pickup
Load-limit regulator		A10X1:6	A10X1:6 - X33B:9	X33B	9	X33B:9 - R10.3:1	R10.3:1	X101:3	Charge-air temperature sensor
Load-limit regulator		A10X1:18	A10X1:18 - X33B:10	X33B	10	X33B:10 - Y131:1	Y131:1	X101:6	Proportional valve oil cooler fan control
Central electronics		A100X3a:15	A100X3a:15 - X33B:11	X33B	11	X33B:11 - M10:5	M10:5		Speed actuator
Central electronics		A100X3a:16	A100X3a:16 - X33B:12	X33B	12	X33B:12 - M10:1	M10:1		Speed actuator
Central electronics		A100X3a:17	A100X3a:17 - X33B:13	X33B	13	X33B:13 - M10:2	M10:2		Speed actuator
Central electronics		A100X3a:18	A100X3a:18 - X33B:14	X33B	14	X33B:14 - M10:3	M10:3		Speed actuator
Central electronics		A100X3a:19	A100X3a:19 - X33B:15	X33B	15	X33B:15 - M10:4	M10:4		Speed actuator
Central electronics		A100X3a:21	A100X3a:21 - X33B:16	X33B	16	X33B:16 - S12:WK	S12:WK		Pressure switch engine oil
Load-limit regulator		A10X1:5	A10X1:5 -	X33B	17	X33B:18 -	B13 1·B	X101:4	Coolant temperature sensor
	XS1 1·3	FA 1.2	X33B:18	X33B	19	B13.1:B	V1 4·A	X101.4	Engine stop solenoid
	X30.2	EA 23-2	FA.23:2 -	V33P	20	X33B-20 V1 4-B	V1 4·P		Engine stop solenoid
	A30.2	A100X7-0	X33B:20 A100X7:9 -	V33B	20	X33B:20 - 11:4.B	V205-1	¥31 O	Proportional valve travel motor
Grid Heater Controller		XA17:3	X33B:21 XA17:3 -	X33B	22	Y295:1 X33B:22 -	K1 7.87	F20:2	replenishing Grid Heater cold starting system
Neutral point 10	X10	FA.8:2	X33B:22 FA.8:2 - X33B:23	X33B	23	K1.7:87 X33B:23 - XG1:3	XG1:3	1 20.2	Alternator "15"
Fuse array FA	FA.21:2	K20.3:85	X33B:24 -	X33B	24	X33B:24 -	B116:1	X31.O	Grid Heater temperature sensor
			N20.3.65	X33B	25	B110.1			
Ignition lock	XS1.1:3	FA.1:2	FA.1:2 - X33B:26	X33B	26	X33B:26 - K10.1:L	K10.1:L		Power relay
Blower	X19:5	X72:2	X72:2 - X33B:27	X33B	27	X33B:27 - X72.1:1	X72.1:1	S72.1:bl	Pressure switch compressor
Central electronics		A100X6:19	A100X6:19 - X33B:28	X33B	28	X33B:28 - S15.1:1	S15.1:1		Air filter monitor
Fuse array FA	FA.22:2	K20.3:87	X33B:29 - K20.3:87	X33B	29	X33B:29 - R19:A	R19:A	X31.O	Heater filter
Relaiy Filter Heater	K20.3:30	K20.4:87	X33B:30 - K20.4:87	X33B	30	X33B:30 - R21:A	R21:A	X31.O	Heater filter
Grid Heater Controller		XA17:4	XA17:4 - X33B:31	X33B	31	X33B:31 - XG1:2	XG1:2		Alternator "D+"
Grid Heater Controller		XA17:10	XA17:10 - X33B:32	X33B	32	X33B:32 - B13.1:A	B13.1:A		Coolant temperature
Grid Heater Controller		XA17:6	XA17:6 - X33B:33	X33B	33	X33B:33 - K1.7:86	K1.7:86	X31.O	Grid Heater relay
Fuse array FA	X30.2	FA.17:2	FA.17:2 - X33B:34	X33B	34				
Auxiliary heating relay	X33B:36	K31:85	X33B:35 - K31:85	X33B	35				
Auxiliary heating relay	X33B:35	K31:86	X33B:36 - K31:86	X33B	36				
Central electronics	A100X7:5	FA.27:2	FA.27:2 - X33B:37	X33B	37	X33B:37 - K10.1:B	K10.1:B		Power relay
Heating timer	A31.1:2	X12B:11 - X33B:38	X12B:11 - X33B:38	X33B	38				
Heating timer	A31.1:8	X12B:11 - X33B:38	X12B:11 - X33B:38	X33B	39				
Heating timer	A31.1:12	X12B:11 - X33B:38	X12B:11 - X33B:38	X33B	40				

Connector X33C

<--- INTERNAL CU

EXTERNAL Machine--->

Remark	Target 2	Target 1	Designation	Con- nector	PIN	Designation	Target 1	Target 2	Remark
Fuse array FA	X30.2	FA.29:2	FA.29:2 - X33C:1	X33C	1	X33C:1 - X103.1:2	X103.1:2	S20:30	Hazard warning system
CAN connector	X12CAN:3	FA.15:2	FA.15:2 - X33C:2	X33C	2	X33C:2 - X103:5	X103:5	X503:9	Keypad module C5.3
Central electronics		A100X3a:5	A100X3a:5 - X33C:3	X33C	3	X33C:3 - X103.1:4	X103.1:4	S20:R	Hazard warning system
Central electronics	A100X3a:4	X3A:1	X3A:1 - X33C:4	X33C	4	X33C:4 - XE12:2	XE12:1	XE12:2	License plate illumination
Diagnosis socket		A10X4:C	X33C:5 - A10X4:C	X33C	5	X33C:5 - X103:1	X103:1	X503:7	Keypad module C5.3
Diagnosis socket		A10X4:D	X33C:6 - A10X4:D	X33C	6	X33C:6 - X103:2	X103:2	X503:8	Keypad module C5.3
Tastenmodul C5.1	C5.1:7	X12CAN:1	X12CAN:1 - X33C:7	X33C	7	X33C:7 - X103:3	X103:3	X503:7	Keypad module C5.3
Keypad module C5.1	C5.1:8	X12CAN:2	X12CAN:2 - X33C:8	X33C	8	X33C:8 - X103:4	X103:4	X503:8	Keypad module C5.3
Platform grounding point	X31.P	K5.1:86	X33C:9 - K5.1:86	X33C	9	X33C:9 - X103.1:1	X103.1:1	S23:56a	Steering column lever switch main beam.
Fuse array FA	FA.11:2	K5.1:87	X33C:10 - K5.1:87	X33C	10	X33C:10 - XE1:4	XE1:4	XE1:1	Main beam left
			A400¥4-0	X33C	11				
Central electronics		A100X1:8	A100X1:8 - X33C:12	X33C	12	X33C:12 - XE1:3	XE1:3	XE1:1	Dipped beam left
Central electronics		A100X3a:2	A100X3a:2 - X33C:13	X33C	13	X33C:13 - Splice 2	Splice 2	see below	see below
Central electronics		A100X3a:3	A100X3a:3 - X33C:14	X33C	14	X33C:14 - Splice 1	Splice 1	see below	see below
Central electronics		A100X7:16	A100X7:16 - X33C:15	X33C	15	X33C:15 - XE5:3	XE5:3	XE5:1	Stop light left
				X33C	16 17				
Fuse array FA	X10	FA.8:2	FA.8:2 - X33C:18	X33C	18	X33C:18 - S18:1	S18:1	X33C:19	Pressure switch stop light
Central electronics		A100X6:2	A100X6:2 -	X33C	19	X33C:19 - S18:2	S18:2	X33C:18	Pressure switch stop light
Central electronics		A100X2a:5	A100X2a:5 -	X33C	20	X33C:20 -	S18.1:1		Pressure switch minimum
Central electronics		A100X2a:4	A100X2a:4 -	X33C	21	X33C:21 - S17:1	S17:1		Pressure switch Steering system
Central electronics		A100X2a:22	A100X2a:22 - 22	X33C	22	X33C:22 - S62 1:1	S62.1:1		Pressure switch floating-axle
				X33C	23	002.1.1			biooking
			A100X22:3	X33C	24	¥33C-25			
Central electronics		A100X2a:3	X33C:25	X33C	25	XE32:1	XE32:1	X82:1	Pressure switch parking brake
Central electronics		A100X7:7	X33C:26	X33C	26	X530.20 - XE32:2	XE32:2	X82:2	Proportional valve creep speed
Central electronics		A100X2a:11	X33C:27	X33C	27	X530.27 - XE32:3	XE32:3	X82:3	Speed sensor travelling
Central electronics		A100X6:18	A100X6:18 - X33C:28	X33C	28	X33C:28 - XE32:4	X33C:28 - XE32:4	X82:4	Speed sensor travelling
Central electronics	A100X6:14	X6.1:1	X6.1:1 - X33C:29	X33C	29	X33C:29 - XE32:5	X33C:29 - XE32:5	X82:5	Speed sensor travelling
Central electronics		A100X3a:10	A100X3a:10 - X33C:30	X33C	30	X33C:30 - XE32:6	X33C:30 - XE32:6	X82:6	Proportional valve 1 st gear
Central electronics		A100X7:8	A100X7:8 - X33C:31	X33C	31	X33C:31 - XE32:7	X33C:31 - XE32:7	X82:7	Proportional valve floating-axle blocking
Rocker switch parking brake		XS1.1:10	XS1.1:10 - X33C:32	X33C	32	X33C:32 - XE32:8	X33C:32 - XE32:8	X82:8	Proportional valve parking brake
Rocker switch stabilizers / levelling blade	S48.1	X48.1:3	X48.1:3 - X33C:33	X33C	33	X33C:33 - XE32:9	X33C:33 - XE32:9	X82.1:1	Proportional valve stabilizers / levelling blade
Rocker switch stabilizers / levelling blade	S48.2	X48.1:4	X48.1:4 - X33C:34	X33C	34	X33C:34 - XE32:10	X33C:34 - XE32:10	X82.1:2	Proportional valve stabilizers / levelling blade
Rocker switch stabilizers / levelling blade	S48.3	X48.1:5	X48.1:5 - X33C:35	X33C	35	X33C:35 - XE32:11	X33C:35 - XE32:11	X82.1:3	Proportional valve stabilizers / levelling blade
Rocker switch stabilizers / levelling blade	S48.4	X48.1:6	X48.1:6 - X33C:36	X33C	36	X33C:36 - XE32:12	X33C:36 - XE32:12	X82.1:4	Proportional valve stabilizers / levelling blade
				X33C	37	X33C:37 - XE32:13	X33C:37 - XE32:13	X82:13	Reserve
				X33C	38	X33C:38 - XE32:14	X33C:38 - XE32:14	X82:14	Reserve
Central electronics		A100X2a:8	A100X2a:8 - X33C:39	X33C	39	X33C:39 - X103.1:3	X33C:39 - X103.1:3	S20:30b	Hazard warning
Central electronics		A100X3a:11	A100X3a:11 - X33C:40	X33C	40				

	X33C:14 - Splice 1	Splice 1	Off	Splice 1 - XE1:2	XE1:2	XE 1.1	Sidemarker left
	X33C:14 - Splice 1	Splice 1	Off	Splice 1 - XE5:2	XE5:2	XE 5:1	Tail light left
	X33C:14 - Splice 1	Splice 1	Off	Splice 1 - XE7:CH	XE7:CH		Sidemarker left independent
	X33C:14 - Splice 1	Splice 1	Off	Splice 1 - XSTVZO:1	XSTVZO:1		Sidemarker boom
	X33C:13 - Splice 2	Splice 2	Off	Splice 2 - XE5:4	XE5:4	XE 5:1	Turn signal rear left
	X33C:13 - Splice 2	Splice 2	Off	Splice 2 - XE22:2	XE22:2	XE 22: 2	Turn signal front left
_							

Connector X33D

< INTERNAL CU EXTERNAL Machine>									
Remark	Target 2	Target 1	Designation	Con- nector	PIN	Designation	Target 1	Target 2	Remark
				X33D	1				
Relay ESX	X33D:27	K-ESX:87	X33D:2 - K- ESX:87	X33D	2	X33D:2 - XESX:28	XESX:28		ESX
Fuse array FA	FA14:1	FA.13:2	FA.13:2 - X33D:3	X33D	3	X33D:3 - XESX:54	XESX:54		ESX
Fuse array FA	X10	FA.14:2	FA.14:2 - X33D:4	X33D	4	X33D:4 - XESX:56	XESX:56		ESX
Fuse array FA	X10	FA.14:2	FA.14:2 - X33D:5	X33D	5	X33D:5 - XESX:57	XESX:57		ESX
Fuse array FA	X10	FA.14:2	FA.14:2 - X33D:6	X33D	6	X33D:6 - XESX:58	XESX:58		ESX
Fuse array FA	X10	FA.14:2	FA.14:2 - X33D:7	X33D	7	X33D:7 - XESX:59	XESX:59		ESX
Fuse array FA	X10	FA.14:2	FA.14:2 - X33D:8	X33D	8	X33D:8 - XESX:60	XESX:60		ESX
Pilot-control shutoff	XS1.1:12	XS1.1:13	XS1.1:13 - X33D:9	X33D	9	X33D:9 - XESX:16	XESX:16		ESX
Pilot-control shutoff	XS1.1:12	XS1.1:14	XS1.1:14 - X33D:10	X33D	10	X33D:10 - XESX:34	XESX:34		ESX
Platform grounding point	X31.P	FA.4:2	FA.4:2 - X33D:11	X33D	11	X33D:11 - XESX:1	XESX:1		ESX
				X33D	12				
Central electronics		A100X7:4	A100X7:4 - X33D:13	X33D	13	X33D:13 - SPL1	SPL1	see below	see below
				X33D	14				
		-		X33D	15				
		1		X33D	16				
Drepartianal value alerving			¥224-2	X33D	17	V22D-40			
brake	Y35:1	X33A:2	X33A:2 - X33D:18	X33D	18	X33D:18 - XESX:24	XESX:24		ESX
Central electronics		A100X3a:20	A100X3a:20 - X33D:19	X33D	19	X33D:19 - XESX:27	XESX:27		ESX
Central electronics		A100X3a:21	A100X3a:21 - X33D:20	X33D	20	X33D:20 - XESX:26	XESX:26		ESX
Diagnosis socket		A7.3X4:4	A7.3X4:4 - X33D:21	X33D	21	X33D:21 - A61X1:1	A61X1:1		Travel pedal
Diagnosis socket		A7.3X4:5	A7.3X4:5 - X33D:22	X33D	22	X33D:22 - A61X1:2	A61X1:2		Travel pedal
CAN connector	X12CAN:3	FA.15:2	FA.15:2 - X33D:23	X33D	23	X33D:23 - A61X1:3	A61X1:3		Travel pedal
Platform grounding point		X31:P	X31:P - X33D:24	X33D	24	X33D:24 - A61X1:4	A61X1:4		Travel pedal
Load-limit regulator		A10X1:4	A10X1:4 - X33D:25	X33D	25	X33D:25 - Y207a:1	Y207a:1	X31.O	Proportional valve hammer / shears
Load-limit regulator		A10X1:3	A10X1:3 - X33D:26	X33D	26	X33D:26 - Y207b:1	Y207b:1	X31.O	Proportional valve hammer / shears
Relay ESX	X33D:2	K-ESX:30	X33D:27 - K- ESX:30	X33D	27	X33D:27 - XC1:1	XC1:1		Code control
Slewing initiator	B35.2:4	X33A:18	X33A:18 - X33D:28	X33D	28	X33D:28 - XESX:14	XESX:14		ESX
Pressure switch pilot control monitor	S290:2	X33A:5	X33A:5 - X33D:29	X33D	29	X33D:29 - XESX:41	XESX:41		ESX
Proportional valve travel pilot control shutoff	Y290:1	X33A:8	X33D:30 - X33A:8	X33D	30	X33D:30 - XESX:62	XESX:62		ESX
Central electronics		A100X6:13	A100X6:13 - X33D:31	X33D	31	X33D:31 - S39.9:1	S39.9:1		Pressure switch tank return shears
Central electronics		A100X1:10	A100X1:10 - X33D:32	X33D	32	X33D:32 - Y39.9:1	Y39.9:1		Proportional valve ham- mer/shears switchover
Proportional valve grab rotation left	Y37.1:1	X33A:27	X33A:27 - X33D:33	X33D	33	X33D:33 - XESX:3	XESX:3		ESX
Proportional valve grab rotation right	Y37.2:1	X33A:28	X33A:28 - X33D:34	X33D	34	X33D:34 - XESX:25	XESX:25		ESX
Slewing initiator	B35.2:3	X33A:19	X33A:19 - X33D:35	X33D	35	X33D:35 - XESX:36	XESX:36		ESX
Proportional valve pump 1	Y241:1	X33A:11	X33D:36 - X33A:11	X33D	36	X33D:36 - XESX:46	XESX:46		ESX
Proportional valve pump 2	Y242:1	X33A:10	X33A:10 - X33D:37	X33D	37	X33D:37 - XESX:47	XESX:47		ESX
Proportional valve working hydraulics pilot control	Y113	X33A:7	X33A:7 - X33D:38	X33D	38	X33D:38 - XESX:63	XESX:63		ESX
Pressure switch pilot control monitor	S113.4:1	X33A:9	X33A:9 - X33D:39	X33D	39	X33D:39 - XESX:18	XESX:18		ESX
Boom pressure sensor	B74:1	X33A:39	X33A:39 - X33D:40	X33D	40	X33D:40 - XESX:8	XESX:8		ESX

X33D:13 - SPL1	Splice 1	Off	SPL1 - B10:3	B10:3	Travel pressure sensor
X33D:13 - SPL1	Splice 1	Off	SPL1 - B210:3	B210:3	Pressure sensor pump 2
X33D:13 - SPL1	Splice 1	Off	SPL1 - B211:3	B211:3	Pressure sensor pump 1
X33D:13 - SPL1	Splice 1	Off	SPL1 - B212:3	B212:3	Pressure sensor pump slewing pump
X33D:13 - SPL1	Splice 1	Off	SPL1 - B213:3	B213:3	Angle sensor slewing pump
X33D:13 - SPL1	Splice 1	Off	SPL1 - B239:3	B239:3	Load sensor

Connector X33E

<--- INTERNAL CU

EXTERNAL Machine--->

Remark	Target 2	Target 1	Designation	Con-	PIN	Designation	Target 1	Target 2	Remark
Proportional valve forward travel	Y201.A:1	X33E:3	X33E:1 - X33E:3	X33E	1	X33E:1 - XESX:45	XESX:45		ESX
Proportional valve reverse travel	Y201.B:1	X33E:4	X33E:2 - X33E:4	X33E	2	X33E:2 - XESX:42	XESX:42		ESX
ESX	XESX:45	X33E:1	X33E:1 - X33E:3	X33E	3	X33E:3 - Y201.A:1	Y201.A:1		Proportional valve forward travel
ESX	XESX:42	X33E:2	X33E:2 - X33E:4	X33E	4	X33E:4 - Y201.B:1	Y201.B:1		Proportional valve reverse travel
Outrigger relay	X33E:7	K202.A:30	X33E:5 - K202.A:30	X33E	5	X33E:5 - XESX:50	XESX:50		ESX
Outrigger relay	X33E:8	K202.B:30	X33E:6 - K202.B:30	X33E	6	X33E:6 - XESX:43	XESX:43		ESX
Outrigger relay	X33E:5	K202.A:87	X33E:7 - K202.A:87	X33E	7	X33E:7 - Y202.A:1	Y202.A:1		Proportional valve outriggers
Outrigger relay	X33E:6	K202.B:87	X33E:8 - K202.B:87	X33E	8	X33E:8 - Y202.B:1	Y202.B:1		Proportional valve outriggers
				X33E	9				
				X33E	10				
				X33E	11				
				X33E	12				
				X33E	13				
				X33E	14				
				X33E	15				
				X33E	16				
				X33E	17				
				X33E	18				
				X33E	19				
				X33E	20				
				X33E	21				
				X33E	22				
				X33E	23				
				X33E	24				

Connector X33P

<--- INTERNAL CU

EXTERNAL Maschine--->

Remark	Target 2	Target 1	Designation	Con- nector	PIN	Designation	Target 1	Target 2	Remark
Neutral point "X30"		X33P:R - X30.2	X33P:R - X30.2	X33P	R	X33P:R - K10.1:30	K10.1:30		Power relay
Neutral point "X10"		X33P:S - X10	X33P:S - X10	X33P	S	X33P:S - K10.1:87	K10.1:87		Power relay
				X33P	Т				
Neutral point "X10"		X33P:U - X10	X33P:U - X10	X33P	U	X33P:U - K10.1:87	K10.1:87		Power relay
				X33P	V				
				X33P	W				
				X33P	X				
				X33P	Y				
				X33P	Z				

SECTION 4 ELECTRONICS

INDEX

CONTROL
Introduction4-1
ELECTRONIC CONTROL UNIT
Introduction4-3ESX controller4-3Central electronic system / Central Unit4-3PCS4-3CAN bus (digital technique)4-4Electronic control diagram4-5CAN bus wiring4-6
POWER SUPPLY
Electrical circuit diagram CAN-bus power supply4-8
Power supply and CAN bus in acc. with diagram P/N 8900299, sheet 37
COMPONENTS AT CAN BUS 1 4-10
Central electronics A100, Central Unit (CU)
Central electronics A100, Central Unit (CU)
Central electronics A100, Central Unit (CU) 4-10 Description 4-10 Multi-function display C4 / A400 4-11 Description 4-11 Description 4-11 Description 4-11 Description 4-11 Description 4-11 Multi-function display C4 / A400 4-11 Description 4-11
Central electronics A100, Central Unit (CU) 4-10 Description 4-10 Multi-function display C4 / A400 4-11 Description 4-11 Key-board modules C5.1/A501, C5.2/A502, C5.3/A503 4-11 Description 4-11 PCS, Power Control System with load-limit regulator A10 4-12 Description 4-12
Central electronics A100, Central Unit (CU) 4-10 Description 4-10 Multi-function display C4 / A400 4-11 Description 4-11 Key-board modules C5.1/A501, C5.2/A502, C5.3/A503 4-11 Description 4-11 PCS, Power Control System with load-limit regulator A10 4-12 Description 4-13
Central electronics A100, Central Unit (CU)

COMPONENTS AT CAN 2 BUS	4-16
Right joystick A56 for boom and bucket cylinder Right joystick, description	4-16 4-17
Left joystick A57 for stick cylinder and slewing mechanism Left joystick, description	4-18 4-19
Joystick characteristics Left joystick Right joystick	4-20 4-20 4-20 4-21
Functioning principle of joysticks and pedals	4-22 4-22
Driving pedal (master) A61 Characteristic	4-24 4-24
Double pedal (slave) A61.1 for adjusting cylinder or hammer/shears Description	4-25 4-25
ESX CODING	4-26
Schematic	4-26
Description	
ESX coding	4-27
PCS: POWER CONTROL SYSTEM	4-28
Function chart and component layout plan Function listing, description	4-28 4-29
Fundamental principle of pump control Description	4-30 4-30
Regulating circuit Speed characteristics of the engine under load Detection of the load status Regulating process PCS when driving on the public highway	4-31 4-31 4-31 4-31 4-31 4-32
PCS performance diagram	4-33
PCS	4-34

PCS COMPONENTS	4-35
Load-limit regulator	4-35
Speed actuator M10	4-36
Decription	4-37
Speed sensing	4-38
Description	4-38
Speed sensor (pickup) B10.1	4-38
Coolant temperature sensing	4-39
Description	4-39
Temperature sensor B13.1	4-39
Charge-air temperature sensing	4-40
Description	4-40
Temperature sensor R10.3	4-40
Hydraulic oil temperature sensing	4-41
Description	4-41
Temperature sensor R14	4-41
Proportional valve Y10	4-42
Description	4-42
A8V with measuring point X3 for control pressure	4-43
Description	4-43
Fan control with proportioanl valve Y131	4-44
Hammer / shears control with boom adjusting equipment (7-spool control block) Description	4-45 4-45
Electrical circuit diagram, hammer / shears equipment	4-46
Speed actuator	4-47

CONTROL

Introduction

The description of the machine control is divided into 3 parts:

- Automotive electrical system
- Electronic systems with:
 - the central electronic unit,
 - the electro-hydraulic pilot control and
 - the electronic load-limit regulation.
- Hydraulic system described according to the power flow in the machine and the individual functions and combined functions.

ELECTRONIC CONTROL UNIT

- Introduction
 - ESX controller
 - Central Unit
 - PCS
 - CAN bus
- Power supply
 - Electrical circuit diagram of power supply and CAN bus
 - Power supply and grounding
- Components of CAN bus 1
 - Central electronic unit A100, Central Unit / CU
 - Display C4/A400 and keyboard modules C5.1/A501, C5.2/A502, C5.3/A503
 - PCS Power Control System with load-limit regulator A10
 - Diagnosis connectors A10X4 for CAN bus 1 and A7.3X4 for CAN bus 2
 - ESX A7.3 electrical circuit diagram
- Components of CAN bus 2
 - ESX A7.3
 - Joystick right A56 for boom and bucket cylinder
 - Joystick left A57 for stick cylinder and slewing
 - Joystick characteristics
 - Functional principle of joysticks and pedals
 - Travel pedal (master) A61
 - Double pedal (slave) A61.1, option for adjusting equipment or hammer/shears
 - Diagnosis connector A7.3X4

- ESX coding
 - Electrical circuit diagram ESX coding
- PCS Power Control System
 - Basic principle of pump regulation
 - Control circuits
 - Electrical circuit diagram PCS
 - Load-limit regulator A10
 - Electrical circuit diagram speed adjusting motor
 - Speed adjusting motor M10 with installation information
 - Speed sensing
 - Coolant temperature sensing
 - Charge air temperature sensing
 - Hydraulic oil temperature sensing
 - Proportional valve Y10
 - A 8 V with pressure measuring point X3
 - Fan control with proportional valve Y131
 - Hammer/shears control with adjusting equipment

Introduction

The use of electronic control systems is also gaining progressive significance in mobile construction machines. The demand for increasingly efficient machines with greater safety and comfort and the simultaneous pressure to optimize production costs mean an ever-increasing demand for electronic systems to be used.

In this context, electronic hydraulic systems are being installed in mobile excavators to control the entire working hydraulics and electrohydraulic systems for engine and pump management, using control electronics.

ESX controller

The ESX controller is a freely programmable control and regulating electronic system for machines with CAN bus. The ESX is an autonomously operating measuring, control and regulating unit for sensor-actor management, allowing several autonomous or interlinked tasks to be processed in real time. The ESX has been developed specifically for use in machines that have to work efficiently under harsh conditions and at extreme operating temperatures of -40 to +85 °C.

All inputs and outputs are overvoltage-protected, short-circuit-proof and diagnosable.

Proportional valves can be directly controlled. A sturdy die-cast aluminium housing offers both maximum resistance to electromagnetic interference and reliable protection against mechanical stress.

Central electronic system / Central Unit

The central electronic system, in brief CU, processes the signals transmitted by the keys at the display and by the keyboard modules. The engine control system is implemented in conjunction with the **PCS**.

The engine control system gives the machine enhanced operating comfort. It comprises a multistage power selector in conjunction with speed steps and automatic speed reduction during working intervals.

PCS

The **P**ump **C**ontrol **S**ystem is an electronic system and, in conjunction with the CU, an engine control system whose electronic control system is also referred to as load limit regulator.

The pump control system ensures that the power intake of the working pumps is precisely balanced with the power output of the diesel engine. Optimum use can thus be made of the available engine output.

Account is taken automatically of unfavourable deployment conditions through adaptation of the hydraulic output.

The driving motor and the hydraulic system are protected by monitoring mechanisms.

The temperatures of the intake air, the coolant and the hydraulic oil are registered by the load limit regulator and kept within limits by the speed regulating mechanism of the fan drive.

CAN bus (digital technique)

The CAN bus system is a communication medium for the electronic components installed in the machine. It is a kind of data highway that connects the ESX as an electrohydraulic servo-control and the central electronic unit with the display/keyboard modules and with the PMS/PCS in mobile excavators.

CAN bus, definition

CAN (Controller Area Network) technology originated in the vehicle construction sector and was developed by Bosch. The factor underlying this development was the increasing use of electronic modules in automobile construction. These modules were installed at various points in the vehicle and had to be interlinked. Direct cabling rapidly proved to be impractical.

CAN was developed by Bosch as a serial bus with real-time capability and high data transmission security, meanwhile specified under ISO 11898. Yet the bus line consists of only two cables, the signal bearers (CAN - high and CAN - low), and ground cables.

Was is CAN capable of ?

As stated, the CAN bus has real-time capability, indicating high transmission rates. The state-of-the-art CAN bus has a maximum capacity of 1 Mbit/s.

Various fault detection mechanisms enable the CAN protocol to detect and correct transmission faults resulting from electromagnetic radiation, for example (transmission stop and automatic message repeat).

Due to short data packets (max. 8 useful bytes per message) time loss through data repetition after a transmission fault is minimized.

How does CAN work ?

The CAN bus consists essentially of two bus cables (CAN + und CAN -). A message to be transmitted consists of an unequivocal identifier, a priority and 0 to 8 message bytes.

The identifiers qualify not only a user address but also the contents of a message, such a temperature, rpm or speed.

All users check with reference to the received identifier whether the transmitted message is of relevance to them. This means that each message can be taken over by more than one user simultaneously. In addition, it is through the identifier that the priority of a message with respect to bus access is determined.

Tasks

- To make the information from one control unit serviceable for all others.
- To reduce the number and thickness of the electric cables.
- To monitor the execution of commands and thus to make the process more reliable.
- To expand the fault-detection and diagnostic area.

Advantages

- The overall system is more reliable. For example, it contains fewer susceptible plug connections.
- Wiring is less complex and thus more costeffective.
- Simplified installation.
- Additional control elements can be readily added.
- The diagnostic potential of the system is improved.
- The system can be accessed to read out data and to change parameters or performance data.

Disadvantages

- A specific communication speed is required.

Each sensor connected to the bus needs a controller.

Electronic control diagram

Fig. 1

Description

The diagram shows the interlinking of the electronic and hydraulic components.

The modules responsible for the operation and control of the electrical system of the vehicle, e.g. display (C4), central electronic unit CU (Central Unit A100), keyboard module (C5.1, C5.2, C5.3) and PMS/PCS with load limit regulator (GLR A10), and ESX (A7.3) are connected to CAN bus 1.

CAN bus 1 has the diagnostic sockets.

The electronic modules of the electrohydraulic servo control, e.g. joystick on right (A56) and left (A57), as well as the driving pedal (A61) and the double pedal (A61.1) are connected with the ESX via CAN bus 2.

The two BUS systems are interlinked via the ESX.

The ESX controls the pump control, the control valve adjustment, and the slewing pump control systems.

In addition, the ESX issues current values via CAN bus 1 at the load limit regulator to the hammer/shears control.

CAN bus wiring

Description

The microcontroller network is shown in the diagram.

Each of the electronic components is equipped with its own microcontroller.

Two CAN buses CAN1 and CAN2 are used in the mobile excavators. This ensures that the modules interlinked at CAN bus 1, e.g. central electronic unit/CU, display C4, keyboard modules C51, C52, C53, and the PCS can operate independently of the modules of the electrohydraulic servo control which are interlinked at CAN bus 2.

Both CAN buses are equipped at their ends with terminating resistors.

The terminating resistors for CAN1 are housed on the one hand in the display C4 and on the other hand in the ESX.

The terminating resistors for CAN2 are located in the ESX and in the left joystick.

Wiring

The two bus lines are twisted 30 times per meter against each other (twisted pair).

Reason: Disturbing influences would act on both lines.

Fig. 3

The twisting of the two lines is shown as above in the circuit diagram.

This page left blank intentionally

POWER SUPPLY

Electrical circuit diagram CAN-bus power supply

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Power supply and CAN bus in acc. with diagram P/N 8900299, sheet 37

Description

The battery voltage +30 is available at the ignition starter switch S1 and the two diagnosis sockets.

After switching on of the ignition with S1 and as long as the key is held in this position, battery voltage +30 is connected to terminal +15 and:

- the central electronic unit A100, also called Central Unit (CU), is supplied with power;
- power relais K10.1 is energized; its contact energizes relay K100 whereby the CU/A100 is supplied with power and starts booting;
- the ESX is supplied via the 30A fuse. The ESX is moreover supplied with power via the 2A fuse;
- relay K-ESX is energized.

After booting of the CU, voltage Ub (15b) is available at two contacts.

- via X3A: 8 the modules display C4, keyboard modules C5.1, C5.2, C5.3, both joysticks and the travel pedal are supplied. The travel pedal as a master module supplies power to the double pedal (slave).
- via X7:5-6 power relay K10.1 is energized for self-maintaining contact (after releasing of the ignition key); moreover load-limit regulator A10 is supplied with power.

Grounding

Fig. 2

All modules are connected to the central grounding point X31P on the platform plate.

This grounding point penetrates through the platform plate.

Grounding point X31P of the elastically supported platform plate is connected with an earthing strap to the superstructure frame.

The ESX is grounded via its fastening screws.

COMPONENTS AT CAN BUS 1

Central electronics A100, Central Unit (CU)

Fig. 1

Description

The central electronic unit performs the following functions:

- Master function for switching components on and off
- System status monitoring, buzzer control
- Control of the vehicle electrics
- Control of speed actuator motor
- Gearshift, creep speed, floating axle
- Travel speed sensing with failure detection of double sensor, calibration
- Immobilizer

Switching on the ignition

The electronic controller is activated by activation switch S1 through power relay K10.1 and K100. A double LED must come on the plate. Another green LED must flash, when the micro processor operates regularly.

The CU boots and supplies the connected modules via 15b.

Switching on the hazard warning system

When the hazard warning system is switched on (ignition off), the central electronic unit is also switched on, however without booting thereafter. The LED on the plate flashes at high frequency. The scanning signal, at alarm flashing, is generated by a component located on the controller.

The micro-controller MC on the module is programmable/flash-loadable via the diagnosis socket A10X4 for can bus 1.

Multi-function display C4 / A400

Fig. 2

Description

The multi-function display is equipped with:

- a display screen with 128x64 pixels
- three keys Up/Down/Set
- seven pilot lamps
- two warning lamps for fault messages

The internal micro-controller is programmable via diagnosis socket A10X4 for CAN BUS 1.

It is programmable with a software for the program and another software for texts, graphics and languages.

Key-board modules C5.1/A501, C5.2/A502, C5.3/A503

Description

The three key-board modules are eqipped with four keys each. A key can be depressed repeatedly for two or more switching states. A press on a key is acknowledged by the tactile touch keys.

Some of the keys have LEDs above them.

- Module C5.1 has 2 LEDs
- Module C5.2 has 7 LEDs
- Module C5.3 has 4 LEDs

After depressing a key with an LED, the LED does not light up immediately but with a delay.

The LEDs have acknowledging function. They light up only after the switching process of a solenoid valve has been detected from the corresponding flow of current.

Each key-board module has its own microcontroller with the same software. The modules are not programmable.

PCS, Power Control System with load-limit regulator A10

Fig. 4

Description

The functions of the PCS are:

- Engine control with
 - 7 speed stages (7 power stages), auto idle, low idle
 - engine warm-up phase
- Pump Control System with
 - load-limit regulation in power stages 7 and 6 and with road travel
 - 7 power stages and additional power amplification for road travel
 - engine speed detection
 - temperature detection
 - fan control

The **PCS** is an electronic pump control system and an engine control system.

The load-limit regulator in the pump control system ensures that the power absorbed by the working pumps corresponds to the power supplied by the diesel engine. The available engine power can thus be used in the best possible way.

Unfavourable conditions of use are taken care of automatically by adapting the hydraulic power. The drive engine and the hydraulic system are protected by monitoring systems.

The temperatures of charge air, coolant and the hydraulic oil are detected by the load-limit regulator and kept within predefined limits by controlling the speed of the fan drive.

The load-limit regulator is programmed with a special adapter and special software in the factory of the manufacturer.

Diagnosis socket A10X4

Fig. 5

Description

The picture shows the fuse box on the right behind the driver's seat and the diagnosis sockets.

The upper socket is the diagnosis socket A10X4 for CAN bus 1 and all electronic components connected to it.

A10X4 can be used for connection of a service tool (in preparation) by means of an adapter.

The central electronic unit (A100) and the multifunction display (C4) can be programmed flashloaded with the service tool.

The lower diagnosis socket is the socket A7.3X4 for CAN bus 2. This socket is used to program the electro-hydraulic control in the factory of the manufacturer.

ESX controller A7.3

Fig. 6

Description

To permit data exchange with other electronic systems, the device is provided with two CAN bus interfaces in acc. with CAN specification 2.0 B and an RS232-interface to permit connecting several micro-controllers via the CAN bus.

Technical data

Type: C167 CS

Interfaces:

- 2x CAN-Bus
- 1x RS232

In / Out:

17x PWM-outputs with current control

7x PWM-outputs

8x analogue inputs (0..8,5V or 0..20mA)

16x digital inputs

68 PIN connector

ESX power supply

Pin assignment ESX controller

Fig. 7

Pin	Function
1	Ground, analog
2	Digital/PWM output 10, (2,5 A)
3	Digital/PWM output 12, (2,5 A)
4	Serial interface, RxD
5	Serial interface, TxD
6	Analog input 1
7	Analog input 3
8	Analog input 5
9	Analog input 7
10	Baby-Board, slot 2/6
11	Baby-Board, slot 2/2
12	Digital speed input 2
13	Digital speed input 4
14	Digital speed input 6
15	Digital speed input 8
16	Digital speed input 10
17	Digital speed input 12
18	Digital speed input 14
19	Digital speed input 16
20	Baby-Board, slot 1/2
21	Baby-Board, slot 1/4
22	Baby-Board, slot 1/6
23	8,5 V out
24	Digital/PWM output 9, (2,5 A)
25	Digital/PWM output 11, (2,5 A)
26	1 st CAN-Bus, dominant lower, W-
27	1 st CAN-Bus, dominant higher, W+
28	D+ input
29	Analog input 2
30	Analog input 4
31	Analog input 6
32	Analog input 8
33	2 ^{···} CAN-Bus, dominant lower, W-
34	Digital speed input 1

Fig. 8	
Pin	Function
35	Digital speed input 3
36	Digital speed input 5
37	Digital speed input 7
38	Digital speed input 9
39	Digital speed input 11
40	Digital speed input 13
41	Digital speed input 15
42	Baby-Board, slot 1/1
43	Baby-Board, slot 1/3
44	Baby-Board, slot 1/5
45	Baby-Board, slot 2/1
46	Digital/PWM output 1, (4 A with current measuring)
47	Digital/PWM output 2, (4 A with current measuring)
48	Digital/PWM output 3, (4 A with current measuring)
49	Digital/PWM output 4, (4 A with current measuring)
50	Baby-Board, slot 2/3
51	Baby-Board, slot 2/4
52	Baby-Board, slot 2/5
53	2 nd CAN-Bus, dominant higher, W+
54	Power supply 12 V (24 V), U _E
55	Electrical ground, digital
56	Power supply 12 V (24 V), U _B
57	Power supply 12 V (24 V), U _B
58	Power supply 12 V (24 V), U _B
59	Power supply 12 V (24 V), U _B
60	Power supply 12 V (24 V), U _B
61	Digital/PWM output 6, (4 A)
62	Digital/PWM output 7, (4 A)
63	Digital/PWM output 8, (4 A)
64	Digital/PWM output 5, (4 A with current measuring)
65	Ground for Babyboard 1
66	Ground for Babyboard 1
67	Ground for Babyboard 2
68	Ground for Babyboard 2

COMPONENTS AT CAN 2 BUS

Right joystick A56 for boom and bucket cylinder

Fig. 1

Pushbuttons F1 - F5 are explained in the table below; see also Operation and Maintenance Instructions Manual.

Key

- F1 Hydraulic hammer
- F2 Power boost
- F3 Horn
- F4 Turn grab clockwise
- F5 Levelling mode of operation

Key

- PIN1 CAN2 high
- PIN2 CAN2 low
- PIN3 Voltage + 15b (Ub)
- PIN4 Ground (GND)

The joystick is shown without its bellows.

The wiring comprises the two bus lines from the ESX plus the voltage and ground supply.

The four lines are looped through the joystick and also connect the left joystick A57.

Left joystick A57 for stick cylinder and slewing mechanism

Fig. 4

Pushbuttons F1 - F5 are explained in the table below; see also Operation and Maintenance Instructions Manual.

Key

- F1 Driving direction forwards
- F2 Driving direction reverse
- F3 Stick / stabilizer switchover
- F4 Turn grab counter clockwise
- F5 Driving direction neutral

Fig.	5
------	---

Key	
PIN1	CAN2 high
PIN2	CAN2 low
PIN3	Voltage + 15b (Ub)
PIN4	Ground (GND)

Left joystick, description

The joystick is shown without its bellows.

The wiring consists of bus lines CAN high and CAN low and of the voltage supply and ground.

The four wires are part of a harness plugged into the right joystick.

Joystick characteristics

Left joystick

Right joystick

Y + vor

Fig. 7

The two diagrams show the characteristics for the left and right joystick.

The characteristics of the Y-axis show the forward and reverse movement of the joystick handle and the change in digit value in relation to the angular deflection. The characteristics of the X-axis show the transverse movement of the joystick handle.

Digit output starts at a joystick handle deflection of $>0.7^{\circ}$.

In the X- and in the Y-axis, 512 digits are put out in the event of full deflection from the zero position.

Functioning principle of joysticks and pedals

Description

The joysticks are manually controlled pulse generators that permit the handle to be swivelled in any direction. The swivelling / pedal movements are picked up by sensors and put out via the interfaces as digital signals.

Joystick/pedal position detection and evaluation

The position of the movement axes is detected contact-free by Hall-effect sensors. Two Halleffect sensors per movement axis are used to ensure that the joystick operates correctly. The plausibility control of the signals is based on redundant signal evaluation, i.e. the internal microcontroller computes from the measured value of a Hall-effect sensor the probable value of the other sensor and then compares the computed with the measured value. If the difference between the two values exceeds a defined tolerance window, a troubleshooting routine comes into force. During this process, all joystick and pedal functions are deactivated and a re-start of the unit is initiated.

The position of the joystick handle, i.e. the angular deflection into one or more directions, is registered in the same way for all joysticks. Four Halleffect sensors (two for X-direction and two for Y-direction) are mounted on a fixed p.c. board in the joystick housing. An annular magnet is attached to the articulated cardan joint at the top of which the joystick handle is located. On deflection of the joystick handle into one direction, the distance of the annular magnet from the sensors located in movement direction is reduced or increased. The resulting changes in the output voltages of the Hall-effect sensors are converted by the controller into a digital value and can thus be further processed.

The definitive output signal results as a digital value from conversion, amplification and calibration.

Fig. 10

Temperature compensation

Temperature compensation is used to reduce the unavoidable influencing of the signals in their digital/analog conversion through changes in ambient temperature. This compensation is executed subsequent to the A/D conversion in the microcontroller by a software program, with the actual ambient temperature being ascertained by an integrated temperature sensor and used for computation purposes. This procedure ensures high stability of the output signals, irrespective of fluctuations in ambient temperature, in a broad temperature range from -40 °C to +85 °C.

Power supply

The power supply of the controller is designed for an input voltage ranging from 8 V to 30 V DC.

It supplies the electronic system with a controlled voltage of 5 V.

The 5 V supply is monitored by a reset controller. If the supply voltage falls below 4.5 V, the reset controller generates a reset signal that resets the supervisory controller (SC) directly. With the resetting of the SC, the main controller (MC) is also automatically reset; it is kept in this state until the SC goes through its initialization procedure again. Only then is the MC released from the reset status by the SC.

Reverse voltage protection

Joystick/pedals have reverse voltage protection at the inputs. In addition, the inputs of the supply voltage and the outputs of the circuit are protected against positive and negative voltage peaks by 600 W suppressor diodes.

Driving pedal (master) A61

Fig. 11

CAN plug assignment:

- PIN1 CAN2 high
- PIN2 CAN2 low
- PIN3 Voltage + 15b (Ub)
- PIN4 Ground (GND)

Slave plug assignment:

- PIN 1 HAL x. 1A
- PIN 2 HAL x. 1B
- PIN 3 +24 V
- PIN 4 Ground (GND)
- PIN 5 HAL x. 2A
- PIN 6 HAL x. 2B
- PIN 7 Normal position -x
- PIN 8 free

Characteristic

Fig. 12

The diagram shows the characteristic of the driving pedal.

On activation of the pedal by $>0.7^{\circ}$ out of zero position, digit output is started. 512 digits are put out on max. activation.

Double pedal (slave) A61.1 for adjusting cylinder or hammer/shears

Fig. 13

Description

Fig. 14

Slave plug assignment:

PIN 1	HAL x. 1A	1
PIN 2	HAL x. 1B	;

- PIN 3 +24 V
- -----
- PIN 4 Ground (GND) PIN 5 HAL x. 2A
- PIN 6 HAL x. 2B
- PIN 7 Normal position –x
- PIN 8 free

ESX CODING

Schematic

Fig. 1

Description

Coding of the ESX controller is performed at the factory of the manufacturer before the machines are delivered.

The cable harness to the ESX comprises connectors XC1, XC2 and XC3.

Connector XC1 permits changing the SAE control to other control systems by means of different cod-ing jumpers.

Connector XC2 is equipped with coding jumpers for boom-adjusting equipment or for mono-block boom equipment.

If the boom (adjustable boom versus mono-block boom or vice versa) is replaced, the coding jumpers must also be replaced.

Connector XC3 is provided with the standard coding jumpers.

ESX coding

PCS: POWER CONTROL SYSTEM

Function chart and component layout plan

Function listing, description

GLR	Load limit regulator A10: contains the machine-specific parameters, controls with the CU the speed-changer motor M10, records the engine speed and specifies setpoint speeds as reference speeds for working/driving, registers the temperatures, controls the fan speed, influences via proportional valve Y10 the output of the main pumps A 8 V.
C4	Display, including setting of various performance parameters for hammers and other attachments apart from shears.
C5.1	Keyboard module for 7-stage speed adjustment, auto idle and low idle
C5.3	Keyboard module including for travel on the highway
CU	Central electronic unit, including for the control of the speed-changer motor M10
M10	Speed-changer motor
B10.1	Diesel engine speed sensor, pick-up
B13.1	Coolant temperature sensor, diesel engine
R10.3	Intake air temperature sensor, diesel engine
R14	Hydraulic oil temperature sensor, hydraulic system
Y10	Proportional valve for output adjustment of main pumps A8V
A8V, X3	Main pumps P1 and P2 with connection X3 and pressure measuring point
Y131	Proportional valve for fan speed control
ESX	Controller for electrohydraulic control, including output of current ratings via CAN1 to the load limit regulator for hammer/shears control

Fundamental principle of pump control

Fig. 2

Key

- 1 Diesel engine
- 2 Main pumps
- 3 Slewing pump
- 4 Servo-control pump
- 5 Slewing oil motor
- 6 Proportional valve
- 7 Servo-control pressure limitation
- 8 Load limit regulator
- A Actual value
- B Setpoint value
- C Control current

Description

The task of the electronic load limit regulator is to adapt the hydraulic output of the pumps to the available engine output. The principle applied here is that of scales, with the engine output on one side and the hydraulic output of all pumps on the other. The sum total of the installed hydraulic output is clearly in excess of the engine output. The set output of each main pump corresponds approximately to the max. engine output; in addition there are the outputs of the slewing pump and the gear pumps.

To provide a balance between engine output and hydraulic output, the load limit regulator influences only the output of the main pumps. The outputs of slewing pump and gear pumps are not influenced.

During work with the machine, intermittent functions such as slewing or brief steering take up engine output. The difference in output from the serviceable engine output is provided by the load limit regulators of the two main pumps. The load limit regulator continuously compares the actual values with the setpoint values. In the event of an imbalance, the load limit regulator intervenes in the power input of the main pumps via the proportional valve.

Regulating circuit

Speed characteristics of the engine under load

The diagram shows the principle of a torque characteristic:

Fig. 3

The torque characteristic illustrates the connection between speed suppression and torque of the diesel engine.

At basic load ${\bf 1}$ the high idling speed is set at point ${\bf A}.$

If the diesel engine is loaded by the pumps, the result is speed suppression with a simultaneous increase in torque along the limit characteristic **AB** up to rated speed at point **B**.

If the pump output exceeds the engine output, the speed is further suppressed towards point **C**.

This speed suppression causes the load limit regulator to reduce the main pump output until the engine can operate again with rated speed at point \mathbf{B} .

Detection of the load status

The load limit regulator detects the activation of working or driving functions from the ESX controller.

The ESX opens "virtual pressure switches", comparable with pressure switches that open during working functions or driving operations.

The message »Pressure switch open« brings the ESX into contact with the CAN bus. When the load limit regulator receives this message, it stores the momentary engine speed. With the P-degree taken into account, the load limit regulator stipulates the setpoint speed as the reference speed.

Regulating process

The load limit regulator regulates the power input of the main pumps, so that the setpoint speed is maintained or the load does not fall short of the load limit.

The control current of the load limit regulator is converted by the proportional valve into control pressure.

Both pump regulators are thus loaded. The pumps are adjusted towards max. power input until a balance has been established between hydraulic input and engine output. This state is referred to as the diesel engine load limit.

PCS in neutral

If no hydraulic function is activated, the power input of the main pumps is minimized by a high control current of the load limit regulator to the proportional valve Y10.

The resulting control pressure is ca. 40 bars.

The seven possible power stages would be noticeable only as engine speed stages.

During driving, only pump 1 is loaded. The mechanical power setting of pump 1 complies closely with the installed diesel engine output.

PCS when driving on the public highway

Power stages 6 to 1 are given the engine speed and pump output of the next higher power stage.

Power stage 7 is given a 5% higher pump output, which corresponds to the mechanical power setting of a pump.

PCS when driving on terrain

Power stages 7 to 1 are available for the driving function.

If further working functions are activated while the machine is being driven, the load limit of the diesel engine is reached immediately, with the outcome that the control pressure pSt rises and the output of the main pumps is thus reduced. This power reduction continues until the power balance between the engine output and the hydraulic input is restored.

PCS when working

When working with the working hydraulics, the speed signal of the diesel engine is evaluated, and the loading state of the engine is thus recognized, at each power stage. This means that any change in diesel engine speed to above or below the reference speed entails a control current adapted to the output of the diesel engine.

This control current is the output signal of the load limit regulator. The proportional valve Y10 converts this control current proportionately into control pressure pSt, causing the power regulator of the main pumps at connection X3 to be activated.

If the full hydraulic output is not utilized, the diesel engine speed rises to above the reference speed on account of the lower total load. The result is that the load limit regulator counter-controls and increases the power intake of the main pumps by putting out a lower control current to the proportional valve in order to load the main pumps with a lower control pressure pSt.

The result is that the regulating pressure of the main pumps, which is within the normal range in this situation, is raised and the power input is increased by increasing the volumetric flow.

If the main pumps are in the pressure range below the start of regulation, the load limit regulator signal cannot influence the power input of the main pumps.

The electronic load limit regulation attained in this way in conjunction with individually outputcontrolled main pumps ensures optimum utilization of the available diesel engine output.

PCS performance diagram

PCS

PCS COMPONENTS

Load-limit regulator

Fig. 1

Fig. 2

Key

- 1 Power supply
- 2 PWM1 output, proportional valve Y10
- 3 PWM2 output, proportional valve Y207b
- 4 PWM3 output, proportional valve Y207a
- Input from B13.1, coolant temperature 5
- 6 Input from R10.3, charge-air temperature
 - Input from R14, hydraulic oil temperature
- 9 10

13 14

17

20

7

8

- 11 12
- 15
- 16
- 18 Output, fan control Y131
- 19
- 21 CAN1 High to CU A100
- 22 CAN1 Low to CU A100
- 23
- 24 Input from sensor B10.1
- 25 Ground, cable cross-section 2.5 mm²

Speed actuator M10

Fig. 3

Fig. 4

Pin assignment:

- PIN 1 motor
- PIN 2 potentiometer
- PIN 3 potentiometer/back check
- PIN 4 potentiometer
- PIN 5 motor

Decription

Fig. 5

FITTING INSTRUCTIONS:

Installation of speed actuator M10 with link-age:

- The dimensions specified must be observed during fitting

Carry out calibration after fitting

The speed actuator converts the speed stages preselected at key-board module C5.1 into diesel engine speeds.

The PWM signals from the CU set the actuator lever to different positions. This lever actuates the injection pump lever via a linkage.

See also circuit diagram sheet 10, speed actuator, at the end of this section.

Speed sensing

Speed sensor B10.1:

Description

When the diesel engine is running, the load-limit regulator A10 receives permanently a frequency signal from the speed sensor (inductive pickup) B10.1.

The inductive pickup is screwed into the fly-wheel housing of the engine opposite the toothing.

The frequency signal is derived from the alternation between tooth and spacewidth in the induction field of the sensor.

The speed signal is used by the load-limit regulator to determine the load condition of the diesel engine.

Speed sensor (pickup) B10.1

Fig. 7

FITTING INSTRUCTION:

The sensor must be screwed completely down into the fly-wheel with the connector unplugged.

The sensor must then be turned back by $\frac{1}{2}$ turn and secured with the hex locknut size 24.

Technical characteristics:

Thread ³/₄" 16 UNF

Coil resistance at 20° C = 450 Ω +/-20 Ω

Coolant temperature sensing

Description

For coolant temperature monitoring, temperature sensor B13.1 is screwed into the cylinder head of the engine.

The sensor is an NTC resistor reducing its electrical resistance with increasing temperature.

FITTING INSTRUCTION:

Tightening torque 20 to 30 Nm

Technical characteristics:

Thread

1⁄2" x 14 PTF Table: Resistance = f (temperature)

t (°C)	Resistance (Ω)
0	5466 – 5896
10	3542 – 3792
20	2351 – 2500
25	1941 – 2057
30	1615 – 1707
40	1118 – 1175
50	798 – 834
60	573 – 596
70	421 – 435
80	313 – 323
90	237 – 243
100	182 – 186
110	140 — 144
120	109 – 113

Temperature sensor B13.1

PIN A	Grid heater controller
PIN B	Load-limit regulator
PIN C	Ground

Charge-air temperature sensing

Description

Temperature sensor R10.3 senses the charge-air temperature at the radiator outlet or at the manifold inlet.

The sensor is an NTC resistor reducing its electrical resistance with rising temperature.

FITTING INSTRUCTION:

Tightening torque 20 Nm

Technical characteristics:

Thread M14x1.5

Table: Resistance = f (temperature)

t (°C)	Resistance
0	2700 – 3300
10	1600 – 2000
20	1000 – 1280
25	890 – 970
30	650 – 800
40	430 – 530
50	290 – 350
60	200 – 240
70	140 – 170
80	100 – 120
90	77 – 90
100	58 – 67
110	44 – 50
120	35 – 39

Temperature sensor R10.3

PIN1	Load-limit regulator
PIN2	Ground

Hydraulic oil temperature sensing

Fig. 12

Description

To determine the hydraulic oil temperature, temperature sensor R14 is provided.

The sensor is installed at the hydraulic reservoir besides the suction line for the main pumps.

The sensor is an NTC resistor reducing its electrical resistance with rising temperature.

FITTING INSTRUCTION:

Tightening torque 20 Nm

Technical characteristics:

Thread M14x1.5

Table: Resistance = f (temperature)

t (°C)	Resistance
20	1038 – 1268
30	701 – 839
40	450 – 540
50	331 – 389
60	214 – 250
70	166 – 194
80	116 – 134
90	80 – 92
100	60 – 68

Temperature sensor R14

PIN1	Load-limit regulator
PIN2	Ground

Proportional valve Y10

Fig. 14

Description

The proportional valve converts the control current transmitted by load-limit regulator A10 into control pressure.

The control pressure is admitted via port X3 to both pump regulators of the main pumps A 8 V.

Proportional valve Y10 is installed in the pilot control unit where the pilot pressure is available at the control piston of the proportional valve.

Emergency operation

The proportional valve is equipped with an emergency operation device.

In the event of a PCS fault and an resulting engine speed reduction, the absorbed power of the main pumps A 8 V can be reduced to such an extent that the diesel engine is no longer significantly throttled during the work.

Withdraw the connector from the proportional valve.

Turn hex-screw in by abt. 2 turns after loosening the locknut.

Let the engine run at maximum speed and load by moving the stick cylinder against block and by maintaining it there with an additional slewing motion of the superstructure of more than $\frac{1}{2}$ turn.

Observe the engine speed during the process:

If the engine is still throttled, turn hex-screw further down.

If the engine maintains its speed under load and if the machine moves only slowly, the hex -screw has been turned into far. The emergency operation is properly adjusted if the machine can be used for working without considerable engine throttling.

Technical characteristics, electrical:

- PWM frequency: 150 Hz
- Coil resistance at 20 °C: 18 Ω ± 0,2 Ω
- Max. coil current: 850 mA
- Characteristics: 100 mA \rightarrow 0 bar (+ 0.5 tolerance) 800 mA \rightarrow 40.5 bar (+ 2.0/ -0.5 tolerance)

Characteristic curve of proportional valve Y10, control pressure as a function of control current:

A8V with measuring point X3 for control pressure

Description

The measuring point can be used to measure the control pressure from the proportional valve outlet.

The control pressures to be expected depend on the type of machine and the selected power stage.

The pressure range is between 0 and 45 bars.

Measuring point X3

Fig. 16

Sectional drawing

Fan control with proportioanl valve Y131

Description

The fan motor is equipped with proportional valve Y131. This valve permits the temperature-dependent and stepless change of the fan speed.

The temperatures affecting the fan speed are the temperatures of the coolant, the diesel engine charge air and the hydraulic oil in the system.

These three temperatures are transmitted to the load-limit regulator and used for fan speed control. Each of these temperatures can induce changes of the fan speed.

At lower temperatures, the proportional valve receives a higher control current from the load-limit regulator and vice versa. A high control current results in a low fan speed and vice versa.

For pressure protection, the proportional valve is equipped with an adjustable pressure-limiting valve.

When the connector is unplugged, the fan runs at maximum speed. A pressure gauge connected to the measuring point will then indicate the opening pressure of the integrated pressure-limiting valve.

The pressure settings are machine-dependent.

Fig. 18

Fig. 19

FITTING INSTRUCTION:

Tightening torque 50 Nm

Technical characteristics:

Rated voltage24 VCoil resistance at 20 °C:25 Ω

Hammer / shears control with boom adjusting equipment (7-spool control block)

Fig. 20

Description

Machines with boom adjusting equipment and additional hammer / shears attachment are equipped with a 6-spool block and an auxiliary control block.

The control spool of the auxiliary block is adjusted by proportional valves Y207a and Y207b.

These proportional valves receive their control current from load-limit regulator A10.

The control current is determined by the ESX depending on load conditions and transmitted over the CAN bus.

SECTION 5

INDEX

CONTROL	5-1
Introduction	5-1
HYDRAULIC SYSTEM	5-2
Overview	5-2
WORKING, SLEWING AND PILOT-CONTROL CIRCUITS IN THE SUPERSTRUCTURE	5-4
Schematic diagram	5-4
Oil flow through control block Description	5-5 5-5
WORKING, TRAVEL AND PILOT-CONTROL CIRCUITS IN THE UNDERCARRIAGE	5-6 5-6
HYDRAULIC CIRCUIT DIAGRAMS	5-8
MH6.6 Boom adjusting superstructure, P/N 4530244	5-8
MH6.6 Monoblock superstructure, P/N 4530248	5-10
MH8.6 Boom adjusting superstructure, P/N 4530245	5-12
MH8.6 Monoblock superstructure, P/N 4530249	5-14
Undercarriage 4530210 (7 sheets) Undercarriage 25 (30) km/h axle (sheet 1 of 7) Undercarriage 20 km/h axle (sheet 2 of 7) Undercarriage with A2 stabilization with individual control (sheet 3 of 7) Undercarriage levelling blade A2 stabilization (sheet 4 of 7) Undercarriage A4 stabilization (sheet 5 of 7) Undercarriage levelling blade A2 stabilization individual control (sheet 6 of 7) Undercarriage A4 stabilization individual control (sheet 6 of 7)	5-16 5-17 5-18 5-19 5-20 5-21 5-22 5-23

DRIVE UNIT	5-24
Circuit diagram Description	5-24 5-25
Multi-circuit pump unit (No. 2) Description	5-26 5-27
Variable displacement twin pump A8VO (No. 3) Description	5-28 5-29
Drive unit, variable displacement twin pump – output regulator (No. 3)	
Output regulation by load-sensing pressure	5-32
Output regulation by pump high pressure	5-34
Output regulation by load-limit control	
Pilot-control pump (No. 3)	5-38
Description	5-38
Double gear pump (No. 6)	5-39
Description	5-39
Hydraulic reservoir with attachments (Nos. 20, 21, 22, 23 and 24) Description	5-40 5-40
CONTROL BLOCK	5-41
Rear view	5-41
Front view	5-42
Bottom view	5-43
6-spool control block (Nos. 50 and 55) neutral circuit Description	5-44 5-45
7-spool control block with hammer / further option (Nos. 50, 52 and 55)	
neutral circuit	5-46
Description	5-47
Control block valves	5-48
Primary pressure-limiting valves with pressure sequence stage	5-48
Tank channel – preloading valves	5-49
Secondary pressure-limiting valves with replenishing stage (SV)	5-50
Proportional valves for control spool adjustment	
Pressure sensors	

PILOT-CONTROL SYSTEM	5-54
Schematic diagram	5-54
Description	5-55
Pilot control unit (nos. 60, 61, 63 and 64)	5-56 5-57
Solenoid valves and their functions Proportional valve Y10 of the load-limit regulator Solenoids Y35 and Y113 Solenoid valve Y35 for the superstructure holding brake in the slewing gearbox Solenoid valve Y113 for pilot pressure activation and deactivation Solenoid valve Y290 for pilot pressure activation and deactivation Solenoid valve Y63 for POWER BOOST and power assist functions Solenoid valve unit Y241 and Y242 for pump control	5-58 5-58 5-59 5-59 5-59 5-59 5-60 5-61 5-61 5-62
TRAVEL CIRCUIT OF THE 20 KM/H VERSION	5-64
Schematic diagram	5-64
Description	5-65
Travel control spool	5-66
Hydraulic and electric rotor (Nos. 75 and 76)	5-68
Hydraulic rotor, description	5-68
Electric rotor, description	5-69
Travel drive (Nos. 100, 101 and 102)	5-70
Description	5-70
Travel oil motor type A 6 VM (20 km/h) (No. 102)	5-71
Technical Data	5-72
Travel oil motor, regulator (No. 102)	5-73
Travel oil motor, travel brake valve (No. 102)	5-75
Undercarriage solenoid valves (Nos. 104, 105 and 106)	5-76
Description	5-77
Steered axle (No. 110)	5-78
Description	5-78
Floating-axle cylinder (No. 111)	5-79
Description	5-79

TRAVEL CIRCUIT OF 25/30 KM/H VERSION	5-80
Schematic diagram Description	5-80 5-81
Travel control spool with replenishing function for forward travel	5-82
Replenishing system for 25/30 km/h version (Nos. 13 and 14) Description	5-84 5-84
Travel oil motor type A6VM for 25/30 km/h (No. 102) Description	5-85 5-85
Technical Data Travel oil motor (25 and 30 km/h) with disconnectable hydraulic 'Vgz' adjustment (No. 102) Travel oil motor, travel brake value (No. 102)	5-86 5-87
Description	
1 st + 2 nd gear / Floating-axle / Brake	5-89
BRAKING, STEERING AND FAN CIRCUIT	5-90
Schematic diagram Description	5-90 5-91
Brake system in superstructure and undercarriage (No. 40, 41, 43, 44)	5-92
Superstructure Undercarriage Pedal brake valve (No. 41)	
Steering system Steering valve OSPQ 125/200 LS (No. 40) Priority valve (Nos. 44)	5-94 5-94 5-95
Fan circuit Schematic Fan motor	5-96 5-96 5-96
Combined radiator with controlled fan drive (No. 7) Replenishing system for 25/30 km/h version (Nos. 13 and 14) Description	
UNDERCARRIAGE STABILIZERS	5-100
Schematic diagram Description	5-100 5-101
Stabilizer control spool	5-102
Levelling blade cylinder (No. 115) Description	5-104 5-104
Outrigger cylinder (No. 116) Description	5-105 5-105
Stabilization variants Description	5-106 5-106

BOOM CYLINDER CIRCUIT WITH REGENERATION CIRCUIT	5-108
Schematic diagram	5-108
Description	
Control spool details Description	5-110 5-111
Boom cylinder control spool with regeneration circuit	5-112
Boom check valve with emergency operation capability	5-113
Description	5-113
Pipe break protection valves (Nos. 202 and 210) Description	5-114 5-114
	5-116
Schematic diagram	5-116
Description	5-117
Bucket cylinder control spool	5-118
Bucket parallel connection circuit	5-119
Description	5-119
Restrictor non-return valve (No. 206) Description	5-120 5-120
Switching from backhoe bucket to grab (No. 207) Description	5-121 5-121
STICK CYLINDER CIRCUIT WITH REGENERATION FUNCTION	5-122
Schematic diagram	5-122
Description	5-123
Stick cylinder control spool	5-124
Stick check valve with emergency operation capability	5-126
Description	5-127
ADJUSTING CYLINDER CIRCUIT WITH PRESSURE COMPENSATOR AND RELIEF VALVE	5-128
Schomatic diagram	E 170
Description	5-128
Deem adjusting sylinder (neek sylinder) sentrel en sel	E 400
Boom adjusting cylinder (neck cylinder) control spool Boom adjusting cylinder control spool with compensator	5-130
Boom adjusting cylinder control spool with pressure relief valve	5-131

Pressure compensator	5-132
Function	5-132
Operation	5-132
Regulation	5-133
Pressure compensator, relief valve and LS pressure limiting	5-134
Relief valve	5-135
Description	5-135
Pipe break protection valve	5-136
Description	5-136
COMBINED FUNCTIONS	5-138
Parallel actuation of boom, bucket, adjusting and stick cylinder	5-138
Description	5-139
HYDRAULIC HAMMER CIRCUIT	
(BOOM ADJUSTING EQUIPMENT)	5-140
Schematic diagram	5-140
Description	5-141
Hydraulic hammer control spool	5-142
Electrical circuit diagram, hammer equipment	5-143
HAMMER CIRCUIT WITH AUXILIARY FUNCTION	
(BOOM ADJUSTING EQUIPMENT)	5-144
Schematic diagram	5-144
Hammer circuit with auxiliary function like shears or crusher with boom adjusting equipmen description	t, 5-145
	5 4 4 7
Hammer/snears control spool	5-147
Hammer bypass valve (No. 58)	5-148
Electrical circuit diagram, hammer / shears equipment	5-149
SHEARS/CRUSHER CIRCUIT	
(BOOM ADJUSTING EQUIPMENT)	5-150
Schematic diagram	5-150
Description	5-151
Shears/crusher control spool	5-152
Electrical circuit diagram, shears equipment	5-153

HYDRAULIC HAMMER CIRCUIT (MONOBLOCK BOOM EQUIPMENT)	5-154
Schematic diagram Description	5-154 5-155
Hydraulic hammer control spool	5-156
Electrical circuit diagram, hammer equipment	5-157
HAMMER CIRCUIT WITH AUXILIARY FUNCTION (MONOBLOCK BOOM EQUIPMENT)	5-158
Schematic diagram. Hammer circuit with auxiliary function like shears or crusher with monoblock equipment, description	5-158 5-159
Hammer/shears control spool	5-161
Hammer bypass valve (No. 58)	5-162
Electrical circuit diagram, hammer / shears equipment	5-163
SHEARS/CRUSHER CIRCUIT (MONOBLOCK BOOM EQUIPMENT)	5-164
Schematic diagram Description	5-164 5-165
Shears / crusher control spool	5-166
Electrical circuit diagram, shears equipment	5-167

SLEWING SYSTEM	5-168
Schematic diagram	5-168
Description	
Slewing pump A 4 VG (No. 4) Description	5-170 5-172
Port valve plate of slewing pump A4 VG 56 DE4D	5-174
Port valve plate of slewing pump A 4 VG 71 DE4D	5-175
Slewing pump valves	5-176
Feed-pressure limiting valve (No. 15) of slewing pump A 4 VG 56	
Secondary valve of slewing pump A 4 VG 56	
Feed-pressure limiting valve (No. 15) of slewing pump A 4 VG 71	
Secondary valve of slewing pump A 4 VG 71	
Pressure cut-off valve (No. 18)	
Pressure-control valve	
Slewing nump control unit	5-180
Description	
Slewing gearbox assembly (No. 15)	
Slewing gearbox (No. 15)	5-183
Oil motor	5-184
Speed sensor B35.2.	
Integrated holding brake	
GRAB ROTATION MECHANISM	5-186
Schematic diagram	5-186
Description	
•	
Solenoid valve for grab rotation (No. 231)	5-187
Description	5-187
Grab rotation motor	5-188
Description	

CONTROL Introduction

The description of the machine control is divided into 3 parts:

- Automotive electrical system
- Electronic systems with:
 - the central electronic unit,
 - the electro-hydraulic pilot control and
 - the electronic load-limit regulation.
- Hydraulic system described according to the power flow in the machine and the individual functions and combined functions.

HYDRAULIC SYSTEM

Overview

The hydraulic system consists of several circuits: the pilot-control circuit, the working hydraulics circuit, the slewing circuit, the braking and steering circuit and an optional auxiliary circuit.

The pilot-control circuit governs the pump control, the load-limit regulation, the control spool adjustment, the switching circuits of the superstructure and undercarriage control.

The working circuit supplies the working equipment, the undercarriage stabilization, the travel drive and the auxiliary units with oil.

The slewing circuit is a separate circuit to ensure slewing of the supersturcture.

Another circuit supplies the brake system, steering system and the radiator fan drive.

The optional auxiliary circuit controls the grab rotation motor, the slewable trenching backhoe bucket or other tools.

This page left blank intentionally

WORKING, SLEWING AND PILOT-CONTROL CIRCUITS IN THE SUPERSTRUCTURE

Key	

-	
1.	Diesel engine
2.	Hydraulic reservoir
3.	Air-intake line
4.	Variable displacement twin pump:
4.1	Pressure line of pump 1
4.2	Pressure line of pump 2
5.	Control block with control spools for:
5.1	Travelling
5.2	Stabilizers
5.3	Boom
5.4	Backhoe bucket
5.5	Stick
5.6	Adjusting cylinder
5.7	Hammer/shears optional
6.	Rotor
7.	Boom cylinder
8.	Adjusting cylinder
9.	Stick cylinder
10.	Bucket cylinder
11.	Return-flow line
12.	Hydraulic oil cooler
13.	Return-flow filter
14.	Slewing pump
15.	Slewing motor
16.	Pilot-control pump
17.	Pilot-control unit
18.	Brake, steering and fan pump
19.	Auxiliary pump, optional

Oil flow through control block

Pump 1	Pump 2
Travel motor	Hammer/Shears
Boom cylinder	Adjusting cylinder
Bucket cylinder	Stick cylinder
Stick cylinder	Bucket cylinder
	Boom cylinder
	Stabilization
Tank	

Description

Variable displacement twin pumps P1 and P2 draw in hydraulic oil from the hydraulic reservoir.

The pressure line of pump 1 is flange-mounted on the right side of the control block, viewed in the sense of driving.

The oil from pump 1 flows in succession to the travel control spool, the control block and boom control spool, the bucket control spool, the stick control spool and on through the reservoir channel, hydraulic oil cooler and return-flow filter back into the reservoir.

The pressure line of pump 2 is flange-mounted on the left side of the control block. The oil from pump 2 flows in succession to the auxiliary control spool for hammer/shears, the adjusting cylinder control spool, the stick cylinder control spool, the bucket control spool, the boom control spool, the stabilizer control spool and on through the reservoir channel, hydraulic oil cooler and return-flow filter back into the reservoir.

Pumps P 1 and P 2 supply the oil depending on control spool position to the travel motor and the cylinders. The return oil flows via differential pressure valves and, depending on viscosity, through the oil cooler or directly through the return-flow filter back into the reservoir.

The slewing circuit is a closed hydraulic circuit. The pump discharges directly to the oil motor and the returning oil flows back to the reservoir. Oil losses due to leakage are supplemented by an integrated auxiliary pump. The auxiliary or feed pump draws in oil from the hydraulic reservoir and maintains the pressure inside the closed circuit. The different superstructure slewing directions are accomplished by reversing the pumping direction.

The pilot-control pump draws in oil from the variable displacement twin pump housing. The pilot oil feeds the pilot-control unit with the pressurelimiting function. Excess oil not needed for control actions flows back to the reservoir via the pressure-limiting valve. After limiting, the pilot pressure is made available to the switching circuits, the control block for control spool variation and to the undercarriage switching circuits.

WORKING, TRAVEL AND PILOT-CONTROL CIRCUITS IN THE UNDERCARRIAGE Schematic diagram

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Key

1.	Rigid axle
2.	Switchable gearbox
3.	Travel oil motor with travel brake valve
4.	Cardan shaft
5.	Steering and floating axle
6.	Rotor
7.	Outrigger cylinders
8.	Levelling blade cylinders
9.	Valve block, stabilizer preselect
10.	Control block
11.	Steering cylinder
12.	Floating-axle cylinder

Description

The working circuit in the undercarriage supports the stabilizing function. The oil from pump 2 flows through the rotor to the valve block where the oil path to the stabilizing cylinders can be preselected. Further stabilizing variants not shown may enlarge the range of application.

The travel circuit is supplied with oil from pump 1. The volume flow passes from the travel control spool through the rotor to the travel oil motor. The return-flow oil flows through the travel brake valve, the rotor and the control block back to the reservoir.

The pilot-control pressure is available at the control block as switching pressure for the parking brake, the gearshift, the floating-axle support and the creep-speed function of the travel oil motor.

HYDRAULIC CIRCUIT DIAGRAMS

MH6.6 Boom adjusting superstructure, P/N 4530244

Key

- 1. CNH diesel engine NEF 6cyl IL TAA 2V
- 2. Multi-circuit pump unit A 8 VO 107 + A 4 VG 56 + integrated pilot-control pump
- 3. Variable displacement twin pump A 8 VO 107 LA1
- 4. Slewing pump A 4 VG 56 DE4D with pivot angle sensor B213
- 6. Gear pump for braking, steering and fan circuit
- 7. Combined radiator for charge air / water / hydraulic oil with controlled fan drive
- 13. Replenishing non-return valve, installed only in machines with 25 km/h or 30 km/h axles
- 14. Replenishing valve Y295, installed only in machines with 25 km/h or 30 km/h axles
- 15. Slewing gearbox S 7 with slewing oil motor A 2 FM 45
- 17. Speed sensor S35.2 for stop and sense-of-rotation detection
- 20. Hydraulic reservoir
- 21. Return-flow filter with integrated bypass valve, opening pressure = 2 bars
- 22. Breather filter with precharging valve 0.35 bars
- 23. Pressure switch S15 for filter contamination indicator, closing pressure = 2.2 bars
- 24. Temperature sensor R14
- 40. OSPQ steering valve 125/200 LS with closed zero position and oil flow adjust
- 41. Double-circuit pedal brake valve with integrated accumulator charging valve
- 43. Nitrogen accumulator, 1 liter
- 44. Priority valve for steering / fan drive
- 49. Pressure switch S39.9 for Breaker bypass pilot-control valve, opening pressure = 30 bars
- 50. 7-spool control block
- 52. Cover plate
- 56. Pressure sensor B211 for pump 1
- 56. Pressure sensor B210 for pump 2
- 56. Pressure sensor B239
- 56. Pressure sensor B10 for automatic gearshift
- 58. Breaker bypass pilot-control valve
- 59. Breaker shears valve
- 60. Pilot-control unit consisting of:
 - Pilot-control circuit filter
 - Non-return valve and controlled pressure-maintaining valve
 - Pressure-limiting valve for pilot-control pressure
 - Nitrogen accumulator 0.5 liters for emergency lowering
 - Port A for undercarriage control supply
 - Pilot-control pressure measuring point M
 - Proportional valve Y10 for load-limit regulation
 - Solenoid valve Y113 for pilot-control pressure shutoff for the following functions:
 - Boom, bucket, stick, adjusting cylinder, stabilizers, hammer / shears and slewing
 - Solenoid valve Y35 for superstructure slewing parking brake
 - Solenoid valve Y290 for pilot-control pressure shutoff of the travel function
- 61. Solenoid valve unit with proportional valves Y241 and Y242 for pump control
- 63. Solenoid valve Y63 for the power assist and power boost functions
- 64. Pressure switch S113.4 controls the pilot-control pressure activation and shutoff, opening pressure = 3.5 bars
- 64. Pressure switch S290 controls the pilot-control pressure activation and shutoff, opening pressure = 3.5 bars
- 65. Pressure sensor
- 75. Hydraulic rotor with 10 channels
- 201. Boom cylinder
- 202. Pipe break protection system at the boom cylinder piston sides
- 203. Stick cylinder
- 205. Bucket cylinder
- 206. Restrictor non-return valve at the bucket cylinder rod side
- 207. Bucket / grab cylinder switch-over with secondary protection for bucket cylinder rod side
- 207. Bucket / grab cylinder switch-over with secondary protection for bucket cylinder piston side
- 209. Adjusting cylinder (neck cylinder)
- 210. Pipe break protection systems at the adjusting cylinder rod side
- 221. Cycle changeover valve
- 231. Double solenoid valve Y37.1 and Y37.2 with pressure limiting for grab rotation
- 232. Grab rotation motor

Fig. 3

HYDRAULICS

Undercarriage levelling blade A2 stabilization (sheet 4 of 7)

Undercarriage A4 stabilization (sheet 5 of 7)

Undercarriage levelling blade A2 stabilization individual control (sheet 6 of 7)

Fig. 7

DRIVE UNIT Circuit diagram

Description

Fig. 2

The drive unit is essentially composed of the diesel engine, the multicircuit pump unit, the auxiliary pumps and the hydraulic reservoir.

The diesel engine (1) is a CNH engine belonging to the **N**ew **E**ngine **F**amily series (NEF). It is a 6cylinder inline engine with exhaust turbocharger and downstream charge air cooler.

The multicircuit pump unit (2) is driven from the engine via a flexible coupling and comprises variable displacement twin pump (3) with integrated pilot-control pump and slewing pump (4).

A double gear pump (6) is mounted on the engine P.T.O.

The first pump is provided for the slewing circuit, the fan drive and the optional replenishment unit. The second pump feeds the braking circuit and the grab rotation motor.

The hydraulic reservoir (20) supplies the pumps with clean and cooled oil. The variable displacement twin pump (3) draws in oil through port S. The integrated pilot-control pump draws in oil from the housing of the variable displacement twin pump.

The auxiliary pump (feed pump) integrated in slewing pump (4) draws in oil through a separate line.

The single and (alternatively) the double pump draw in oil from the reservoir through an independent line.

Multi-circuit pump unit (No. 2)

Description

Fig. 4

The pump unit comprises a transfer gearbox, the variable displacement twin pump, the slewing pump and a pilot-control pump.

The transfer gearbox (1) is driven from the engine via a flexible coupling.

Two of the four gears of the transfer box constitute the drive of the variable displacement twin pump (2). An intermediate gear drives the pilot-control pump (3) and the PTO to the slewing pump (4).

The transmission ratio between the drive and the variable displacement pump and the slewing pump is 1.

The variable displacement twin pump (2) consists of two axial piston pumps in bent-axis design housed in the same casing. Each of the pumps has its own output regulator with which the discharge volume can be varied independently of the other pump.

The pilot-control pump (3) is a gear pump.

The slewing pump (4) is an axial piston pump in swash-plate design. The tilting angle of the swashplate determines the superstructure slewing speed. The tilting direction of the swash-plate determines the slewing direction of the superstructure.

- 3 Center tappet
- 4 Spring assembly
- 5 Control lens with spherical bottom
- α Adjusting angle of cylinder drum
- A1 Pressure port of pump 1
- A2 Pressure port of pump 2

Description

The variable displacement twin pump consists of pump 1 and pump 2. Each of the pumps has its own output regulator with which the pumps can be adjusted independently of the other pump.

Due to the bent-axis design, rotational movement is converted to piston stroking. On one side, oil is sucked in by the backward movement of the axial pistons in the cylinder drum (2), whereas the oil sucked in is displaced on the other side by the forward movement of the axial pistons in the cylinder drum (2).

The cylinder drum is guided by a center tappet (3) taking support in the ball cup and exerts a certain prestress on the spherical control lens (5) by means of the springs (4). The prestress exerted by the spring assembly enhances the centering pressure of the cylinder drum on the control lens and improves the sealing of the rotating cylinder drum with respect to the stationary control lens on the spherical surface especially at low pressures where the hydraulic contact pressures are not yet very high.

The control lens (5) is mechanically connected to the control piston (8) via a tappet (7). The movement of the control piston (8) is transferred to the control lens (5), guiding the control lens together with the cylinder drum (2) along the slide surface (6) and thus adjusting its angle with respect to the drive shaft.

The variation of the adjusting angle α results in a change of the piston stroke in the cylinder drum and thus in a change of the discharge flow of the pump.

Port designations

A, B	working connections
S	suction port
A3	pressure port of pilot-control pump
R1, R3	vents
R2	oil drain
X1	load sensing pressure ports
Х3	control pressure from load-limit regula- tion
Y3	pilot-control pressure after engine start
М	measuring point for pressure in control chamber
M1,M2	closed ports
M3	control pressure measuring point

Symbol

Fig. 2

This page left blank intentionally

Drive unit, variable displacement twin pump – output regulator (No. 3)

The output regulator varies the pump discharge flow depending on the:

- load-sensing pressure
- pump pressure
- load-limit regulator control pressure

These three pressures act simultaneously on the output regulator and may therefore also be superposed. The control pressure has priority and prevents the diesel engine from being overloaded by excessive power demands from the pumps.

When the diesel engine is stationary, pumps 1 and 2 are adjusted by the spring (4) to maximum angle.

When the engine is running, the integrated pilotcontrol pump supplies oil to pump regulator port Y3 which acts via an internal channel on both output regulators.

The pressure at port Y3 passes through shuttle valves past control piston (5) into control chamber A under control piston (8). Both pumps swivel to Vgmin.

Output regulation by load-sensing pressure

Description

The level of the load-sensing pressure is dependent on the excursion of the control levers or pedals.

A short lever excursion results in a low loadsensing pressure and vice versa. The loadsensing pressure acts on port X1 raising step piston (10) partly or completely against the force of spring (11). The forces of the adjusting springs (2+3) lift the adjusting elements, i.e. control piston (5), pin (12), step piston (13) with control sleeve (14) and pin (15) against control piston (10) displaced by the load-sensing pressure. A control edge at control piston (5) opens towards the housing with oil now flowing out of control chamber A. The pump is adjusted by the adjusting springs (2+3) towards Vgmax and thus to a higher discharge flow.

The adjusting angle corresponding to the loadsensing pressure is reached, when an equilibrium of forces is established between the adjusting springs (2+3) and the adjusting force at control piston (10). A change of the load-sensing pressure entails a change of the adjusting force at control piston (10) with the regulator responding to this condition by adapting the discharge flow accordingly. When the control levers and pedals are brought to neutral position, the load-sensing pressure diminishes and the regulator swivels the pump back to Vgmin. The diagram illustrates the relationship between load-sensing pressure and discharge flow.

The characteristic curve therefore represents the discharge flow change as a function of the load-sensing pressure.

Output regulation by pump high pressure

Description

The output regulator controls the pump discharge flow as a function of the pump high pressure in such a way that a predefined drive power is not exceeded.

The mechanical base power output adjustment for each regulator is performed with setscrew (19). This base power setting can be overridden by variable control pressures at port X3 depending on the power mode preselected.

With pump pressures below the power setting and a corresponding load-sensing signal at port X1, the pump is forced by the adjusting springs (2+3) to the Vgmax position.

The pump works with maximum discharge flow for fast working movements.

The rising pump pressure, e.g. in the event of excavating movements, acts on the measuring surface of the step piston (13) and thus via pin (12) and control piston (5) against power spring (17). When the hydraulic force exceeds the spring force, control piston (5) opens its control edge so that pump pressure passes into control chamber A below adjusting piston (8) which swivels the pump back. The hydraulic force raises adjusting piston (8) at first against adjusting spring (2) and then, with pressure increasing further, additionally against adjusting spring (3). The pump adjusting process ends, when the forces of the adjusting springs and the hydraulic force under the adjusting piston are in equilibrium. The control piston (5) is raised again, closing the control edge in the process and thus the connection with adjusting piston surface A. The result is a discharge flow corresponding to the pump high pressure in accordance with the spring characteristic in the output diagram. A changing high pressure value results in a new control cycle along the spring characteristic of the output diagram. This ensures that the drive power is not exceeded.

Example 1

At a pressure of 140 bars, the regulator reduces the oil flow rate to 127 l/min. In this case, only adjusting spring (2) is engaged.

Fig. 4

Example 2

At a pressure of 220 bars, the regulator reduces the oil flow rate to 77 l/min. In this case, both adjusting springs (2+3) are engaged.

Output regulation by load-limit control

Description

The sum of the installed hydraulic power of all pumps exceeds the engine power installed. The electronic load-limit regulation now intervenes in the output regulation of the variable displacement twin pump in such a way that the discharge flow of the pumps is reduced until the total hydraulic power absorbed corresponds to the engine power supplied.

For output regulation of the variable displacement twin pump, the pump regulators are fed with a control pressure from the load-limit regulation which rises when the engine is overloaded and which drops when the engine loading diminishes.

This variable control pressure acts through port X3 on both pump regulators. The step pistons (13) of both pump regulators receive pressure on the upper measuring surface, where a downward hydraulic force is generated. This force is added to the hydraulic force existing due to the pump high pressure at the lower measuring surface of step piston (13).

Since the pressures of pump 1 and pump 2 are seldom at the same level during working, the adjusting forces resulting at the output regulators lead to a different control behaviour.

The adjusting force resulting from the control pressure and the pump high pressure acts against the force of power spring (17). When the adjusting force prevails, control piston (5) is displaced downwards against the force of the adjusting springs (2+3) with its control edge opening towards control chamber A. The adjusting piston (8) changes the angle of the pump and thus its discharge flow until an equilibrium of forces is established in the output regulator.

The drive power for both pumps is thus adapted to the engine power even with different control actions of the individual pumps.

Example 3

With a pump pressure of 210 bars and a control pressure at X3 of 25.8 bars, the pump discharges a flow of 120 l/min.

Example 4

With a high pressure of 210 bars and a control pressure increase at X3 of 34 bars, the pump discharges only 80 l/min.

Pilot-control pump (No. 3)

Fig. 1

Key

- 1 Gear pump
- 2 Seals
- 3 Variable displacement twin pump

Description

The gear pump supplies oil to the pilot-control circuit.

The pump is driven from the transfer gearbox of the variable displacement twin pump. In operation, the gear pump draws in oil from the housing of the variable displacement twin pump. The two gearwheels in mesh convey the fluid between the tooth-flanks from the suction side to pressure port A3 and from there further into the pilot-control system.

Double gear pump (No. 6)

Fig. 1

Key

- 1 Double gear pump
- 2 Seal
- 3 Pump drive
- 4 Gear casing

Description

One pump of the double pump supplies oil to the steering circuit and the fan drive. The second pump supplies oil to the braking circuit and to the optional grab rotation drive.

The pump is designed as a double gear pump. It is driven from the PTO of the diesel engine. The pump receives hydraulic oil via a common suction port.

Gear pumps are essentially composed of two gearwheels in mesh enclosed in a housing. One of the gearwheels is driven by a through-shaft whereas the second wheel is driven via the toothing. The fluid under pressure is entrapped between the tooth flanks and conveyed on the outside along the housing walls from the suction side to the pressure side and then discharged into the system.

Hydraulic reservoir with attachments (Nos. 20, 21, 22, 23 and 24)

Fig. 1

Key

- 1 Reservoir
- 2 Return-flow filter element
- 3 Breather filter
- 4 Oil drain plug
- 5 Oil level indicator
- 6 Pressure switch S15
- 7 Temperature sensor R14
- 8 Screw plug

Description

The hydraulic reservoir serves the purpose of storing hydraulic oil. It is also equipped with a filter chamber for the return-flow filter.

The cover in the center of the reservoir with the breather filter closes the inspection opening.

Various connecting ports for return-flow lines to the filter chamber, for return-flow lines below the filter chamber and for the suction line are welded into the outside of the reservoir wall. The oil drain plug is located at the bottom. Oil pressure switch S15 on the filter chamber monitors the filter operation. The switch contact closes when the filter element is contaminated and when the back-pressure becomes inadmissibly high, triggering an optical and an acoustic warning signal.

The breather filter protects the oil against ambient influences. An integrated double-acting valve ensures on the one hand that the atmospheric pressure can get into the resevoir when the oil level descends until the admissible pressure is reached and on the other hand that the pressure in the reservoir is limited when the volume changes due to oil heating or after retracting of working cylinders.

The temperature sensor R14 is an NTC resistor and senses the hydraulic oil temperature. The temperature signal is transmitted to the load-limit regulator for temperature monitoring purposes.

CONTROL BLOCK

Rear view

Fig. 1

Key

- 1 Primary pressure-limiting valve pump 1
- 2 Primary pressure-limiting valve pump 2
- 3 LS pressure-limiting valve
- 4 Relief valve
- 5 Load-holding valves pump 1
- 6 Load-holding valves pump 2
- 7 Plug
- P1 Port pump 1
- M1 Pressure measuring point pump 1
- B211 Pressure sensor pump 1 at port S1
- T1 Tank connection to reservoir
- T2 Tank connection to oil cooler
- L Leakage line connection (pressureless to tank)
- PF Pilot-control pressure port (only for travel function)
- A1.1 Replenishing port during travelling (only with 25 km/h and 30 km/h versions)
- B239 Pressure sensor at port MS
- SV Secondary pressure-limiting valve for adjusting cylinder piston side
- Y20xa Proportional valves for upper caps
- Y20xb Proportional valves for lower caps

Front view

Fig. 2

Key

- 1 Primary pressure-limiting valve pump 1
- 2 Primary pressure-limiting valve pump 2
- 3 Secondary pressure-limiting valve boom cylinder extend
- 4 Secondary pressure-limiting valve boom cylinder retract
- 5 Secondary pressure-limiting valve bucket cylinder retract
- 6 Secondary pressure-limiting valve bucket cylinder extend
- 7 Secondary pressure-limiting valve stick cylinder retract
- 8 Secondary pressure-limiting valve stick cylinder extend
- 9 Secondary pressure-limiting valve adjusting cylinder retract
- 10 Replenishing valve reverse travel
- 11 Replenishing valve forward travel
- 12 Bucket parallel valves
- 13 Plug
- P2 Port pump 2
- M2 Pressure measuring point pump 2
- B210 Pressure sensor pump 2 at port S2
- B10 Pressure sensor for automatic gearshift
- A1/B1 Ports for travel oil motor, forward/reverse
- A2/B2 Ports for stabilizing cylinders, retract/extend
- A3/B3 Ports for boom cylinder, retract/extend
- A4/B4 Ports for bucket cylinder, retract/extend
- A4/B5 Ports for stick cylinder, retract/extend
- A6/B6 Ports for stick adjusting cylinder, retract/extend

Bottom view

Fig. 3

Key

- Y201a Forward travel
- Y201b Reverse travel
- Y202a Stabilizing cylinder retract / stabilizers up
- Y202b Stabilizing cylinder extend / stabilizers down
- Y203a Boom cylinder retract / lower equipment
- Y203b Boom cylinder extend / raise equipment
- Y204a Bucket cylinder extend / fill bucket
- Y204b Bucket cylinder retract / empty bucket
- Y205a Stick cylinder extend / lower stick
- Y205b Stick cylinder retract / raise stick
- Y206a Boom adjusting cylinder retract / raise upper boom section
- Y206b Boom adjusting cylinder extend / lower upper boom section
- PV Pilot-pressure port for cylinder functions

IMPORTANT: In machines with monoblock equipment, the boom adjusting cylinder control block can be equipped with proportional valves Y206a and Y206b for auxiliary equipment such as hydraulic hammer and/or shears.

6-spool control block (Nos. 50 and 55) neutral circuit

Fig. 1

Description

In the description of the neutral circuit and of the other functions, the drive unit has been represented in a simplified way. Pumps 1 and 2, the direct return to the filter and the return through the cooler (7) to filter (21) are only outlined. The following explanations refer to the neutral position of all control spools in the 6-spool control block.

Oil flow from pump 1

The oil flows through port P1 into the control block and then to pressure measuring point M1 and the primary valve for the pressure relief of pump 1.

The oil flows through the two parallel channels P1 and P01 to the control spools and the valves.

Channel P1 directs the oil flow through a valve of the bucket parallel circuit to the bucket control spool.

Channel P01 directs the oil flow to the travel spool with a branch-off ahead of the spool to a load- or pressure holding valve. The load-holding valve opens and the oil is available for further work at the travel spool. The oil flow by-passes the stabilizer spool and reaches the boom spool. A branch-off ahead of the spool directs the oil flow also via another load-holding valve to the boom spool. The oil flows then to the bucket spool and is also available to the bucket spool via a load-holding valve. The oil passes then to the stick spool with a branch-off directing the oil also via a load-holding valve to the stick spool. The oil flow by-passes the adjusting spool (neck spool) and reaches the tank channel.

Oil flow from pump 2

The oil flows through port P2 into the control block and then at first to pressure measuring point M2 and the primary pressure-limiting valve.

Two parallel channels P2 and P02 direct the oil flow through the control block.

Channel P2 directs the oil flow to the relief valve, the pressure compensator and to the bucket parallel circuit valve.

The relief valve and the pressure compensator are part of the adjusting spool circuit.

They are controlled by the load pressure of the adjusting cylinder and ensure that a load-pressureindependent discharge flow supplies the adjusting cylinder. The excess oil from pump 2 that is not used by the adjusting cylinder is available via the relief valve to other functions.

The valve of the bucket parallel circuit opens and the oil flow from pump 2 joins the oil flow from pump 1.

Both pumps supply partial oil volumes for the bucket parallel circuit.

Channel P2 passes through the blanking plate (55) and continues as channel P02 through the control block.

In zero position of the adjusting spool, the oil flows to the stick spool with a branch-off ahead of the spool via a load-holding valve to the stick spool. The oil passes to the bucket spool with a loadholding valve opening the passage for the oil flowing to the bucket spool. The next spool to receive oil is the boom spool. This oil is also available via a load-holding valve to the boom function.

The oil flows then to the stabilizer spool and is also available to this spool via another load-holding valve. The oil from pump 2 then flows past the travel spool into the tank channel.

7-spool control block with hammer / further option (Nos. 50, 52 and 55) neutral circuit

Description

In the description of the neutral circuit and of the other functions, the drive unit is represented in a simplified way. Pumps 1 and 2, the direct return to the filter and the return through the cooler (7) to filter (21) are only outlined. The following explanations refer to the neutral position of all control spools in the 7-spool control block

Oil flow from pump 1

The oil flows through port P1 into the control block and then to pressure measuring point M1 and the primary valve for the pressure relief of pump 1.

The oil flows through the two parallel channels P1 and P01 to the control spools and the valves.

Channel P1 directs the oil flow through a valve of the bucket parallel circuit to the bucket control spool.

Channel P01 directs the oil flow to the travel spool with a branch-off ahead of the spool to a load- or pressure holding valve The load-holding valve opens and the oil is available for further work at the travel spool. The oil flow by-passes the stabilizer spool and reaches the boom spool A branch-off ahead of the spool directs the oil flow also via another load-holding valve to the boom spool. The oil flows then to the bucket spool and is also available at the bucket spool via a load-holding valve. The oil passes then to the stick spool with a branch-off directing the oil also via a load-holding valve to the stick spool. The oil flow by-passes the adjusting spool (neck spool) and reaches the tank channel.

Oil flow from pump 2

The oil flows through port P2 into the control block and then at first to pressure measuring point M2 and the primary pressure-limiting valve.

Two parallel channels P2 and P02 direct the oil flow through the control block.

Channel P2 directs the oil flow to the relief valve, the pressure compensator and to the bucket parallel circuit valve.

The relief valve and the pressure compensator are part of the adjusting spool circuit.

They are controlled by the load pressure of the adjusting cylinder and ensure that a load-pressureindependent discharge flow supplies the adjusting cylinder. The excess oil from pump 2 that is not used by the adjusting cylinder is available via the relief valve to other functions.

The valve of the bucket parallel circuit opens and the oil flow from pump 2 joins the oil flow from pump 1. Both pumps supply partial oil volumes for the bucket parallel circuit.

Channel P2 passes into the supplementary control block (52) to another pressure compensator, which is assigned to the hammer/shears function.

Together with the pressure compensator, the ESXcontrolled solenoid valve Y239.2 offers the possibility of selecting four different power levels, e.g. for four hydraulic hammers of different size.

A bore in cover plate (55) ensures the connection between channel P2 and channel P02. In zero position of the adjusting spool, the oil flows past this spool to the stick spool with a branch-off ahead of the spool via a load-holding valve to the stick spool. The oil passes to the bucket spool with a load-holding valve opening the passage for the oil flowing to the bucket spool. The next spool to receive oil is the boom spool. This oil is also available via a load-holding valve to the boom function.

The oil flows then to the stabilizer spool and is also available to this spool via another load-holding valve. The oil from pump 2 then flows past the travel spool into the tank channel.

Control block valves

Primary pressure-limiting valves with pressure sequence stage

Fig. 1

Fig. 2

Key

- 1 Valve housing
- 2 Main piston
- 3 Spring cavity with spring
- 4 Pilot-control piston, pilot valve
- 5 Spring
- 6 Housing of sequence stage
- 7 Plunger
- 8 Threaded sleeve, adjustable
- 9 Piston
- 10 Lock-nut
- 11 Piston guide, adjustable
- 12 Lock-nut

Description

The primary valves limit the working pressure of pump 1 and pump 2.

The pressure sequence stages permit higher pump pressures for operation with the power assist or power boost function.

The primary valves are located in the pump channel of the corresponding pump ahead of the control spools.

By design, these valves are pilot-operated pressure-limiting valves with a virtually flow-independent response.

The high-pressure is admitted to main piston (2) and passes at the same time through the center bore behind the main piston into the cavity with spring (3) and from there through a restrictor below pilot valve (4). The pilot valve is kept closed by spring (5) as long as the opening pressure is not reached. When the opening pressure is reached, the pilot valve is lifted off its seat, the spring cavity is pressure-relieved and the main piston opens the passage to the tank channel of the control block.

The sequence stage with stroke-adjustable piston (9) permits two different opening pressures.

The lower opening pressure is determined by the force of spring (5) without pilot pressure from Y63.

The high opening pressure is reached with the help of pilot pressure from Y63 on piston (9). In this case, piston (9) is driven to the stop into threaded sleeve (8), pushing at the same time plunger (7) against spring (5). The spring force increases and greater high pressure is required to overcome this force.

After pressure relief of piston (9) by Y63, spring (5) is decompressed so that the pump pressure is limited by the lower opening pressure.

Tank channel – preloading valves

Fig. 3

Fig. 4

Description

The return oil from the tank channel of the control block must flow back to the hydraulic reservoir through the parallel non-return valves in port T1 and in port T2. To open the valves, the valve poppets must be pushed backwards against the spring forces.

As far as the valve in T2 is concerned, the cooler flow resistance must be added to these forces. This outflow resistance generates the preloading pressure in the tank channel. The amount of the preloading pressure is also determined by the return-flow volume. A large volume of oil requires a great drain cross-section, which means that the valve poppet must open further so that the spring under the poppet is compressed more strongly.

This preloading pressure ensures the oil supply of the cylinders and the travel oil motor via the replenishing non-return valves.

The non-return valve in T1 is equipped with a 5-bar spring whereas the valve in T2 is equipped with a 2-bar spring.

The amount of return oil drained through the valve in T2, must overcome the force of the 2-bar spring plus the viscosity-dependent cooler flow resistance. When the oil is cold, the overall resistance is higher and part of the volume is drained through the 5-bar valve in T1. The cooling oil volume is regulated by the differential resistances in T1 and in T2 depending on viscosity. reguliert.

The 5-bar valve in T1 protects in addition the radiator against inadmissibly high pressures.

The by-pass bore, parallel to the valve in T2, serves as a pressure relief for the tank channel after engine stop.

Secondary pressure-limiting valves with replenishing stage (SV)

Fig. 6

Key

- 1 Valve housing
- 2 Main piston
- 3 Spring compartment with spring
- 4 Pilot control piston, pilot valve
- 5 Spring
- 6 Valve adjusting screw
- 7 Lock-nut
- A Rod side

Description

The secondary valves protect the cylinders and the travel oil motor against inadmissibly high pressures generated by the forces occurring when the machine is working. Peak loading is thus effectively avoided.

The secondary valves protect the boom, bucket stick and adjusting cylinders at their piston and rod sides respectively.

The travel oil motor is equipped with one secondary valve on each side.

The integrated replenishing stage receives pressurized oil from the preloaded tank channel which supports filling of the components in the event of insufficient oil in the cylinders or in the travel oil motor.

By design, the secondary valve is a pilot-controlled pressure-limiting valve maintaining the preset opening pressure almost independent of the flow.

The high pressure as reaction pressure from the cylinders or from the oil motor is admitted to main pistons (2). At the same time, it passes through the central bore into spring cavity (3) where it is available at pilot piston (4). The adjustable force of spring (5) maintains pilot control piston (4) closed until the hydraulic force under pilot control piston (4) is greater. In this case, the spring cavity is pressure-relieved and main piston (2) opens towards the tank channel. The pressure peak escapes against the preloading pressure of the tank channel back into the reservoir.

When the pressure is lower than the opening pressure, pilot control piston (4) closes again with a force building up in the spring cavity behind main piston (2) which recloses the valve.

In the event of oil shortage in the cylinder or in the oil motor, the force of the preloading pressure acting on rod side A lifts main piston (2) and the preloaded oil from the tank channel flows into the cylinder chambers or to the oil motor for filling purposes.

Proportional valves for control spool adjustment

Description

The proportional valves for bilateral spool adjustment are located in the same housing.

They serve the purpose of converting the electrical control current from the ESX into a pilot control pressure.

The pilot control pressure is available at port P and at both proportional valves only after a cylinder or a travel function has been initiated.

If the valve with identification letter **a** is energized, the pilot control pressure passes into the upper cap. The control spool would be moved downwards.

The valve with identification letter **b** lets pilot pressure flow into the lower cap with the control spoolbeing adjusted upwards.

Any movement of the joysticks or of the pedals is detected by the ESX which sends a lever- or pedal-dependent control current to the corresponding proportional valve.

In neutral position of all control elements, both pilot control caps are linked with the leakage oil channel L via the control pistons in the proportional valves. Leakage oil then flows pressureless back to the reservoir.

After activation of the ignition and after booting of the electronic system, a PWM signal of approx. 100 mA is present at the solenoids even without a function being actuated to detect possible faults as, for instance, a broken cable or a short-circuit to ground.

Pressure sensors

Fig. 9

Description

The pressure sensor converts a hydraulic pressure into a current signal in the mA range.

The pressure sensors B210 for pump 2, B211 for pump1 and B239 for the load-sensing pressure are required for calibration of the electro-hydraulic pilot control.

Pressure sensor B10 is necessary for the automatic gearshift.

Pressure sensor B74 senses the pressure on the piston side of the boom cylinders. Its current signal is used for the regeneration function during boom lowering.

Pin assignment

PIN1 0 volt / signal to EXS

PIN2 GND

PIN3 +voltage from CU

Diagram

This page left blank intentionally

PILOT-CONTROL SYSTEM

Schematic diagram

Description

The pilot-control circuit supplies oil to the pilotcontrol unit with the solenoid valves of the pump control, the load-limit regulation and the circuit elements of the superstructure and undercarriage control.

Pilot-control circuit in neutral position

The pilot-control pump supplies oil to the pilotcontrol unit which comprises the pressure-limiting devices.

The pilot-control pressure limited in this way gets to port Y3 of the variable displacement pump, adjusting both pumps towards Vgmin, but not to zero flow, as both pumps receive a small amount of load-sensing pressure via the pump control proportional valves Y241 and Y242 at ports X1. The pumps swivel out to such an extent that each pump sends a flow of flushing oil through the control block. This is achieved by ESX activation of proportional valves Y241 and Y242 when the control elements are in neutral position.

Proportional valve Y10 of the load-limit regulation is activated with high current from load-limit regulator A10, with maximum control pressure getting to both pump regulators via port X3. This maximum control pressure reduces the power consumption of pumps 1 and 2 to minimum.

Solenoid valve Y113 of the pilot-control pressure shut-off for the working and slewing functions is without current, even after actuation of the pilotcontrol pressure lever in the left-hand control console.

> The ESX actuates solenoid valve Y113 only after a control lever has been moved out of neutral position. This means that pilot-control pressure is available at the proportional valves of the control block and at the proportional valves of the slewing pump only after a working function has been activated.

Solenoid valve Y35 of the superstructure holding brake is without current so that the multiple-disk brake is blocked by spring force. Solenoid valve Y35 is controlled from the ESX.

Solenoid valve Y290 of the pilot-control pressure shutoff is without current.

Solenoid valve Y63 of the power assist function is actuated by the central electronic control unit CU. When the valve is without current, the power assist function is not operational.

The nitrogen accumulator at port S supplies the pilot-control system after an engine stop to permit depressurization of the hydraulic system or emergency lowering of the equipment. For this purpose, the ignition must be on and the control unit must be booted so that the corresponding solenoids can be actuated and the pilot-control pressure get to the control block.

The controlled non-return valve under the accumulator works as a pressure-holding valve as the accumulated pressure drops quickly when the engine has been stopped.

Port A serves to supply control block (105) of the undercarriage control.

Pilot control unit (nos. 60, 61, 63 and 64)

Fig. 1

Key

- 60 Pilot control unit, base unit with four solenoid valves
- 61 Load-sensing unit with proportional valves Y241 and Y242
- 63 Solenoid Y63 for power assist and POWER BOOST functions
- 64 Pressure switch S113.4 for monitoring of activation and deactivation of pilot control pressure
- 64 Pressure switch S290 for monitoring of activation and deactivation of the pilot control pressure for travelling

Schematic diagram

Description

The pilot control unit consists of a base unit with flange-mounted solenoid valves.

The valve combination is supplied with oil from the pilot control pump via port P:

The base unit (60) is equipped with an inlet filter protecting the downstream components against possible contamination.

The non-return valve behind the filter opens and lets the oil flow to the pressure-reducing valve protecting the pilot control circuit. The excess oil passes via port T pressureless to the hydraulic reservoir (2).

The pilot control pressure limited in this way passes through the pilot-operated pressure holding valve to the nitrogen accumulator, to port A for the undercarrige supply and to solenoid valve Y113. The pilot pressure is moreover available at proportional Y10, at solenoid Y 35, at pressure measuring point M, at solenoid Y290 and at the flange-mounted solenoids Y 63 (63) and the proportional vavles Y241 and Y 242 (61).

The diaphragm accumulator is preloaded with nitrogen. In operation, the accumulator is loaded by pilot-control pressure. The accumulated pressure energy is available after engine stop to solenoid valve Y 113 and to the undercarriage control. When solenoid valve Y113 is energized, all cylinder functions can be pressure-relieved by means of the accumulator pressure. This permits also an emergency lowering of parts of the equipment.

The pilot-operated pressure holding valve below the accumulator ensures that the accumulator pressure is maintained and prevented from escaping towards the pilot control pump after engine stop.

The pilot control pressure passes via port A of the base unit through the hydraulic rotor (75) to the control block (105) in the undercarriage.

The two pressure switches S113.4 and S290 (64) check that the solenoids Y113 and Y290 are open to the pilot pressure when energized and closed to the pilot pressure when de-energized.

Solenoid valves and their functions

Proportional valve Y10 of the load-limit regulator

Description

Proportional valve Y 10 is used as a signal converter. The valve converts electric control current from the load-limit regulator into control pressure for the output regulation of the working pumps. The control pressure is proportional to the control current.

The valve housing (1) accomodates solenoid (2), plunger (3) and control piston (4) with spring plate (5) and adjusting spring (6).

When current flows through the solenoid, the magnetic force displaces the plunger and the control piston against the force of the spring. The control edge of the control piston opens a cross-section through which the pilot pressure can partly pass to port A3 as control pressure.

The control pressure thus generated builds up a spring-assisted resetting force which displaces the control piston backwards against the magnetic force of the solenoid.

Fig. 2

Key

- P Pilot-control pressure
- A3 Control pressure to power regulator
- L Tank connection, pressureless
- 1 Valve housing
- 2 Solenoid
- 3 Plunger
- 4 Control piston
- 5 Spring plate
- 6 Compensator spring
- 7 Emergency control

The flow cross-section at the control edge of the control piston is open as long as the magnetic force is higher. As long as the control edge is open, the control pressure increases and the resetting forces increase as well.

The control edge is closed when the forces are in equilibrium.

When less current flows through the solenoid, the resetting forces press the control piston into a position creating a drainage cross-section towards the tank. Through this opening, the control pressure is reduced. The drainage cross-section closes after the equilibrium of forces has been reestablished.

Emergency control

In the event of an electronic failure, the proportional valve is equipped with a mechanical emergency control device (7) with which control piston (4) can be adjusted to maintain the machine functions. In the emergency mode, the machine can be operated at reduced speed.

Solenoids Y35 and Y113

Fig. 3

Solenoid valve Y35 for the superstructure holding brake in the slewing gearbox

Description

Solenoid valve Y35 actuates the holding brake in the slewing gearbox. In zero position, the holding brake is connected via port A2 to tank port T of the base unit.

The brake is then without pressure and blocked by spring force.

When the solenoid is engergized, the control piston is displaced and the pilot pressure gets to the piston of the multi-disk brake. The piston pushes the springs back and the brake disks are released so that the superstructure can be slewed.

Solenoid valve Y35 is additionally equipped with a mechanical emergency control device.

In the event of electrical failure, the screw provided can be turned down completely. The control piston is then mechanically displaced so that the pilot pressure can release the brake.

Solenoid valve Y113 for pilot pressure activation and deactivation

Description

Solenoid valve Y113 switches the pilot pressure for all working functions except travelling.

When the pilot control is off, the valve is in zero position. The flow of pilot pressure oil to the control block and to the slewing pump is then interrupted. In this case, the pilot-control circuit at port A1 is connected to port L from where the oil returns pressureless to the reservoir.

After activation of the pilot control, the solenoid displaces the control piston which lets pilot-control pressure oil flow to the porportional valves on the control block and to the slewing pump.

Valve Y113 is equipped with an emergency control device permitting the adjustment of the control piston in the event of system failure.

Pressure switch S113.4 monitors the pressure build-up on actuation of a working function and the pressure drop after deactivation of the pilot control.

Solenoid valve Y290 for pilot pressure activation and deactivation

Fig. 4

Description

Valve Y290 is used for switching the pilot-control pressure to the proportional valves of the travel function.

When the travel pedal is not depressed, the spolenoid valve is in zero position and the proportional valves ensuring displacement of the spool are without pilot-control pressure. In this case, pressure switch S290 is closed.

After selecting the travel direction and depressing the travel pedal, the solenoid is energized and pilot pressure oil flows to a proportional valve on the control block. Pressure switch S290 is opened in the process. Pressure switch S290 monitors the pressure build-up on actuation of a travel function and the pressure drop after travelling.

The solenoid valve can be opened with the mechanical emergency device to permit travelling in the event malfunctions.

Solenoid valve Y63 for POWER BOOST and power assist functions

Fig. 5

Description

Solenoid valve Y63 ensures the power assist and the POWER BOOST functions. The valve is energized when the power assist or POWER BOOST function is activated.

The valves switches pilot pressure to the sequence stages of both primary valves so that the pump pressure can rise above the normal value. In zero position of the valve, the sequence stages of the primary valves are pressure-relieved towards the tank and the pump pressure is limited by the primary valves to the normal value.

Solenoid valve unit Y241 and Y242 for pump control

Key

P Pilot-control pressure

241, 242 load-sensing pressure to pump regulator

- L Tank connection. pressureless
- 1 Valve housing
- 2 Solenoid
- 3 Plunger
- 4 Control piston
- 5 Spring plate
- 6 Compensator spring
- 7 Emergency control

Description

The solenoid valve unit consists of two proportional valves Y241 and Y242. The valves are assigned to the pump regulators of the A 8 VO.

The valves are part of the pump control and their function is to proportionally convert the electrical signal from the pilot control into a hydraulic control pressure, the load-sensing pressure.

The valve housing (1) consists of solenoid (2), plunger (3) and control piston (4) with spring plate (5) and compensator spring (6).

When a function is activated, the ESX energizes the solenoid which by magnetic force displaces the plunger and the control piston against the force of the compensator spring.

The control edge of the control piston opens a cross-section through which the pilot pressure can partly pass to port 241 or 242 as load-sensing pressure.

The load-sensing pressure builds up a springassisted resetting force which displaces the control piston backwards against the magnetic force of the solenoid

Fig. 7

The flow cross-section at the control edge of the control piston is open as long as the magnetic force is higher. During this time, pilot pressure oil flows to the pump regulators as load-sensing pressure. The load-sensing pressure increases so that the resetting forces become stronger. The control edge is closed when the forces are in equilibrium.

When the solenoid receives less current from the ESX, the resetting forces press the control piston into a position creating a drainage cross-section towards the tank. Through this opening, the load-sensing pressure is reduced. The drainage cross-section closes after the equilibrium of forces has been reestablished.

Emergency control

By means of the emergency control device, the control piston can be mechanically adjusted to supply the pump regulators with load-sensing pressure in the event of an electronic failure. This page left blank intentionally

TRAVEL CIRCUIT OF THE 20 KM/H VERSION Schematic diagram

Description

The travel circuit is driven only by the oil from pump 1. After entering the control block, the oil is admitted to the pressure measuring point, the pressure sensor B211 (58) and the primary valve.

Neutral

In neutral position of the travelling spool, the flushing oil volume of pump 1 flows past the control spool into channel C1 and then past the other control spools into the tank channel.

The circulating pressure of pump 1 opens the load holding valve (1) and the oil flow reaches the P channel.

The pressure generated by the tank channel precharging valves is admitted to the travel oil motor via the two replenishing non-return valves (3+4) to avoid cavitation.

The pilot-control pressure is available at undercarriage control block (105) and controls the solenoids Y16 for the parking brake, Y62 for the floating-axle support and Y21.2 for the creep-speed function.

Before travelling

After releasing of the parking brake, the gear preselected at solenoid valve Y21.4 is engaged.

Pressure switch S16.1 opens and the hand-brake pilot lamp is off.

When solenoid valve Y62 is energized, the pilotcontrol pressure unblocks the floating-axle cylinders (111).

The travel oil motor is in Vgmin position when solenoid Y21.2 is deenergized.

The travel oil motor can be regulated depending on high pressure.

Forward travel

The selection of the travel direction and the precision movements of the travel pedal are sensed by the ESX which opens a virtual pressure switch DSF before the travel movement starts. The ESX then activates solenoid valve Y290 in the pilotcontrol unit (60) and the pilot pressure oil flows through the inlet filter in port PF to proportional valves Y201a and Y201b. The ESX also energizes proportional valve Y241 so that pump 1 is controlled by load-sensing pressure.

Proportional valve Y201a is energized by the ESX depending on pedal excursion.

In proportion to pedal excursion, pilot-pressure oil is admitted through solenoid valve Y201a to the upper cap and the travel spool is displaced downwards against the springs. Channel C1 is blocked off and the oil from pump 1 flows via load-holding valve (1) into the pump channel and past the open control edge to port A1 and then through rotor (75) to travel oil motor (102). The load pressure thus generated passes through the transverse duct and the center bore in the control spool into channel M and acts on pressure sensor B10. The output signal from pressure sensor B10 and the speed signal from sensor B7 at the speed-change gearbox (101) are evaluated by the ESX for automatic gear change purposes. The oil returning from the travel oil motor must flow through the travel brake valve and the rotor back into the control block and then via the tank channel preoloading valves into the return circuit.

Reverse travel

During reverse travel, proportional valve Y201b is active and lets pilot pressure oil in proportion to the pedal excursion flow into the lower pilot cap so that the travel spool is displaced upwards against the springs. The oil from pump 1 now flows from the pump channel to control block port B1 and through the rotor into the travel oil motor.

Setting off on slopes

For precision initiation of the driving movement on slopes at low engine speeds, the load-holding valve (1) is of importance. During this phase, the load pressure is retained by the load-holding valve until pump 1 has built up a high pressure flow which is greater than the load pressure, whereafter the machine starts travelling. The load-holding valve prevents the machine from rolling backwards.

Travel control spool

Key

P01	Pressure channel of pump 1	1	Load-holding valve
C1	Connecting channel for pump 1	2	Plug
Р	P channel (bridging channel)	3	Replenishing valve, forwards
A1	Forward travel	4	Replenishing valve, reverse
A1.1	RV only with 25+30 km/h versions	P02	Pressure channel of pump 2
B1	Reverse travel	C2	Connecting channel for pump 2
М	Load-pressure tap for sensor B10	Т	Preloaded tank channel

Fig. 1

Hydraulic rotor, description

The hydraulic rotor is the rotary connection between superstructure and undercarriage. It consists of an inner and an outer part fully rotatable with respect to one another. The lines of the superstructure are connected at right angles to ports around the circumference of the head of the inner part. Vertical bores of varying length, which end in horizontal bores, ensures the connection with the ring ducts of the outer part of the rotor. The ring ducts are distributed over the height of the outer part and connected to perpendicular bores leading to ports on the outside.

The lines supplying the undercarriage componenets are connected to these ports.

The rotor comprises 10 ducts supplying the following functions:

forward travel
reverse travel
stabilizers down
stabilizers up
rear axle brake circuit
front axle brake circuit
steering to the left
steering to the right
pilot-control pressure
leakage oil / return flow

Hydraulic and electric rotor (Nos. 75 and 76)

Electric rotor, description

The electric rotor is the rotary connection between superstructure and undercarriage. Its inner part, the stator, is attached with screws to the outer part of the hydraulic rotor. The stator is equipped with the contact brushes to which the cables of the axially arranged harness in the center bore are connected.

The outer part of the electric rotor is rotatable with respect to the stator and attached to the superstructure. The base-plate of the outer part carries the slip-rings arranged one above the other with the cables from the superstructure connected radially to the outer part.

The electric rotor has 16 slip-rings numbered in rising order from bottom to top for the functions shown in the table opposite:

Slip-ring 1	parking brake pressure switch
Slip-ring 2	creep speed
Slip-ring 3	speed sensor output 1
Slip-ring 4	speed sensor output 2
Slip-ring 5	sensor power supply
Slip-ring 6	1 st gear
Slip-ring 7	floating-axle blocking
Slip-ring 8	parking brake
Slip-ring 9	outrigger individual control
Slip-ring 10	outrigger individual control
Slip-ring 11	outrigger individual control
Slip-ring 12	outrigger individual control
Slip-ring 13	not used
Slip-ring 14	not used
Slip-ring 15	ground
Slip-ring 16	ground

Travel drive (Nos. 100, 101 and 102)

Fig. 1

Key

- 1 Rigid axle, No. 100
- 2 Multi-disk speed-change gearbox No. 101
- 3 Speed sensor B7
- 4 Travel oil motor, No. 102

Description

The rigid axle is designed as an external planetarywheel driving axle with integrated immersed multidisk brakes.

The multi-disk speed-change gearbox is a singlestage planetary gear with two speeds and a neutral position. Gear-shifting is effected by two multi-disk clutches.

The hollow wheel of the planetary stage is braked for the 1st gear and released for the 2nd gear.

The multi-disk clutches are controlled by pilot pressure via a solenoid valve.

Solenoid valve Y 21.4 supplies oil to one of the clutches so that one of the two gears is always engaged, except in case the parking brake is applied. In this case, both clutches are pressureless and the multi-disk speed-change gearbox performs the parking brake function.

The speed sensor provides the electronics with a speed signal and a sense-of-rotation signal.

For towing purposes, the travel drive has a neutral position in which the axle is disconnected from the travel oil motor. The neutral position is engaged mechanically by turning an eccentric. A gearwheel in the gearbox is axially shifted so that the interlock between two gearwheels is interrupted.

The travel oil motor is fastened with an adaptor ring to the multi-disk speed-change gearbox.
Travel oil motor type A 6 VM (20 km/h) (No. 102)

Fig. 1

Key

- 1 Drive shaft with bearings
- 2 Cylinder block with axial pistons
- 3 Angle plate
- 4 Porting pintle
- 5 Spring
- 6 Vgmin stop setscrew
- 7 Vgmax stop setscrew
- 8 Stroke control
- 9 Travel brake valve

- A Connection for reverse travel
- B Connection for forward travel
- X Connection for creep speed
- M1 Measuring port for control chamber pressure
- G1 Measuring port, forward / reverse travel
- T Leakage oil port
- SV Secondary valve (2 units)

Technical Data

Description	MH6.6	MH8.6	
Servomotor	A6VM140 HA1T/63W-VZB 380A		
Supplier	Brüninghaus Hydromatik		
Maximum suction volume V _{gmax}	140 cm³/rev		
Minimum suction volume V _{gmin}	59 cm ³ /rev	64 cm ³ /rev	
n_{max} at V_{gmax}	3150 min ⁻¹		
n_{max} at V_{gmin}	4700 min ⁻¹		
Nominal pressure p _N	400 bar		
Working pressure p	370 bar		
Maximum pressure p _{max}	450 bar		
Starting regulation	300 bar		
End regulation	310 bar		
Hydraulic over regulation (X connection)			
$V_{gmin} at P_x$	0 bar		
V _{gmax} at P _x	45 bar		
Connections (A and B) SAE	1" ¼ - 6000 psi (connection plate 380 for installation BVD 25)		
2 secondary valves	MHDBN32K2-20/420YV-026 Regulate on starting of opening with differential pressure of 390 bar		

Travel oil motor, regulator (No. 102)

Fig. 1

Fig. 2

Key

- 1. Adjusting piston
- 2. Spring
- 3. Compensator spring
- 4. Spring plate
- 5. Control piston
- 6. Setscrew for regulation start
- RF Rod side of adjusting piston
- KF Piston side of adjusting piston

Description

The travel oil motor is an axial piston motor in bent-axis design with variable displacement.

The angle of the axial-piston unit can be varied by a regulator as a function of high pressure.

Automatic regulation

In neutral position and during travelling in the lowpressure range, the piston unit (2) is in the Vgmin position. The angle plate (3) is in contact with the Vgmin setscrew (6). The hydraulic power supplied in the form of discharge flow and pressure is converted by the short-stroking axial pistons to high output speed at low torque. The pressure built up during travelling is admitted to the rod side of the adjusting piston and to the metering side at the control piston of the regulator. The hydraulic force at the adjusting piston keeps the unit at the Vgmin limit stop. The hydraulic force at the metering side of the control piston acts against the spring under the control piston. The spring force is adjustable and determines the regulation start of the travel motor.

With increasing travelling resistance, the high pressure rises until regulation start is reached. The high pressure displaces the control piston with its control edge so that the high pressure reaches the large surface of the adjusting piston. The adjusting force tilts the cylinder block (2) to a greater angle so that the stroke of the axial pistons increases. The output torque of the oil motor increases whereas the output speed diminishes. The machine travels with greater traction and lower speed. The position of the piston unit is continuously varied with the high pressure until the end of the regulation range is reached.

The end of the regulation range is reached when the piston unit with the angle plate runs into the Vgmax stop (7).

When the travelling resistance has been overcome, the high pressure decreases and the control piston is set back by spring force. The pressure under the adjusting piston escapes towards the housing and the piston unit (2) is tilted towards Vgmin. The output speed increases and the output torque diminishes.

Creep speed

The automatic regulation process is overridden by the creep speed function.

This function permits slow travelling with maximum traction force.

Solenoid valve Y21.2 directs pilot pressure to port X of the adjusting unit (8).

The control piston (5) is displaced against the compensator spring (3). The control edge opens and pressure is admitted to the piston side under the adjusting piston (1). The force of the adjusting piston swivels the piston unit against the Vgmax setscrew (7).

Secondary relief

Inadmissibly high pressures are safely prevented by secondary valves. Both travel directions are provided with one valve each. Besides the relief function, the valves are also equipped with replenishing non-return valves.

Fig. 4

Schematic diagram of travel drive

Travel oil motor, travel brake valve (No. 102)

Key

- 1 Travel brake valve housing
- 2 Travel brake piston
- 3 Non-return and replenishing valves
- 4 Secondary valves
- A Travel pressure from control spool
- A1 Travel pressure to oil motor
- B1 Return from oil motor
- B Return to control spool

Description

The travel brake valve is flange-mounted on the travel oil motor. It works as an automatic restrictor valve protecting the travel oil motor in both directions of rotation against inadmissibly high speeds.

In the pressureless state, the braking piston (2) is held by spring force in its zero position. The oil motor is supported on both sides by the closed braking piston. A residual opening exists through the restrictor non-return valves, so that the machine would roll downhill when the brakes are open.

The pressure oil during travelling enters the travel brake valve at port A and flows directly through the non-return valve into port A1 of the oil motor. The oil is also admitted into the spring chamber to act on the braking piston.

The pressure level existing during driving on level ground is sufficient to open the braking piston against the adjusting spring to such an extent that the return oil from port B1 of the oil motor can flow unrestricted past the braking piston (2) via a non-return valve (3) to port B.

When the pressure drops, the adjusting spring displaces the braking piston so that the return cross section is reduced and the returning oil flow is restricted.

The result is that the speed of the oil motor and the travel speed of the machine on downhill slopes are controlled by the brake valve.

Replenishing valves (3) protect the travel oil motor on both sides against insufficient oil supply, for instance, when the machine rolls down a hill. The precharging pressure oil from the tank channel of the control block flows via replenishing valves in the control block and via the A-B-T connection of the control spool in neutral position to the undercarriage and to the replenishing valves (3) in the travel brake valve.

Undercarriage solenoid valves (Nos. 104, 105 and 106)

Fig. 1

Key

- 105 Valve housing
- 104 Diaphragm accumulator
- 106 Pressure switch S 16.1
- 1 Solenoid valve Y16 for parking brake with emergency release
- 2 Solenoid valve Y21.4 for 1st/2nd gear
- 3 Solenoid valve Y62 for floating-axle support
- 4 Solenoid valve Y21.2 for creep-speed gear

Description

The control block is located in the undercarriage frame above the multi-disk clutch. Shifting functions are performed by pilot pressure. The block is also connected to a reservoir line.

The valve housing (1) is equipped with four solenoid valves, pressure switch 106 and diaphragm accumulator 104.

Solenoid valve Y16 (1) actuates the parking brake.

The parking brake function is ensured by means of the multi-disk clutches in the speed-change gearbox. When both clutches are without pressure, the parking brake function is ensured by the multi-disk speed-change gearbox.

In the deenergized state, the control piston of Y16 is connected to the reservoir. A gear engaged beforehand and the respective clutch are switched without pressure.

The switching pressure in the clutch escapes together with the accumulator pressure through the outlet restrictor into the reservoir line.

When the parking brake is released, voltage arrives to the magnetic coil so that the control piston lets the pressure of the piloting system go through, as switching pressure, in a clutch of the transmission. Also, the accumulator is charged opening the switching contact of pressure switch S16.1. The relevant clutch and discs open and deactivate the function of the parking brake in the transmission.

An emergency release circuit on the solenoid side can be used in the event of electrical supply failure to shift the control piston mechanically in such a way that the pilot pressure can release a multi-disk clutch. **Solenoid valve Y21.4** (2) operates the gearshift function.

When the parking brake is released, the valve always directs pilot pressure to one of the two multidisk clutches. Which of the clutches is pressurized depends on whether the solenoid is on or off. When the solenoid is off, pilot pressure is admitted to the clutch for 2nd forward gear. When it is on, pilot pressure is admitted to the clutch for the 1st gear.

Solenoid valve Y62 (3) is used for applying and releasing the floating-axle blocking.

Without current in the solenoid, the floating axle is blocked since the valves integrated in the cylinders are without pressure. When the solenoid is energized, the control piston is shifted so that the the blocking valves in the cylinders are unblocked by the pilot pressure.

Solenoid valve Y21.2 (4) is used to engage the creep-speed gear of the travel oil motor.

When the creep-speed gear is engaged, the solenoid is energized and the control piston sends pilot pressure to the regulator of the travel oil motor. The control piston in the regulator is displaced and the travel high pressure acts on the adjusting piston with the drive unit swivelling to the Vgmax position. The travel oil motor has then maximum. displacement volume and the machine moves at creep speed.

Il **Pressure switch S16.1** (106) controls the pressure actuating the clutches in the transmission. When the parking brake is locked and the parking brake is deactivated, the switching contact of the pressure switch must be closed, otherwise an error signal is generated.

The **pressure accumulator** (104) with its accumulated pressure delays the pressure drop in a multidisk clutch after activation of the parking brake so that the braking action sets in smoothly.

Steered axle (No. 110)

Description

The steered axle is designed as a wheel-hub planetary gear drive axle with oil-immersed integrated multi-disk brakes. The steering knuckles are moved via steering rods by the steering cylinder in the axle body. The steered axle is a floating axle suspended in the undercarriage frame. The free floating movement of the axle which is necessary for driving must be blocked during the work with the floating-axle cylinder.

Fig. 1

Description

The floating-axle cylinders are single-action cylinders with integrated check valves connected by a line to which the supply line is connected which serves also as the control line.

The cylinder pistons rest on the pressure pads of the steered axle. Restrictor and check valves are installed in the connections of the two cylinders. On the other hand, the oil flowing into the cylinder can fill the cylinder through the non-return valve without being restricted.

When the machine is driven off-road with the check valves being open, the axle floats depending on the terrain contours. The movement of the axle presses the piston into one of the floating cylinders. The oil volume thus displaced flows to the opposite cylinder and extends the piston of the latter. When the check valves are closed, the oil volume is entrapped in both cylinders and the floating axle blocked. Without control pressure, the check valve is closed by the force of the spring, possibly assisted by the internal cylinder pressure. When the floating-axle blocking is released, the check valves are opened by pilot pressure supplied to the valves via solenoid valve Y62. With the valves open, the pilot pressure acts as preloading pressure on the pistons which are pressed by hydraulic force on the pressure pads of the axle.

TRAVEL CIRCUIT OF 25/30 KM/H VERSION Schematic diagram

Description

The travel circuit is driven only by the oil from pump 1. After entering the control block, the oil is admitted to the pressure measuring point, the pressure sensor B211 (58) and the primary valve.

Neutral

In neutral position of the travelling spool, the flushing oil volume of pump 1 flows past the control spool into channel C1 and then past the other control spools into the tank channel.

The circulating pressure of pump 1 opens the load holding valve (1) and the oil flow reaches the P channel.

The pressure generated by the tank channel precharging valves is admitted to the travel oil motor via the two replenishing non-return valves to avoid cavitation.

The pilot-control pressure is available at undercarriage control block (105) and controls the solenoids Y16 for the parking brake, Y62 for the floating-axle support and Y21.2 for the creep-speed function.

Before travelling

After releasing of the parking brake, the gear preselected at solenoid valve Y21.4 is engaged.

Pressure switch S16.1 opens and the hand-brake pilot lamp is off.

When solenoid valve Y62 is energized, the pilotcontrol pressure unblocks the floating-axle cylinders (111).

The travel oil motor is in Vgmin position when solenoid Y21.2 is deenergized. The travel oil motor can be regulated depending on high pressure.

Forward travel

After selecting the travel direction and a slight press on the travel pedal, the virtual pressure switch DSF opens before the travel movement is started. The ESX now activates solenoid valve Y290 in pilot-control unit (60) and the pilot-control pressure passes through the inlet filter in port PF to proportional valves Y201a and Y201b. The ESX also supplies a current depending on the pedal excursion to proportional valve Y241 and the load-sensing pressure actuates the pump regulator at port X1.

Proportional valve Y201a is controlled by a current from the ESX depending on pedal excursion.

In proportion to the control current, valve Y201a admits pilot-control pressure into the upper cap, which adjusts the travel spool against the springs downwards. Channel C1 is blocked and the oil from pump 1 flows via the load holding valve (1) into the P channel and then past the open control edge to port A1 and further down through the rotor (75) to the travel oil motor (102). The load pressure thus generated acts on pressure sensor B10. The output signal from sensor B10 and the speed signal from sensor B7 at the speed-change gearbox (101) are processed by the ESX for the automatic gearshift. The return oil from the travel motor must flow through the travel braking valve and through the rotor back into the control block and then further to the return line via the tank channel precharging valves.

Replenishing during forward travel

The replenishing valve ensures proper filling of the travel oil motor at higher travelling speeds. Replenishing valve (14) is activated by CU A100 automatically during forward travel in 2nd gear. The replenishing valve is supplied with pressure oil from the fan circuit. The pressure-reducing valve reduces the fan pressure to the replenishing pressure which is available at control block port A1.1 and admitted via a non-return valve into the line for forward travel. If the travel pressure drops below the replenishing pressure value, e.g. when travelling downhill, the non-return valve in port A1.1 opens and the replenishing pressure is admitted to the travel oil motor. When the travel pressure increases, the non-return is closed again.

Reverse travel

During reverse travel, proportional valve Y201b is active, admitting pilot-control pressure proportional to the pedal excursion into the lower pilot-control cap whereby the travel spool is moved upwards against the springs. The oil from pump 1 now flows from the pump channel to control block port B1 and through the rotor into the travel-oil motor.

Travel control spool with replenishing function for forward travel

Key

P01	Pressure channel of pump 1		
C1	Connecting channel for pump 1		
Р	P channel (bridging channel)		
A1	Forward travel	4	
A1.1	Non-return valve only in 25+30 km/h versions	P02 C2	
B1	Reverse travel		
М	Load-pressure pick-up for sensor B10		

- 1 Load-holding valve
- 2 Plug
- 3 Replenishing valve, forwards
- 4 Replenishing valve, reverse
- P02 Pressure channel of pump 2
- C2 Connecting channel for pump 2
- T Preloaded tank channel

Replenishing system for 25/30 km/h version (Nos. 13 and 14)

Fig. 1

Key

- 1 Valve housing
- 2 Solenoid valve Y295
- 3 Pressure-reducing valve
- 4 Fan pressure line
- 5 Fan pressure branch-off
- 6 Replenishing pressure line
- 7 Non-return valve

Description

The replenishing system prevents cavitation in the travel oil motor, especially during downhill drives.

Valve housing (1) accomodates solenoid valve Y295 and pressure-reducing valve (3).

The replenishing system is supplied via line (5) with pressure from the fan circuit (4).

During forward travel in 2nd gear, the CU activates solenoid valve Y295 and the fan pressure reaches pressure-reducing valve (3). The adjustable outlet pressure of valve (3) is admitted as replenishing pressure via line (6) to port A1.1 of the control block in which non-return valve (7) is located.

Sinkt der Fahrdruck bei der Bergabfahrt unter den Nachspeisedruck ab, so öffnet das Rückschlagventil (7) und der Fahrölmotor wird mit Druck nachgespeist.

When the travel pressure drops below the replenishing pressure during downhill drives, non-return valve (7) opens and the travel oil motor receives additional pressure oil.

During reverse travel and driving in 1st gear, the replenishing system is off.

Travel oil motor type A6VM for 25/30 km/h (No. 102)

Fig. 1

Fig. 2

Key

- 1 Adjusting device, regulator
- 2 Hydraulic 'Vgz' adjustment
- 3 Travel brake valve
- 4 Secondary valve, 2 units
- 5 Flushing restrictor
- M3 Measuring point for regulation start
- M2 Measuring point for 'Vgz' adjustment

Description

HYDRAULICS

The travel oil motor for machines with a travelling speed of 25 km/h and 30 km/h is set to a lower displacement volume in order to achieve higher motor speeds.

As a protection against inadmissibly high speeds during downhill drives and to improve the braking action, the travel oil motor is equipped with a supplementary hydraulic adjusting device (2). The socalled 'Vgz' adjustment is composed of a springloaded switching piston pressurizing an adjusting piston below the regulator piston.

The adjusting function (2) works only during forward travel in 2nd gear. Port B is the pressure side for forward travel. The return oil from the oil motor must flow as braking pressure past the travel brake valve piston to port A. Port A receives pressure for reverse travel.

During downhill drives in 2nd gear, the travel oil motor is at first in its 'Vgmin' position. Due to the low output torque, the braking pressure between oil motor and braking piston of the travel brake valve is high. When the braking pressure reaches the switching pressure of the 'Vgz' adjustment, the switching piston is being displaced against the spring and braking pressure gets under the adjusting piston.

The adjusting piston raises the regulator piston with the motor being set to an angle approximately in the middle of the adjusting range.

The increase of the angle results in a higher speed of the oil motor. The output torque increases whereby the braking pressure is reduced.

The 'Vgz' adjustment is ineffective in the 1^{st} gear. The switching pressure engageing the clutch for the 2^{nd} gear acts also on the switching piston of the 'Vgz' adjustment.

The travel motor is additionally equipped with a flushing restrictor (5) for temperature limiting.

The restrictor lets the return oil flow into the motor housing and from there through the leakage-oil line to the tank.

Technical Data

Description	MH6.6		MH8.6	
	(25 km/h)	(30 km/h)	(25 km/h)	
Servomotor	A6VM140 HA1T/63W-VZB 380A			
Supplier	Brüninghaus Hydromatik			
Max. suction volume V_{gmax}	140 cm³/rev			
Min. suction volume V_{gmin}	46.1 cm ³ /rev	37.7 cm ³ /rev	50.5 cm ³ /U	
N _{max} at V _{gmax}	3150 min ⁻¹			
N _{max} at V _{gmin}	4700 min ⁻¹			
Nominal pressure p_N	400 bar			
Working pressure p	370 bar			
Maximum pressure p _{max}	450 bar			
Starting regulation	300 bar			
End regulation	310 bar			
Hydraulic over regulation (connection X)				
V_{gmin} at P_x	0 bar			
V_{gmax} at P_x	45 bar			
Connections	1" ¼ - 6000 psi			
(A and B) SAE	(connection plate 380 for installation BVD 25)			
2 secondary valves	MHDBN32K2-20/420YV-026			
	Regulate on starting of opening with differential pressure of 390 bar			
Hydraulic regulation Q _{min} with disengagement (connection X2)				
brake side	А			
Vg	75 cm ³	69 cm ³	74 cm ³	
Switching pressure p	320+30 bar			

Travel oil motor (25 and 30 km/h) with disconnectable hydraulic 'Vgz' adjustment (No. 102)

Description

'Vgz' adjustment designates an intermediate position inside the oil motor adjusting range. The adjustment is purely hydraulic and works only during forward travel.

During reverse travel, the 'Vgz' adjustment is on the pressure side of the oil motor. With high travel pressure, the high-pressure-dependent regulation would respond earlier and thus override the 'Vgz' adjustment.

The 'Vgz' adjustment protects the travel oil motor against inadmissibly high motor speeds, especially during downhill drives where the weight of the machine drives the travel oil motor via the drive train.

The 'Vgz' adjustment is off in 1^{st} gear with the switching pressure of the 2^{nd} gear clutch acting on the control piston of the 'Vgz' adjustment via port X2. The cylinder of the adjustment is then depressurized towards the T2 port of the oil motor.

In 2nd gear, the adjustment shutoff is ineffective as the pressure between the oil motor and the travel brake valve piston acts as braking pressure on the control piston which is pushed against the spring of the 'Vgz' adjustment.

During downhill drives with high speed, a high braking pressure is generated which adjusts the control piston in such a way that the braking pressure becomes the adjusting pressure under the piston side of the adjusting device. The travel oil motor is set to a greater angle whereby the braking pressure drops. On long slopes, the braking pressure is balanced with the spring force of the control piston permitting a pressure build-up below the adjusting piston which moves the oil motor drive unit approximately into the center of its adjusting range. The travel speed and especially the speed of the oil motor are thus effectively limited.

Travel oil motor, travel brake valve (No. 102)

Fig. 1

Key

- 1 Travel brake valve housing
- 2 Travel brake piston
- 3 Non-return and replenishing valves
- 5 Secondary valves
- A Travel pressure from control spool
- A1 Travel pressure to oil motor
- B1 Return from oil motor
- B Return to control spool

Description

The travel brake valve is flange-mounted on the travel oil motor. It works as an automatic restrictor valve protecting the travel oil motor in both directions of rotation against inadmissibly high speeds.

In the pressureless state, the braking piston (2) is held by spring force in its zero position. The oil motor is supported on both sides by the closed braking piston. A residual opening exists through the restrictor non-return valves, so that the machine would roll downhill when the brakes are open.

Fig. 2

The pressure oil during travelling enters the travel brake valve at port A and flows directly through the non-return valve into port A1 of the oil motor. The oil is also admitted into the spring chamber to act on the braking piston.

The pressure level existing during driving on level ground is sufficient to open the braking piston against the adjusting spring to such an extent that the return oil from port B1 of the oil motor can flow unrestricted past the braking piston (2) via a nonreturn valve (3) to port B.

When the pressure drops, the adjusting spring displaces the braking piston so that the return cross section is reduced and the returning oil flow is restricted.

The result is that the speed of the oil motor and the travel speed of the machine on downhill slopes are controlled by the brake valve.

Replenishing valves (3) protect the travel oil motor on both sides against insufficient oil supply, for instance, when the machine rolls down a hill. The precharging pressure oil from the tank channel of the control block flows via replenishing valves in the control block and via the A-B-T connection of the control spool in neutral position to the undercarriage and to the replenishing valves (3) in the travel brake valve.

BRAKING, STEERING AND FAN CIRCUIT

Schematic diagram

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Description

Fig. 2

The diesel engine drives double gear pump (6) via its P.T.O.

One pump feeds the steering system and the fan drive (7). Machines with higher travel speed are moreover equipped with a replenishing system (14) for the travel oil motor. The other pump feeds the braking system and the grab rotation circuit.

The bigger of the two pumps discharges its oil through absorber (46) and via priority valve (44) to steering valve (40). Absorber (46) improves the reduction of noise. Due to its greater flow cross-section with respect to the pipelines, the absorber prevents sound waves from spreading in the hy-draulic oil. For steering pressure monitoring, the pressure line to the steering valve is equipped with pressure switch S17.

In neutral position neutral position of steering valve (40), the attached LS line is connected pressureless via the non-return valve in the steering valve to the tank line, so that priority valve (44) directs the total oil flow to fan drive (7).

The nitrogen accumulator (45) ahead of the fan drive reduces noise. Its function is to reduce the transmission of sound in the hydraulic oil.

The fan motor is driven depending on temperature. A proportional valve Y131 connected in parallel with the gear motor determines the amount of oil used for driving the fan. At low oil temperatures, proportional valve Y131 is opened wider than at high oil temperatures. This results in a corresponding fan speed.

The optional replenishing system (14) receives the fan input pressure and makes it available as feed pressure to the travel oil motor for forward travel in 2^{nd} gear.

The second gear pump supplies its oil to pedal brake valve (41). Besides the dual-circuit pedal valve, the brake valve also accomodates the accumulator loading device.

After loading of the accumulators, the accumulator loading valve switches over and the oil flows out of port S to the optional grab rotation valve (231) and passes from there to the hydraulic reservoir.

Brake system in superstructure and undercarriage (No. 40, 41, 43, 44)

Superstructure

Undercarriage

Fig. 4

The pedal brake valve is a compact unit consisting of a dual-circuit accumulator loading valve, a dualcircuit brake valve and relief valves.

During the loading cycle, a constant oil flow to the accumulators (43) is ensured by a flow divider. When the maximum pressure, i.e. the shutoff pressure, is reached in the braking circuit, the oil flow is stopped and all the oil flows to port S to which the optional grab rotation valve (231) is connected.

When the pressure in the accumulators drops and when the minimum pressure, i.e. the switch-on pressure is reached, the accumulators are filled again and the whole cycle repeats itself.

During braking, two pressure-control valves are activated by the pedal. These valves permit precision control of the braking pressure at ports F1 and F2 in proportion to the effort with which the pedal is depressed and thus the pedal excursion.

When the pedal is at rest, ports F1 and F2 are without pressure and the braking cylinders are connected to the reservoir.

When the pedal is depressed forcefully, the pressure rises in proportion to the change of the pedal angle. When the pedal is depressed to the limit stop, the braking pressure is limited to the preset pressure of 60 bars. This pressure limiting is independent of the accumulator pressure.

Both braking circuits are separated from one another by means of protection valves. If one of the circuits fail, the other remains fully operational. With the intact circuit, the machine can be braked in an emergency.

Fig. 5

The four pressure switches at the underside of the brake valve have the following functions:

- **S17** steering pressure control: above 2 bars, the pilot lamp goes out
- S18 stop-light: above 4 bars, the brake light is on
 NOTE: the stop-light is switched off by the CU after 5 min
- **S18.1** minimum braking pressure monitor: above 105 bars, the warning lamp goes out
- **S62.1** automatic floating-axle blocking: above a braking pressure of 52 bars, the floating axle is blocked.

5-94

Steering system

Steering valve OSPQ 125/200 LS (No. 40)

Fig. 2

Description

The steering unit called OSPQ is a load-sensing steering unit with closed center position and built-in oil flow amplifier.

In porportion to the turning angle of the steering wheel and dependent on the amplification factor, the oil flow is metered past the gearwheel set to the the left (L) or to the right (R).

The amplified flow is the oil which flows via the amplifier and which joins the oil flow from the gearwheel set delivered via the metering orifice.

At steering-wheel turning speeds of less than 10 rpm there is no oil flow amplification. At faster steering speeds, the oil flow amplification joins in and is fully effective for steering-wheel turning speeds of >20 rpm.

The amplification factor is 2.5. This means that at steering-wheel turning speeds of >20 rpm, the amount of oil flowing past the gearwheel set into the steering cylinder is 2.5 times as high as the normal flow.

Neutral

In neutral position, the control spool is closed and the LS line depressurized towards the reservoir.

Steering to the left (example)

When the steering wheel is turned slowly, the amplifier and the control spool are displaced in the direction of the arrow. The oil flows through the amplifier and the metering orifice to the gearwheel set and further via port L to the steering cylinder.

The volume flow to the steering cylinder is determined by the metering orifice. The steering pressure building up behind the metering orifice is admitted to the LS channel and closes the non-return valve. The LS pressure generated by priority valve (44) in the attached LS line influences the opening cross-section at the control spool in such a way that the pressure differential at the metering orifice is maintained.

The remaining oil flows to the fan circuit.

At faster steering speeds, the pressure drop caused by the metering orifice activates the amplifier piston to amplify the oil flow.

The max. steering pressure is limited by the built-in pressure-limiting valve in the LS channel of the steering unit. The steering cylinder and the lines are protected by shock valves. Oil replenishment is ensured by non-return valves preventing cavitation in the steering system.

Emergency steering capability

The steering unit is equipped with a non-return valve permitting manual steering in the event of oil supply failure.

Priority valve (Nos. 44)

Key

- P Pump
- CF Steering (control flow)
- EF Fan drive (excess flow)
- LS Load signal

Fig. 6

Description

The priority valve is used in conjunction with steering valves in closed-center load-sensing design.

The valve divides the discharge flow and directs the two partial flows to the steering system and the fan drive with the steering system having priority.

The priority valve works like a three-way flow control valve with the regulated flow (CF) being made available to the steering system and the remaining flow (EF) to the fan drive.

Neutral

The discharge flow is admitted to both sides of the control piston via metering orifices. In neutral position, the load-signal line (LS) is connected via the non-return valve in the steering valve with the resevoir.

The control spool is displaced against the die 7-bar spring so that the oil now flows via port EF to the fan drive.

Steering

During steering, the control piston is positioned by the regulating forces in such a way that its control edge maintains a pressure differential via the metering orifice in steering valve (40).

Fan circuit

Schematic

Fan motor

Key

- 1. Steering and fan pump
- 2. Silencer
- 3. Priority valve
- 4. Lenkventil
- 5. Fan motor, gearwheel motor
- 6. Cover with proportional valve Y131
- 7. Nitrogen accumulator
- 8. Combined radiator
- 9. Proportional valve with pressure limiting
- 10. Pressure measuring point
- 11. Hydraulic reservoir
- 12. Braking pump
- 13. Brake pedal valve
- 14. Grab rotation valve

Combined radiator with controlled fan drive (No. 7)

Description

The combined radiator comprises three coolers with the foremost cooler in driving direction being traversed by the return oil from the working hydraulics, the rearmost one by the coolant from the diesel engine and the uppermost one by the charge air form the turbocharger. The fan wheel is driven by a speed-controlled gearwheel motor. The speed is controlled dependent on temperature by the load-limit regulator. At low temperatures, the fan turns slowly. This means that noise emissions are kept low and power demands are minimized. Moreover, the coolant and the hydraulic oil reach their operating temperature very fast.

The flow of cooling air is sucked by the fan wheel from the center of the excavator through the combined radiator and discharged to the outside through the air vents in the hood.

Gear motor (5) receives pressure oil from gear pump (1) via priority valve (3).

Fan motor (5) is connected to a nitrogen accumulator (7) whose function is to absorb sound waves in the hydraulic oil.

The pressure oil is also available in (6) of the oil motor where proportional valve Y131 (9) is provided as a by-pass.

The load-limit regulator A10 evaluates three temperature signals permanently supplied by coolant temperature sensor B13.1, charge-air temperature sensor R10.3 and hydraulic oil temperature sensor R14. The higher of the three values is used for controlling proportional valve Y131. Lower temperatures result in the load-limit regulator supplying a high current to the proportional valve. The control piston is opened wide by the electrical force and creates a by-pass through which the oil flows past the oil motor to the tank, causing the fan to turn at a lower speed.

With increasing temperature, the load-limit regulator reduces the current to the proportional valve.

The control piston opens less so that the oil motor gets a higher amount of oil.

The fan speed increases.

A pressure-limiting valve integrated in proportional valve (9) protects the fan circuit against pressure peaks. After engine stop, the oil supply in the oil motor is ensured during the fan wheel delay by a replenishing valve until the fan stops.

In the event of defects, e.g. broken cable, the proportional valve is without current and the fan wheel turns at maximum speed. In this case, the pressure in the fan circuit is limited by the pressurelimiting valve.

Replenishing system for 25/30 km/h version (Nos. 13 and 14)

Fig. 1

Key

- 1 Valve housing
- 2 Solenoid valve Y295
- 3 Pressure-reducing valve
- 4 Fan pressure line
- 5 Fan pressure branch-off
- 6 Replenishing pressure line
- 7 Non-return valve in port A1.1
- 8 Leakage-oil line

Description

The replenishing system prevents cavitation in the travel oil motor, especially during downhill drives.

Valve housing (1) accomodates solenoid valve Y295 and pressure-reducing valve (3).

The replenishing system is supplied with pressure from fan circuit (4) via line (5).

During forward travel in 2nd gear, the CU activates solenoid valve Y295 and the fan pressure reaches pressure-reducing valve (3). The adjustable outlet pressure of valve (3) is admitted as replenishing pressure via line (6) to port A1.1 of the control block in which non-return valve (7) is located.

When the travel pressure drops below the replenishing pressure during downhill drives, non-return valve (7) opens and the travel oil motor receives additional pressure oil.

When the travel pressure increases again, nonreturn valve (7) is closed against the replenishing pressure.

During reverse travel and driving in 1st gear, the replenishing system is off.

This page left blank intentionally

UNDERCARRIAGE STABILIZERS

Schematic diagram

Description

The stabilizers and their variants enlarge the range of application of the machines.

The levelling blade can be used to perform levelling work. The blade is parallel-guided to ensure that the same cutting angle is maintained independent of blade height.

In stabilized condition, the levelling blade improves the stability of the machine.

When lowered, the outriggers improve the supporting capabilities and the stability of the machine, for instance, when heavy loads are being lifted.

The levelling blade and outrigger cylinders are equipped with integrated and pilot-operated nonreturn twin valves blocking off the piston and rod sides of the cylinders without producing leakage oil.

Neutral

Only pump 2 supplies oil to the stabilizers. The oil is admitted via port P2 into the control block and to pressure sensor B210, to the pressure measuring point and to the primary pressure-limiting valve.

In neutral position of the stabilizer control spool, the flushing oil volume from pump 2 flows past the control spool into channel C2 and via the tank channel precharging valves into the return line.

Both working lines A2 and B2 to the stabilizer cylinders are then also connected with the leakage oil channel via the pressure relief of the control spool. This pressure-relief function is necessary for perfect closing of the non-return twin valves in the stabilizer cylinders. Any existing residual pressure would keep the twin valves open so that the stabilizer cylinders would give in. The stabilized machine might then loose its supporting stability or the stabilizers, when in raised position, might lower on their own.

Starting a movement

After starting the stabilizing function in one direction, the virtual pressure switch DSL opens, before the movement begins. The ESX activates solenoid valve Y113 in the pilot-control unit (60) and the pilot pressure is admitted via the inlet filter in port PV to proportional valves Y202a and Y202b.

The ESX energizes also proportional valve Y242, whereby load-sensing pressure is admitted to pump regulator port X1.

Lowering

During lowering of the stabilizers, proportional valve Y202b is energized from the ESX whereby the pilot pressure is being admitted into the lower cap. The control spool moves upwards against the spring assembly, blocking off the path between channel C2 and the tank channel so that the oil must flow through load-holding valve (1) into channel P and past the control edge of the spool to port A2 and from there through rotor (75) to the undercarriage and the piston sides of stabilizer cylinders (115 and 116).

The pressure opens a non-return valve in the twin valve to the piston side so that the oil flows directly into the cylinder. At the same time, the pressure unblocks the second non-return valve by means of an opening piston so that the outlet back to the reservoir is open.

Raising

During raising of the stabilizers, proportional valve Y202a is energized from the ESX and pilot pressure is admitted into the upper cap. The control spool moves downwards against the spring assembly.

The oil from pump 2 flows via port B2 to the rod sides of the stabilizer cylinders. The non-return twin valve is again unblocked and traversed by the oil flow in reverse direction.

Stabilizer control spool

- P02 Pressure channel of pump 2
- C2 Discharge channel for pump 2
- 1 Load-holding valve
- P Pressure channel ahead of A2 and B2
- L Pressure channel of pump 2
- T Discharge channel for pump 2
- 2 Load-holding valve
- P1 Pressure channel ahead of A2 and B2

Levelling blade cylinder (No. 115)

Description

Key

- 1 Levelling-blade cylinder, complete
- 2 Pilot-operated check valve on piston side
- 3 Control piston
- 4 Pilot-operated check valve on rod side

The double-acting cylinder with pilot-operated twin check valve is used for lifting and lowering of the levelling blade.

For lowering of the blade, oil flows to port B and is directly admitted via check valve (2) to the piston side. Check valve (4) is opened at the same time by control piston (3) for return oil discharge.

During lifting of the blade, the oil enters the cylinder at port A and flows via check valve (4) direct to the rod side and to control piston (3). The control piston opens check valve (2) for return oil discharge.

Outrigger cylinder (No. 116)

Description

Fig. 2

Key

- 1 Outrigger cylinder, complete
- 2 Pilot-operated check valve on piston side
- 3 Control piston
- 4 Pilot-operated check valve on rod side

The double-acting cylinder with pilot-operated twin check valve is used for extending and retracting of the outriggers.

To extend the outriggers, oil flows to port B and is directly admitted via check valve (2) to the piston side. Check valve (4) is opened at the same time by control piston (3) for return oil discharge.

During retraction of the outriggers the oil enters the cylinder at port A and flows via check valve (4) direct to the rod side and to control piston (3). The control piston opens check valve (2) for return oil discharge.

Stabilization variants

Description

In the different stabilization variants, the oil for extension and retraction does not flow directly into the cylinders, but into a solenoid valve combination which can be equipped with two, three or four solenoid valves depending on the variant. The solenoids are of the same design and have an open center position.

All solenoid valves are equipped with emergency operation devices to permit raising of the outriggers after a power supply failure when pressure is still available.

The solenoid valve combination is installed in the center of the undercarriage.

The line transporting the oil from pump 2 to the piston sides of the outrigger cylinders is for all variants connected to port P of the valve combination. The lines to the piston-side ports of the cylinders are connected to the individual solenoid valves. The rod-side ports are connected directly to the control block via the rotor. The valve combination is moreover equipped with a line connected to port T.

Ignition switch-on

After ignition switch-on, all solenoid valves are energized so that the oil flow is stopped.

Actuating the preselector switches

By actuating the stabilization preselector switches in the lefthand control console, the respective solenoid valves are switched off. This is confirmed by the corresponding LEDs lighting up.

The solenoid valves are set to the open zero position and the oil flow is enabled.

Stabilization A2 (No. 107)

The hydraulic diagram with P/N 4530210, sheet 3 of 7 (page 5-19) shows variant A2.

When both preselector switches are activated, the two outrigger cylinders can be moved in parallel. Individual control of each outrigger is achieved by switching on the one or the other solenoid valve.

Stabilization PL/A2 (No. 107)

The hydraulic diagram with P/N 4530210, sheet 4 of 7 (page 5-20) shows the PL/A2 variant.

When both preselector switches are activated, the levelling blade and the A2 outriggers can be moved in parallel. If only one preselector switch is activated, the corresponding outrigger is the only one that can be moved.

Stabilization A4 (No. 107)

The hydraulic diagram with P/N 4530210, sheet 5 of 7 (page 5-21) shows the A4 variant.

This variant permits moving the four outrigger cylinders in parallel if both preselector switches are depressed. As an alternative, the outrigger cylinders on the right or the left can be operated in parallel.

Individual stabilization (No. 108)

Valve combination No. 108 in the undercarriage:

The hydraulic diagram with P/N 4530210, sheet 6 of 7 (page 5-22) shows the individual outrigger control variant PL/A2.

When the three preselector switches are activated, the levelling blade and the A2 stabilization can be moved in parallel. The preselector switches permit moving the levelling blade and the outriggers independently of each other.

The outriggers can also be controlled individually.
5-107

Individual stabilization A4 (No. 109)

Valve combination No. 109 in the undercarriage:

The hydraulic diagram with P/N 4530210, sheet 7 of 7 (page 5-23) shows the individual outrigger control A4.

After actuation of the four preselector switches solenoid valves Y48.1, Y48.2, Y48.3 and Y48.4 are de-energized.

In this position they are open so that the four outrigger cylinders can be moved in parallel.

When solenoid valves Y48.1 and Y48.2 are off, only the front outriggers can be moved in parallel. When solenoid valves Y48.3 and Y48.4 are off, only the rear outriggers can be moved in parallel.

The front or rear outriggers can thus be operated in pairs.

By activating individual solenoids, there is moreover the possibility to lock out the pertaining outrigger cylinder while the others remain free to move.

All outrigger cylinder can thus be operated individually.

This stabilization variant permits operating the outrigger cylinders in any conceivable combination.

Reference in the text to "...outrigger cylinders moving in parallel..." does not imply that the outriggers move synchronously up and down.

The outrigger cylinders with the lowest bearing resistance will move before the others do.

BOOM CYLINDER CIRCUIT WITH REGENERATION CIRCUIT Schematic diagram

Fig. 1

The description is based on the schematic diagram and the section drawing of the control spool.

The circuit for the boom cylinders is fed by both pumps. Double admission is only used for boom raising. When a second function is activated at the same time, the boom cylinders receive only the flow from one pump.

Neutral

In neutral position, the flushing oil amounts from both pumps flow past the control spool to the C1 and C2 channels and then past the other control spools into the tank channel. The circulating pressure opens both load-holding valves (1) so that the oil flows are combined in channel P (bridging channel).

The secondary valves (3+4) protect the boom cylinders against inadmissibly high pressure peaks.

The tank channel preloading pressure is available via replenishing non-return valves on both sides of the boom cylinders to prevent cavitation.

Activation of a function

Any activation of a function is detected by the ESX. The virtual pressure switch DSL in the ESX opens before the movement starts. The ESX opens the solenoid valve Y113 in the pilot-control unit (60) so that the pilot pressure gets to proportional valves Y203a and Y203b through the inlet filter in port PV.

Boom raising

When the equipment is raised, the ESX energizes proportional valves Y241 and Y242 of the pump control and load-sensing pressure is admitted to both pump regulators at port X1.

In addition, proportional valve Y203b is energized by the ESX so that pilot pressure gets into the lower cap. The control spool moves upwards against the spring.

The control edges close the C1 and C2 channels and the oil from both pumps must flow via the load-holding valves (1) into the P channel (bridging channel) and past the open control edge to port B3. The oil flows through B3 to the boom cylinder piston sides through the pipe break protections at the boom cylinder or through the alternative boom check valve in control block port B3. The return oil from the cylinder rod sides enters the control block at port A3 and flows past the control edge into the tank channel.

Boom lowering

During lowering of the equipment, proportional valve Y241 is energized by the ESX and loadsensing pressure is admitted to the pump regulator of pump 1.

In addition, proportional valve Y203a is energized, and pilot pressure admitted to the upper cap so that the control spool moves downwards.

The pilot pressure from the upper cap opens also the boom check valves or the alternative pipe break protections to enable the return flow from the cylinders.

After opening of the pipe break protections, the load pressure existing on the piston sides activates pressure sensor B74 (58), which sends a corresponding current signal to the ESX.

In conjunction with the lowering action, the regeneration function is activated as long as there is load pressure on the piston sides.

After the bucket has settled on the ground or penetrated into the soil, the load pressure on the piston side diminishes. The pressure drop is evaluated by pressure sensor B74 and the ESX energizes the proportional valves of the control displacement in such a way that the regeneration function is not operational.

Control spool details

The description is based on the schematic diagram and the section drawing of the control spool.

Boom lowering with regeneration function (with load pressure on the piston sides)

Proportional valve Y203a is controlled by a lower current signal so that the downward stroke of the control spool is shorter. The control edge to channel C1 is slightly restricted so that a partial flow from pump 1 passes via the load-holding valve (1) into the P channel (bridging channel) and via the control notches of the control spool into the A3 channel and to the rod sides.

The other partial amount of oil from pump 1 flows via the restricted control edge to the C1 channel and the control spools behind.

The oil from pump 2 in channel P02 can flow past the long waist of the control spool into channel C2. Pump 2 has no influence on the lowering movement.

The return oil from the piston sides of the cylinders flows via port B3 and through staggered transverse ducts in the control spool into its axial center bore. The return pressure opens the lower non-return valve (6) and the oil, together with the partial flow from pump 1, leaves at port A3 and flows to the two rod sides of the boom cylinders.

The piston sides displace more oil than the rod sides can absorb. The excess oil generates a return pressure opening the upper preloading valve (5) in the hollow piston to the tank channel. The preloading pressure thus generated ensures filling of the rod sides during fast lowering movements.

The control of pump 1 during boom lowering ensures a transition without delay from pressureless lowering to pressure build-up when the digging tool penetrates into the soil.

Boom lowering with pressure, bucket touching or penetrating into the soil

(without load pressure at the pistons sides, the regeneration function is not operational)

When the bucket is set on the ground, the pressure drop at the piston sides is detected by sensor B74 and signals a current change to the ESX. The ESX now increases the current to proportional valve Y203a so that the control spool stroke becomes longer.

The control edge closes channel C1 and the oil from pump 1 flows completely through the lower load-holding valve (1) into the P channel (bridging channel) and then past the open control edge to port A3 and on to the rod sides of the boom cylinders.

The return oil from the piston sides flows through the opened pipe break protections or through the alternative boom check valve in port B3 and then through the transverse ducts into the axial center bore of the control spool. Since the lower nonreturn valve (6) remains closed under the influence of the high pressure from pump 1, the return oil must flow completely via the upper preloading valve (5) into the tank channel. The upper nonreturn valve (5) with its preloading pressure is ready to fill the rod sides via the lower non-return valve (6) if there is a risk of cavitation in the rod sides when the machine is excavating.

Boom cylinder control spool with regeneration circuit

C2 Connecting channel for pump 2 P P channel (bridging channel)

- A3 Boom cylinder rod side
- B3 Boom cylinder piston side

- 4 Secondary valve rod side
- 5 Preloading valve
- 6 Non-return valve
- T Preloaded tank channel

Boom check valve with emergency operation capability

Description

The check valve (1) serves the purpose of retaining the load pressure at the piston side of the boom cylinders without leakage.

The load pressure prevailing in the cylinders when the equipment is up is admitted via port B3-Kf to the rod side of the check valve where an opening force is active. At the same time, the load pressure is admitted via the orifice in restrictor nonreturn valve (2) to the spring cavity and closes the check valve assisted by spring force.

During boom lowering, the pilot pressure (5) opens unlocking valve (3) so that the closing pressure from the spring cavity can escape towards leakage oil channel (6). When the equipment is raised, the pump pressure opens the check valve, with the oil being displaced from the spring cavity via non-return valve (2).

Emergency operation

In a emergency (boom cannot be lowered), the unblocking valve (3) can be actuated by means of screw (4). When screw (4) is turned in, valve (3) opens the passage to leakage oil channel (6) of the control block. The lowering speed of the equipment depends on the opening cross section in unlocking valve (3).

Fig. 5

Pipe break protection valves (Nos. 202 and 210)

Description

- A Control block connection
- B Cylinder connection
- X Pilot-pressure connection
- E Compensation line connection, only used with boom cylinders
- SV Secondary valve, adjustable

Fig. 2

Pipe break protection valves are safety valves that are installed directly at the cylinders. Depending on the function and the use of the cylinder, the pipe break protections are installed at the pistonor rod-side connection of a cylinder.

The pipe break protection valve is a hydraulically operated non-return valve with variable flow cross section retaining the load pressure of the oil column in the cylinder without leakage.

Inadmissibly high cylinder pressures are reduced via the secondary valve to the control block and from there via the pertaining secondary valve towards the reservoir.

The STOP situation in the drawing opposite shows a pipe break protection valve in closed condition. The cylinder pressure acts via port B on the spring cavity behind the non-return valve and at the secondary valve. The valve piston is closed by the pressure assisted by spring force.

The UP situation shows the oil flow from the control block via port A through the valve piston opened by pressure to port B in the cylinder compartment.

The DOWN situation shows how the oil column from the cylinder can flow to the contol block after opening of the pipe break protection. Opening is effected by pilot pressure at port X acting on the pilot-control piston. The pilot-control piston is displaced against the compensator springs with the plunger opening a pressure-relief valve in the valve piston against the spring. The spring cavity is depressurized towards the control block and the valve piston opens in proportion to the value of the pilot pressure at port X.

The STOP position is reached again by shutting off the pilot pressure. The pilot-control piston ist retracted by the springs. The pressure-relief valve is closed by spring force and the cylinder pressure builds up in the spring cavity behind the valve piston. The valve piston is forced by the load pressure on its seat in the valve, thus retaining the oil column in the cylinder without leakage.

Fig. 4

BUCKET CYLINDER CIRCUIT Schematic diagram

The description is based on the schematic diagram and the section drawing of the control spool.

The circuit for the bucket cylinders is fed by pump 1 and pump 2. The combination of the oil flows (double admission) is only used when the bucket is actuated alone.

When a second function is activated at the same time, the bucket cylinder receives only the flow from one pump.

Neutral

In neutral position of the control spool, the flushing oil amounts from pump 1 and pump 2 flow past the control spool to the C1 and C2 channels and then past the other control spools into the tank channel.

The circulating pressure opens both load-holding valves (1) so that the oil flow from pump 1 and the flow from pump 2 are combined in channel P (bridging channel).

The non-return valves of the bucket parallel circuit (2) are equally opened by the circulating pressure of the pumps.

The pressure generated by the tank channel preloading valves is available via replenishing nonreturn valves, which are part of the secondary valves (3+4), on both sides of the bucket cylinder to prevent cavitation.

Activation of a function

The activation of a bucket function is detected by the ESX. Virtual pressure switch DSL opens before the movement begins. The ESX opens the solenoid valve Y113 in the pilot-control unit (60) so that the pilot pressure gets to proportional valves Y204a and Y204b through an inlet filter in control block port PV.

The ESX energizes also proportional valves Y241 and Y242 of the pump control to admit loadsensing pressure to the pump regulators at port X1.

Bucket cylinder extension

When the function is activated, proportional valve Y204a is energized by the ESX and pilot pressure gets into the lower cap. The control spool moves downwards against the spring assembly.

Channels C1 and C2 are closed and the oil from both pumps must flow via the load-holding valves (1) into the P channel (bridging channel) and past the control edge to port A4 and on to the piston side of the bucket cylinder.

The oil returning from the rod side flows through the adjustable restrictor non-return valve (206) and the control block port B4 to the tank channel.

Bucket cylinder retraction

During retraction of the bucket cylinder, proportional valve Y204b is energized by the ESX and the pilot pressure is admitted to the lower cap. The control spool moves upwards against the spring.

The oil flows through port B4 and restrictor nonreturn valve (206) to the rod side of the bucket cylinder.

The oil returning from the piston side flows through port A4 into the tank channel.

Bucket cylinder control spool

T Preloaded tank channel

Bucket parallel connection circuit

Fig. 3

Key

- 1 Valve housing
- 2 Inlet orifice
- 3 Non-return valve
- 4 Spring

Description

The bucket parallel connection permits executing a controlled bucket movement together with a boom and stick movement. This is of use when three or more cylinder functions are summoned at the same time.

The oil supply for the boom function is ensured by pump 1 and that of the stick function by pump 2.

The bucket function in between receives partial oil flows from pump 1 and 2 via both bucket parallel connection valves.

Since this a parallel connection, the higher load pressure of the boom, for instance, has an influence on the amount of oil supplying the bucket cylinder. An inlet orifice in each bucket parallel connection valve prevents the boom and/or stick function from being significantly influenced when the bucket movement is activated in parallel.

Restrictor non-return valve (No. 206)

Fig. 5

Fig. 6

Key

- 1 Housing
- 2 Restrictor no-return piston
- 3 Spring
- 4 Setscrew

Description

The restrictor non-return valve is a combination of an adjustable restrictor valve and a non-return valve. The valve is installed on the rod side of the bucket cylinder.

The valve serves the purpose of extending the cylinder at restricted flow so that there is no risk of oil shortage on the piston side of the cylinder.

In this case, the return oil is evacuated from the rod side through the adjustable throttling section. Setscrew (4) limits the stroke of restrictor piston (2) and thus the cross-section open to the flow.

If the restrictor piston is turned with the setscrew completely down to the stop, there is still part of the cross-section remaining open with the result of a marked slow-down of the cylinder movement. The oil would moreover be heated up considerably.

When the bucket is emptied, i.e. when the cylinder is retracted, the oil flows through the non-return valve unthrottled into the rod side of the cylinder.

Key

- 1 Ballcock, piston side
- 2 Ballcock, rod side
- 3 Coupling, grab closed
- 4 Coupling, grab opened
- 206 Restrictor non-return valve

Fig. 8

The machine is switched over from backhoe bucket to grab operation and vice versa with two ballcocks.

The retracted bucket cylinder is blocked off on the piston side with ballcock (1) and on the rod side with ballcock (2).

For switching, both ballcocks must be used.

For safety reasons, the housing of ballcock (2) is equipped with a pressure-limiting valve protecting the rod side of the bucket cylinder against inadmissibly high pressures as a result of erroneous operation of the ballcocks.

Blocking off only the ballcock on the rod side (2) for switching over constitutes a case of erroneous operation.

STICK CYLINDER CIRCUIT WITH REGENERATION FUNCTION Schematic diagram

The description is based on the schematic diagram and the section drawing of the control spool.

The stick cylinder circuit is fed by pump 1 and pump 2. The combined oil flows (double admission) act in both cylinder directions.

When a further cylinder is activated at the same time, the stick cylinder receives only the oil flow from one pump.

Neutral

In neutral position, the flushing oil amounts from both pumps flow past the control spool to the C1 and C2 channels and then past the other control spools into the tank channel. The circulating pressure opens both load-holding valves (1) so that the oil flows from both pumps are combined in channel P.

The secondary valves protect the cylinder on both sides and the lines against pressure peaks.

The tank channel preloading pressure is available via the replenishing non-return valves to both cylinder sides to prevent cavitation.

Activation of a function

Any activation of a function is detected by the ESX. The virtual pressure switch DSL in the ESX opens before the movement starts. The ESX opens the solenoid valve Y113 in the pilot-control unit (60) so that the pilot pressure gets to proportional valves Y205a and Y205b through the inlet filter in port PV. The ESX energizes also proportional valves Y241 and Y242 of the pump control to admit load-sensing pressure to the pump regulators at port X1.

Extending the stick

Proportional valve Y205b is energized by the ESX and pilot pressure gets into the lower cap and moves the control spool upwards against the spring.

The control edges close the C1 and C2 channels and the oil from both pumps must flow via the load-holding valves into the P channel and past the open control edge to port B5. The oil flow opens the controlled check valve in port B5 and passes to the rod side of the stick cylinder. The return oil flows via port A3 into the tank channel.

General lowering of stick

During lowering of the stick, proportional valve Y205a is energized and load-sensing pressure is admitted to the upper cap. The pilot pressure moreover unblocks the check valve in port B5.

The control spool moves downwards and the transverse bore in the hollow piston opens the passage to rod side channel B5. The oil returning from the cylinder rod side flows through the transverse duct into the axial center bore of the control spool and reaches the lower non-return valve (1) and the upper preloading valve (2).

The piston side connection A5 of the cylinder is filled with oil from both pumps via the P channel.

Pressureless lowering of stick

As long as the stick has not reached the ground during lowering, piston side A5 is virtually without pressure. The oil returning from the rod side which is preloaded in the center bore by non-return valve (2) opens the lower non-return valve (1), flows through the transverse duct and fills piston side A5 of the stick cylinder together with the oil flows from the pumps. The greater oil volume on the piston side causes the stick to sink faster. At the same time, the staggered transverse ducts in the control spool throttle the return flow from the rod sides in such a way that any uncontrolled swinging of the stick caused by cavitation is avoided.

Lowering the stick with pressure, excavating tool penetrates into the ground

When the bucket rests on the ground, the pressure on the piston side A5 rises because of the resistance offered by the ground. This pressure is admitted to the lower non-return valve (1) on the spring side. The valve closes against the preloading pressure in the center bore. The oil returning from rod side B5 must now flow completely via preloading valve (2) to the tank channel.

Stick cylinder control spool

This page left blank intentionally

Stick check valve with emergency operation capability

Fig. 3

Key

P01	Pressure channel of pump 1
C1	Connecting channel for pump 1
P02	Pressure channel of pump 2
C2	Connecting channel for pump 2
Р	P channel (bridging channel)

- A5 Stick cylinder- piston side
- B5 Stick cylinder- rod side
- T Preloaded tank channel
- 1 Non-return valve
- 2 Preloading valve

Fig. 4

The check valve (1) serves the purpose of retaining the load pressure at the rod side of the stick cylinder without leakage.

The load pressure prevailing in the cylinder when the stick is extended is admitted via port B5-Rf to the rod side of the check valve where an opening force is active. At the same time, the load pressure is admitted via the orifice in restrictor non-return valve (2) to the spring cavity and closes the check valve assisted by spring force.

During stick lowering, the pilot pressure (5) opens unlocking valve (3) so that the closing pressure from the spring cavity can escape towards leakage oil channel (6).

When the stick is extended, the pump pressure opens the check valve, with the oil being displaced from the spring cavity via non-return valve (2).

Emergency operation

In a emergency (stick cannot be lowered), the unblocking valve (3) can be actuated by means of screw (4).

When screw (4) is turned in, valve (3) opens the passage to leakage oil channel (6) of the control block. The speed with which the stick is lowered depends on the opening cross section in unlocking valve (3).

ADJUSTING CYLINDER CIRCUIT WITH PRESSURE COMPENSATOR AND RELIEF VALVE

Schematic diagram

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

The description is based on the schematic diagram and the section drawing of the control spool.

The oil from pump 2 flows into two pump channels in the control block. The channels are labelled P2 and P02. Channel P2 passes through the blanking plate (55) and back into the control block (50) as channel P02.

The adjusting cylinder circuit is fed by a partial flow from pump 2 via a pressure compensator and channel P2. The adjusting cylinder receives a load-dependent discharge flow. The amount of oil from pump 2 that is not needed for the adjusting cylinder returns through the relief valve and bypass channel C2 back into the P02 channel where it is available for subsequent cylinder functions.

Neutral

In neutral position of the adjusting cylinder, the flushing oil from pump 2 flows into channel P2. It is available at the closed relief valve and flows at the same time to the pressure compensator.

The oil moreover flows through channel P02 past the waist of the control spool into channel C2 and then via the following control spools into the tank channel. The tank channel preloading valves generate circulation pressure which is available via the replenishing non-return valves at the secondary valves on both sides of the adjusting cylinder.

Secondary valves (3+4) protect the adjusting cylinder against inadmissibly high pressure peaks.

Secondary valve in pipe break protection system

The rod side of the adjusting cylinder is equipped with a pipe break protection with a secondary valve of its own. In the secondary case, this valve opens so that the control piston in the pipe break protection opens, too, and that the peak pressure passes through the line to port A6 and through secondary valve (4) into the tank channel.

Activation of a function

Any activation of the adjusting cylinder is detected by the ESX. The virtual pressure switch DSL in the ESX opens before the movement starts.

The ESX opens the solenoid valve Y113 in the pilot-control unit (60) so that the pilot pressure gets to proportional valves Y206a and Y206b through the inlet filter in port PV. The ESX energizes also proportional valve Y242 of the pump control to admit load-sensing pressure to the pump regulator of pump 2 at port X1.

Retracting the boom adjusting cylinder, extending the upper boom section

Proportional valve Y206b is energized by the ESX and pilot pressure gets into the lower cap and moves the control spool upwards against the springs. The control edges closes the P02 channel whereby the pump pressure rises. Beyond 15 bars, the pressure compensator opens and the oil is available at the opening cross-section of the control spool.

Further flow details: see pressure compensator.

Extending the boom adjusting cylinder, lowering the upper boom section

During extension of the adjusting cylinder, proportional valve Y206a is energized and load-sensing pressure is admitted to the upper cap with the control spool being displaced downwards against the springs. At the same time, the pipe break protection opens so that the oil can return to the tank.

Beyond 15 bars, the pressure compensator opens and the oil is available at the opening cross-section of the control spool.

Further flow details: see pressure compensator.

Boom adjusting cylinder (neck cylinder) control spool

Fig. 2

Key

- P1 Pressure channel of pump 1P01 Pressure channel of pump 1
- C1 Connecting channel for pump
- P2 Pressure channel of pump 2
- P02 Pressure channel of pump 2
- C2 Channel to stick control spool
- PZ Regulated pressure from compensator
- T Preloaded tank channel

- A6 Adjusting cylinder rod side
- B6 Adjusting cylinder piston side
- PLS Load-pressure channel
- 1 Pressure compensator
- 2 Plug
- 3 Secondary valve piston side
- 4 Secondary valve rod side

Boom adjusting cylinder control spool with compensator

Fig. 3

Boom adjusting cylinder control spool with pressure relief valve

Pressure compensator

Function

The function of the pressure compensator is to maintain the discharge flow to the cylinder as determined by the cross-section of the control spool even under varying load pressures.

The compensator is represented in the figures in its three states of operation.

Fig. 1

Operation

After engine start, pump 2 supplies oil to the inlet channel of the pressure compensator. During activation of a function, the pump generates a pressure of >15 bars. This pressure is admitted through the transverse bore and the orifice and builds up behind the piston. The force FP moves the piston against the spring whereby the non-return function of the piston is disabled. The oil from pump 2 flows into the P channel and to the control spool whose control edge is still closed.

Fig. 2

Regulation

Fig. 3

Key

Ff	Spring force
Fls	Force of the load pressure
Fρ	Force of the pressure in channel P

Adjusting cylinder activated

When the control spool is activated, the control edge is opened. The opening cross-section of the edge determines the discharge flow to the adjusting cylinder and thus its moving speed. On account of the hydraulic resistance in the cylinder, a load pressure is generated.

Between the regulating edge of the compensator and the control edge of the control spool, i.e. in the P channel, the pressure rises. This pressure rise equally causes the force FP acting on the piston to increase.

At the same time, the load pressure of the cylinder is available in the spring cavity of the pressure compensator.

This load pressure with its force FLS together with the spring force FF act against the piston.

By the forces acting from both sides, the piston is positioned in such a way that the resulting flow cross-section at the regulating edge is such that a pressure build-up occurs in channel P.

By means of the control edge, this pressure in channel P generates a pressure differential with respect to the load pressure in the cylinder.

The compensator keeps this pressure differential constant as long as the control spool is not moved to another position.

To each change of the load pressure, the piston responds briefly by changing the cross section at the regulating edge until the forces acting on the piston are again in equilibrium. The pressure differential before and behind the control spool edge is thus kept constant.

The discharge flow to the cylinder is therefore indepedent of the load pressure. The result is that – even under varying load conditions – the cylinder always moves at the same speed.

Pressure compensator, relief valve and LS pressure limiting

Key			
P2	Pressure channel of pump 2	1	Pressure compensator
C2	Channel to stick control spool	2	Relief valve
ΡZ	Regulated pressure from compensator	3	LS pressure limiting valve
PLS	Load-pressure channel	4	Shuttle valve
A6	Adjusting cylinder- rod side	Т	Preloaded tank channel
B6	Adjusting cylinder- piston side	MS	Port with sensor B 239

Relief valve

Fig. 2

Description

For the oil from pump 2, the relief valve constitutes a by-pass of the adjusting control spool towards the stick control spool. When the adjusting and the stick cylinder are actuated at the same time, the oil flow of pump 2 is divided to serve both functions.

In the original position, the springs forces the piston into the blocking position.

In operation, the pressure from pump 2 is admitted to the piston against the spring force. If the pump pressure reaches 35 bars, the piston opens and the oil flows into channel C2 and to the stick control spool. The load pressure of the adjusting cylinder reaches the spring cavity and acts together with the force of the spring on the piston. In order to maintain the connection with the channel C2, the pump pressure must now overcome the spring force plus the force of the LS pressure.

The LS pressure is limited by means of a presettable pressure-limiting valve.

When the adjusting cylinder is moved to its limit stop position, the pressure build-up reaches 320 bars (measured at measuring point M2).

Pipe break protection valve

Description

- A Control block connection
- B Cylinder connection
- X Pilot-pressure connection
- E Connection for compensation line, only used with boom cylinders

SV Secondary valve, adjustable

Fig. 2

Pipe break protection valves are safety valves that are installed directly at the cylinders. Depending on the function and the use of the cylinder, the pipe break protections are installed at the pistonor rod-side connection of a cylinder.

The pipe break protection valve is a hydraulically operated non-return valve with variable flow cross section retaining the load pressure of the oil column in the cylinder without leakage.

Inadmissibly high cylinder pressures are reduced via the secondary valve to the control block and from there via the pertaining secondary valve towards the reservoir.

The STOP situation in the drawing opposite shows a pipe break protection valve in closed condition. The cylinder pressure acts via port B on the spring cavity behind the non-return valve and at the secondary valve. The valve piston is closed by the pressure assisted by spring force.

The UP situation shows the oil flow from the control block via port A through the valve piston opened by pressure to port B in the cylinder compartment.

The DOWN situation shows how the oil column from the cylinder can flow to the control block after opening of the pipe break protection. Opening is effected by pilot pressure at port X acting on the pilot-control piston. The pilot-control piston is displaced against the compensator springs with the plunger opening a pressure-relief valve in the valve piston against the spring. The spring cavity is depressurized towards the control block and the valve piston opens in proportion to the value of the pilot pressure at port X.

The STOP position is reached again by shutting off the pilot pressure. The pilot-control piston ist retracted by the springs. The pressure-relief valve is closed by spring force and the cylinder pressure builds up in the spring cavity behind the valve piston. The valve piston is forced by the load pressure on its seat in the valve, thus retaining the oil column in the cylinder without leakage.

Illustrations see chapter on pipe break protection systems.

Fig. 4

COMBINED FUNCTIONS

Parallel actuation of boom, bucket, adjusting and stick cylinder

For this combination of cylinder functions, the figure represents the oil flows of pump 1 and pump 2.

The pilot pressure is available via port PV at the proportional valves for control spool adjustment. In the example chosen, the ESX energizes the proportional valves Y203b, Y204b, Y205b and Y206b whereby the pilot pressure gets into the lower caps and displaces the control spools upwards.

The oil from pump 1 flows through channel P01 to the boom cylinder control spool and then via the load-holding valve into channel P past the control edge through the boom check valve to port B3-Kf and on to the boom cylinders. Channel C1 is closed by the control edge so that the downstream control spool for the bucket cylinder receives no oil from channel P01.

The load pressure building up in the boom circuit also gets into parallel channel P1 where the bucket parallel valve is installed.

Since the control spool of the bucket is at the upper end, a partial amount of oil from pump 1 flows with the boom load pressure through the bucket parallel valve. The load-holding valves are closed and the oil flows past the control edge to port B4-Rf and on to the bucket cylinder.

The partial oil flow to the bucket cylinder depends on the restrictor orifice in the bucket parallel valve and the load pressure in the boom circuit.

The oil flow from pump 2 gets into channel P2 and through the blanking plate into channel P02.

Channel P02 is closed by the control edge at the adjusting spool.

The oil from pump 2 flows through the pressure compensator into the PZ channel and past the open control edge of the adjusting spool to port A6-Rf and to the adjusting cylinder. The load pressure generated is admitted to the pressure compensator as load-sensing pressure. The compensator supplies a regulated pressure which is available through the orifice of the control spool edge as load-pressure-independent discharge flow to the adjusting cylinder.

The load pressure oil of the adjusting cylinder flows also through the PLS channel and the shuttle valve to the relief valve and supports opening of the spring.

The oil flow from pump 2 is admitted to the relief valve at the input side.

The relief valve opens when the pressure of pump 2 has overcome the load pressure and the spring force at the other end. The oil from pump 2 thus pressurized flows through the by-pass channel behind the adjusting spool and into channel C2 and on to the displaced stick control spool. Its control edge closes channel P02 and the partial amount of oil from pump 2 flows via the load-holding valve into the P channel. The oil then flows past the open control edge through the check valve to port B5-Rf and to the stick cylinder.

The preloaded oil from pump 2 also flows through channel P2 to the second bucket parallel valve. The higher of the load pressures from pump 1 or from pump 2 prevails at the bucket parallel valves and gets to the bucket cylinder. If the load pressures are the same value, partial volumes from both circuits flow into the bucket cylinder.

As a result, it is possible to control four simultaneously actuated cylinder functions almost independently of one another with only two pump circuits.

HYDRAULIC HAMMER CIRCUIT (BOOM ADJUSTING EQUIPMENT)

Schematic diagram

The description refers to the schematic diagram and to the sectional drawing of the control spool.

The hydraulic hammer circuit is supplied with oil from pump 2. The circuit comprises a pressure compensator and an electrically operated proportional pressure cut-off.

Neutral

In neutral position of the control valve, the oil from pump 2 flows into channel P2 of the control block and to the pressure compensator.

Moreover, the oil flows through the blanking plate into channel P02 and past the hammer control spool on to the other control spools into the tank channel.

Switching on the hammer

The hammer is switched on by depressing the corresponding rocker switch. The control unit activates power stages 6 or 7, the pedal is switched over to hammer operation and the hammer symbol is displayed on the display screen together with a number representing the preset hammer performance.

Activating the hammer with joystick pushbutton or pedal

The ESX detects the activated state and switches on solenoid valve Y113 in the pilot control unit so that pilot pressure can get into the control block via port PV.

The ESX also energizes proportional valves Y241 and Y242 for the pump control, and the load-sensing pressure gets to both pump regulators.

IMPORTANT: *Pump 1 needs load-sensing pressure for the cooling circuit.*

When the button for continuous hammer operation is pressed, the ESX signals the reference value on the CAN bus and the load-limit regulator energizes proportional valve Y207a with the control spool performing its maximum downward stroke. If the hammer is operated by means of the pedal, proportional valve Y207a delivers a partial oil flow displacing the control spool downwards in proportion to the pedal excursion.

The load pressure built up during hammer operation gets through the load pressure tap in the control spool into the PLS channel. The load pressure passes through the Ø 0.8 orifice to the pressure compensator and to the electrical pressure cut-off valve Y239.2.

Performance setting

The hammer pressures that can be preset on the display unit influence the electrical pressure cutoff valve Y239.2 via the ESX in such a way that the corresponding load-sensing pressures are limited by means of different control currents. This means that the pressure compensator can be fed with presettable load-sensing pressures. The pressure compensator thus makes preset regulated pressures available to the PZ channel and to the control spool.

The discharge flows that can be preset on the display unit are transmitted by the ESX as reference values to the CAN bus which the load-limit regulator hands on to proportional valve Y207a. The resulting pilot-control pressures produce different control spool displacements and opening cross sections at the control edges.

At the same time, the ESX supplies the corresponding current level to proportional valve Y242 in order to enable pump 2 to meet the oil demands.

Sensor B239 at the MS port is needed for calibration purposes.

Oil flow

The oil flows through the opening section at the control spool to port B7 and then on to the hydraulic hammer.

The hammer pressure is also available at port B7.1. On request of the customer, this port can be equipped with frequency switching solenoid valve Y39.3 (hammer impact cycle change).

The return oil from the hammer flows through the return-flow filter into the reservoir.

Hydraulic hammer control spool

Electrical circuit diagram, hammer equipment

HAMMER CIRCUIT WITH AUXILIARY FUNCTION (BOOM ADJUSTING EQUIPMENT)

Schematic diagram

Hammer circuit with auxiliary function like shears or crusher with boom adjusting equipment, description

The description is based on the schematic diagram and the section drawing of the control spool.

The circuit is supplied from pump 2. The hammer circuit comprises a pressure compensator combined with an electrical pressure cut-off function. For shears operation, only the compensator is used.

Neutral

In neutral position of the control spool, the oil from pump 2 flows through channel P2 to the pressure compensator and then into channel P02 past the hammer/shears control spool and via the other control spools to the tank channel.

Activating the hammer

To activate the hammer, depress the rocker switch. The control unit activates power stages 6 or 7, the pedal is switched over to hammer operation and the hammer symbol appears on display together with a number representing the selected hammer performance level. Solenoid valve Y39.9 moreover connects the hammer return line automatically with the hydraulic reservoir.

Starting the hammer operation with joystick pushbutton or pedal

The ESX detects the hammer operation and switches on solenoid valve Y113 in the pilotcontrol unit so that pilot pressure gets to the control block via port PV.

The ESX energizes proportional valves Y241 and Y242 for pump control and load-sensing pressure is admitted to both pump regulators.

Pump 1 needs load-sensing pressure for the cooling circuit.

If the pushbutton for continuous hammer operation is pressed, the ESX transmits the reference value over the CAN bus and the load-limit regulator energizes proportional valve Y207a, whereby the control spool performs its maximum downward stroke. When the hammer is controlled by means of the pedal, proportional valve Y207a receives partial flows displacing the control spool downwards in proportion to pedal excursion.

The load pressure building up during hammer operation gets through the load-pressure tap in the control spool into the PLS channel. The load pressure passes through orifice Ø 0.8 to the pressure compensator and to the electrical pressure cut-off valve Y239.2.

Performance setting

The hammer pressures preselected on the display unit influence the electrical pressure cut-off valve Y239.2 in such a way that the different currents limit the load-sensing pressures accordingly. This means that the pressure compensator is fed with presettable LS pressures so that it can make predefined regulated pressures available to the PZ channel (bridging channel) and the control spool.

The discharge flows preselected on the display unit are transmitted by the ESX to the CAN bus as reference values which are passed on by the load-limit regulator to proportional valve Y207a. The resulting pilot pressures produce variable control spool strokes and opening cross sections at the control spool edges..

At the same time, the ESX transmits the corresponding current signal to proportional valve Y242 so that pump 2 can meet the oil demands.

Sensor B239 at the MS port is necessary for calibration purposes.

Oil flow

The preset discharge flow passes via the control spool opening cross-section to port B7 and then to the hydraulic hammer.

The oil returning from the hammer flows to hammer by-pass valve (90) port HR, through the unlocked non-return valve and via port C to the return-flow filter in the hydraulic reservoir.

The non-return valve in control spool (7) prevents the tank channel preloading pressure from escaping through hammer by-pass valve (90). For the same reason, the pressure-limiting valve at port A7 is not equipped with a replenishing non-retrun valve.

Activating the shears

To activate, depress the rocker switch. The control permits selection of all available performance levels and the shears symbol appears on display.

Moreover, solenoid valve Y39.9 in hammer bypass valve (90) is activated electrically.

Operating the shears with the pedal

The ESX senses the operation and activates solenoid valve Y113 in the pilot control unit for switching pilot pressure into the circuit. The pilot pressure gets into the control block via port PV.

The ESX energizes proportional valve Y242 for pump control and load-sensing pressure is admitted to the regulators of pump 2.

The ESX transmits a pedal-excursion and direction-dependent current signal to the CAN bus with the load-limit regulator energizing either proportional valve Y207a for opening of the shears or Y207b for closing of the shears.

The control spool performs a corresponding stroke. Its control edge opens and the oil flows to the shears.

The load pressure building up during operation of the shears gets through the load-pressure tap into the PLS channel. The load pressure passes through the orifice to the pressure compensator.

The pressure compensator and the opening cross section in the control spool ensure a load-pressure-independent discharge flow controlling the shears.

Sensor B239 is necessary for calibration purposes.

Oil flow during closing of the shears

The adjustment of the control spool blocks the passage from channel P2 to channel C2.

The oil from pump 2 must flow through the pressure compensator and the opening cross-section at the control edge to port B7 past the pressurelimiting valve and on to the shears.

The oil returning from the shears flows to hammer bypass valve (90). The oil flows through ports HR and A6 to control spool port A7 and through nonreturn valve (7) in the control spool to the tank channel and back to the hydraulic reservoir.

The hammer by-pass valve is then closed. Solenoid valve Y39.9 is energized so that the return-flow pressure from the shears gets into the spring cavity of the hammer bypass valve. The hammer bypass is kept closed by the pressure and the spring forces.

Oil flow during opening of the shears

The oil must flow through the pressure compensator and past the control spool edge and the pressure-limiting valve to port A7. The oil flow gets to the hammer bypass valve and via port A6 and port HR to the shears.

Hammer bypass valve (90) is kept closed by the working pressure of the shears.

The return oil from the shears flows via port B7 and the control spool cross-section back to the tank channel.

Hammer/shears control spool

Fig. 2

Key

- P2 Pressure channel pump 2
- P02 Pressure channel pump 2
- C2 Channel to adjusting control spool
- PZ Regulated pressure from compensator
- T Preloaded tank channel
- B7 Hammer pressure / shears closing
- B7.1 Frequency switch-over
- A7 Pressure port for shears opening

- PLS Load-pressure channel
- LS Load-pressure tap
- 1 Pressure compensator
- 2 Electrical pressure cut-off Y239.2
- 3 Shuttle valve
- 4 Orifice Ø 0.8 in load-pressure channel
- 5 Secondary valve with replenishing function
- 6 Secondary valve without replenishing function
- 7 Non-return valve

Fig. 3

This valve has the following functions

a) with hammer operation:

to direct the retrun oil from the hammer through hosepipe no.444 directly and nearly pressureless to the hydraulic reservoir.

b) with shears operation:

to enable pressure oil flow for opening of the shears. Hosepipe no. 442 at port A6 is connected with hosepipe no. 443 at port HR. The passage to the hydraulic reservoir is closed.

The valve is composed of a pilot-operated nonreturn valve combined with solenoid valve Y39.9 and upstream restrictor.

Pressure switch S39.9 ensures monitoring of both switching positions.

The hammer cannot be activated as long as pressure switch S39.9 is open.

Fig. 5

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

1 X306 🔓 :

0 :20EX

bigensch. / Klasse

Model

SHEARS/CRUSHER CIRCUIT (BOOM ADJUSTING EQUIPMENT) Schematic diagram

Description

The description is based on the schematic diagram and the section drawing of the control spool.

The shears circuit is supplied from pump 2.

The shears circuit comprises a pressure compensator.

Neutral

In neutral position of the control spool, the oil from pump 2 flows into channel P2 of the control block and to the pressure compensator.

The oil also flows through the blanking plate into the P02 channel and past the shears control spool into the C2 channel and then via the other control spools into the tank channel.

Activating the shears

To activate the shears, depress the rocker switch. The control unit permits selection of all 7 power stages and the shears symbol appears on display. The shears is operated by means of the pedal.

Controlling the shears with the pedal

The ESX senses the operation and activates solenoid valve Y113 in the pilot control unit for switching pilot pressure into the circuit. The pilot pressure gets into the control block via port PV.

The ESX energizes proportional valve Y242 for pump control and load-sensing pressure is admitted to the regulator of pump 2.

The ESX transmits a pedal-excursion and direction-dependent current signal to the CAN bus with the load-limit regulator energizing either proportional valve Y207a for opening of the shears or Y207b for closing of the shears. The control spool performs a corresponding stroke. Its control edge opens and the oil flows to the shears.

The load pressure building up during operation of the shears gets through the load-pressure tap into the PLS channel. The load pressure passes through the orifice to the pressure compensator.

The pressure compensator and the opening cross section in the control spool ensure a load-pressure-independent discharge flow controlling the shears.

Sensor B239 is necessary for calibration purposes.

Oil flow during closing of the shears

The adjustment of the control spool blocks the passage from channel P2 to channel C2.

The oil from pump 2 must flow through the pressure compensator and the opening cross-section at the control edge to port B7 past the secondary valve and on to the shears.

The oil returning from the shears flows through port A7 and via the control spool back to the hydraulic reservoir.

Oil flow during opening of the shears

The oil flows through the pressure compensator and past the control edge of the spool to port A7 and then to the shears. A secondary valve for pressure protection is provided.

The return oil from the shears flows via port B7 and the control spool back to the hydraulic reservoir.

Shears/crusher control spool

Fig. 2

Key

- P2 Pressure channel pump 2
- P02 Pressure channel pump 2
- C2 Channel to adjusting control spool
- PZ Regulated pressure from compensator
- T Preloaded tank channel
- B7 Connection for closing of shears
- A7 Connection for opening of shears

- LS Load-sensing pressure tap
- PLS Load-sensing channel
- 1 Pressure compensator
- 2 Orifice Ø 0.8 in load-pressure channel
- 3 Shuttle valve
- 4 Secondary valve with replenishing function
- 5 Secondary valve without replenishing function

Electrical circuit diagram, shears equipment

HYDRAULIC HAMMER CIRCUIT (MONOBLOCK BOOM EQUIPMENT) Schematic diagram

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Description

The description is based on the schematic diagram and the section drawing of the control spool.

The circuit of the hydraulic hammer is supplied from pump 2. The hammer circuit comprises a pressure compensator and an electrically operated pressure cut-off function.

Neutral

In neutral position of the control spool, the oil from pump 2 flows into channel P2 of the control block and to the pressure compensator.

The oil also flows through the blanking plate into the P02 channel, past the hammer control spool and then via the other control spools into the tank channel.

Activating the hammer

To activate the hammer, depress the rocker switch. The control unit activates power stages 6 or 7, the pedal is switched over to hammer operation (if installed) and the hammer symbol appears on display together with a number representing the selected hammer performance level.

Starting hammer operation with joystick pushbutton or pedal (if installed)

The ESX detects the hammer operation and switches on solenoid valve Y113 in the pilotcontrol unit so that pilot pressure gets to the control block via port PV.

The ESX energizes proportional valves Y241 and Y242 for pump control and load-sensing pressure is admitted to both pump regulators.

NOTE: *Pump 1 requires load-sensing pressure for the cooling circuit.*

If the pushbutton for continuous hammer operation is pressed, the ESX energizes propotional valve Y206a, whereby the control spool performs its maximum downward stroke. When the hammer is controlled by means of the pedal, proportional valve Y206a receives partial flows displacing the control spool downwards in proportion to pedal excursion.

The load pressure building up during hammer operation gets through the load-pressure tap in the control spool into the PLS channel. The load pressure passes through orifice \emptyset 0.8 to the pressure compensator and to the electrical pressure cut-off valve Y239.2.

Performance setting

The hammer pressures preselected on the display unit influence the electrical pressure cut-off valve Y239.2 in such a way that the different currents limit the load-sensing pressures accordingly. This means that the pressure compensator is fed with presettable LS pressures so that it can make predefined regulated pressures available to the PZ channel (bridging channel) and the control spool.

The discharge flows preselected on the display unit are transmitted by the ESX to proportional valve Y206a. The resulting pilot pressures produce variable control spool strokes and opening cross sections at the control spool edges.

At the same time, the ESX transmits the corresponding current signal to proportional valve Y242 so that pump 2 can meet the oil demands.

The LS pressure signal is also transmitted to sensor B239 at the MS port. The current signal from the sensor is evaluated by the ESX and used for monitoring of the LS pressure. The ESX responds to a pressure drop in the LS channel by increasing the control current to proportional valve Y242 so that pump 2 delivers a higher discharge flow.

Oil flow:

The oil flows through the opening cross-section in the control spool to port B6 and then to the hydraulic hammer.

The oil returning from the hammer flows through the return-flow filter back to the reservoir.

Hydraulic hammer control spool

Electrical circuit diagram, hammer equipment

HAMMER CIRCUIT WITH AUXILIARY FUNCTION (MONOBLOCK BOOM EQUIPMENT) Schematic diagram

Hammer circuit with auxiliary function like shears or crusher with monoblock equipment, description

The description is based on the schematic diagram and the section drawing of the control spool.

The circuit is supplied from pump 2. The hammer circuit comprises a pressure compensator combined with an electrical pressure cut-off function. For shears operation, only the compensator is used.

Neutral

In neutral position of the control spool, the oil from pump 2 flows through channel P2 to the pressure compensator and then into channel P02 past the hammer/shears control spool and via the other control spools to the tank channel.

Activating the hammer

To activate the hammer, depress the rocker switch. The control unit activates power stages 6 or 7, the pedal is switched over to hammer operation and the hammer symbol appears on display together with a number representing the selected hammer performance level. Solenoid valve Y39.9 moreover connects the hammer return line automatically with the hydraulic reservoir.

Starting the hammer operation with joystick pushbutton or pedal

The ESX detects the hammer operation and switches on solenoid valve Y113 in the pilotcontrol unit so that pilot pressure gets to the control block via port PV.

The ESX energizes proportional valves Y241 and Y242 for pump control and load-sensing pressure is admitted to both pump regulators

NOTE: *Pump 1 needs load-sensing pressure to supply the cooling circuit.*

If the pushbutton for continuous hammer operation is pressed, the ESX control current flows to proportional valve Y206a, whereby the control spool performs its maximum downward stroke.

When the hammer is controlled by means of the pedal, proportional valve Y206a receives partial flows displacing the control spool downwards in proportion to pedal excursion.

The load pressure building up during hammer operation gets through the load-pressure tap in the control spool into the PLS channel. The load pressure passes through orifice Ø 0.8 to the pressure compensator and to the electrical pressure cut-off valve Y239.2.

Performance setting

The hammer pressures preselected on the display unit influence the electrical pressure cut-off valve Y239.2 via the ESX in such a way that the different currents limit the load-sensing pressures accordingly. This means that the pressure compensator is fed with presettable LS pressures so that it can make predefined regulated pressures available to the PZ channel (bridging channel) and the control spool.

The discharge flows preselected on the display unit are transmitted by the ESX to proportional valve Y206a. The resulting pilot pressures produce variable control spool strokes and opening cross sections at the control spool edges.

At the same time, the ESX transmits the corresponding current signal to proportional valve Y242 so that pump 2 can meet the oil demands.

The LS pressure signal is also transmitted to sensor B239 at the MS port. The current signal from the sensor is evaluated by the ESX and used for monitoring of the LS pressure. The ESX responds to a pressure drop in the LS channel by increasing the control current to proportional valve Y242 so that pump 2 delivers a higher discharge flow.

Oil flow

The oil flows through the opening cross-section in the control spool to port B6 and then to the hydraulic hammer.

The oil returning from the hammer flows to hammer by-pass valve (90) port HR, through the unlocked non-return valve and via port C to the return-flow filter in the hydraulic reservoir.

The non-return valve in control spool (7) prevents the tank channel preloading pressure from escaping through hammer by-pass valve (90). For the same reason, the pressure-limiting valve at port A6 is not equipped with a replenishing non-retrun valve.

Activating the shears

To activate, depress the rocker switch. The control permits selection of all available performance levels and the shears symbol appears on display.

Moreover, solenoid valve Y39.9 in hammer bypass valve (90) is activated electrically.

Operating the shears with the pedal

The ESX senses the operation and activates solenoid valve Y113 in the pilot control unit for switching pilot pressure into the circuit. The pilot pressure gets into the control block via port PV.

The ESX energizes proportional valve Y242 for pump control and load-sensing pressure is admitted to the regulators of pump 2.

The ESX transmits a current signal to proportional valve Y206a for opening of the shears or Y206b for closing of the shears.

The control spool performs a corresponding stroke. Its control edge opens and the oil flows to the shears.

The load pressure building up during operation of the shears gets through the load-pressure tap into the PLS channel. The load pressure passes through the orifice to the pressure compensator.

The pressure compensator and the opening cross section in the control spool ensure a load-pressure-independent discharge flow controlling the shears.

Sensor B239 is necessary for calibration purposes.

Oil flow during closing of the shears

The adjustment of the control spool blocks the passage from channel P2 to channel C2.

The oil from pump 2 must flow through the pressure compensator and the opening cross-section at the control edge to port B6 past the secondary valve and on to the shears.

Operating the shears by precision control only leaves a residual flow of oil.

The residual oil flows through the reflief valve to the other cylinders.

The oil returning from the shears flows to hammer bypass valve (90). The oil flows through ports HR and A6 to control spool port A6 and through nonreturn valve (7) in the control spool to the tank channel and back to the hydraulic reservoir.

The hammer by-pass valve is then closed. Solenoid valve Y39.9 is energized so that the return-flow pressure from the shears gets into the spring cavity of the hammer bypass valve. The hammer bypass is kept closed by the pressure and the spring forces.

Oil flow during opening of the shears

The oil must flow through the pressure compensator and past the control edge of the spool to port A6. A secondary valve for pressure protection is provided. As hammer bypass (90) to the tank is closed, the oil must flow via ports A6 and HR to the shears.

The return oil from the shears flows via port B6 and the control spool cross-section back to the tank channel.

Hammer/shears control spool

Fig. 2

Key	
-----	--

-	
P2	Pressure channel pump 2
P02	Pressure channel pump 2
C2	Channel to adjusting control spool
ΡZ	Regulated pressure from compensator
Т	Preloaded tank channel
B6	Hammer pressure / shears closing
A6	Shears opening
LS	Load-pressure tap
PLS	Load-pressure channel

- 1 Pressure compensator
- 2 Electrical pressure cut-off Y239.2
- 3 Shuttle valve
- 4 Orifice Ø 0.8 in load-pressure channel
- 5 Secondary valve with replenishing function
- 6 Secondary valve without replenishing function
- 7 Non-return valve

Hammer bypass valve (No. 58)

Fig. 3

This valve has the following functions

c) with hammer operation:

to direct the return oil from the hammer through hosepipe no.444 directly and nearly pressureless to the hydraulic reservoir.

d) with shears operation:

to enable pressure oil flow for opening of the shears. Hosepipe no. 442 at port A6 is connected with hosepipe no. 443 at port HR. The passage to the hydraulic reservoir is closed.

The valve is composed of a pilot-operated nonreturn valve combined with solenoid valve Y39.9 and upstream restrictor.

Pressure switch S39.9 ensures monitoring of both switching positions.

The hammer cannot be activated as long as pressure switch S39.9 is open.

Fig. 4

itischo/t: Laenschaft

21

bigensch. / Klasse

Model

1 x306 🖕 2

1

L

X305:

SHEARS/CRUSHER CIRCUIT (MONOBLOCK BOOM EQUIPMENT) Schematic diagram

5-165

Description

The description is based on the schematic diagram and the section drawing of the control spool.

The circuit of the shears is supplied from pump 2.

The shears circuit comprises a pressure compensator.

Neutral

In neutral position of the control spool, the oil from pump 2 flows into channel P2 of the control block and to the pressure compensator.

The oil also flows through the blanking plate into the P02 channel and past the shears control spool into the C2 channel and then via the other control spools into the tank channel.

Activating the shears

To activate the shears, depress the rocker switch. The control unit permits selection of all 7 power stages and the shears symbol appears on display. The shears is operated by means of the pedal.

Starting shears operation with pedal

The ESX senses the operation and activates solenoid valve Y113 in the pilot control unit for switching pilot pressure into the circuit. The pilot pressure gets into the control block via port PV.

The ESX energizes proportional valve Y242 for pump control and load-sensing pressure is admitted to the regulator of pump 2.

The ESX energizes either proportional valve Y206a for opening of the shears or to Y206b for closing of the shears.

The control spool performs a corresponding stroke. Its control edge opens and the oil flows to the shears.

The load pressure building up during operation of the shears gets through the load-pressure tap into the PLS channel. The load pressure passes through the orifice to the pressure compensator.

The pressure compensator and the opening cross section in the control spool ensure a load-pressure-independent discharge flow controlling the shears.

Sensor B239 is necessary for calibration purposes.

Oil flow during closing of the shears

The adjustment of the control spool blocks the passage from channel P02 to channel C2.

The oil from pump 2 must flow through the pressure compensator and the opening cross-section at the control edge to port B6 past the secondary valve and on to the shears.

Operating the shears by precision control only leaves a residual flow of oil.

The residual oil flows through the reflief valve to the other cylinders.

Oil flow during opening of the shears

The oil must flow through the pressure compensator and past the control edge of the spool to port A6. A secondary valve for pressure protection is provided.

Shears / crusher control spool

- Fig. 2
- Key

P2	Pressure	channel	pump	2

- P02 Pressure channel pump 2
- C2 Channel to stick control spool
- PZ Regulated pressure from compensator
- T Preloaded tank channel
- B6 Connection for closing of shears
- A6 Connection for opening of shears

- LS Load-sensing pressure tap
- PLS Load-sensing channel
- 1 Pressure compensator
- 2 Orifice Ø 0.8 in load-pressure channel
- 3 Shuttle valve
- 4 Secondary valve
- 5 Secondary valve

Electrical circuit diagram, shears equipment

SLEWING SYSTEM Schematic diagram

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Connections

- A, B Working connections
- MA,MB High-pressure measuring points
- MH High-pressure measuring point
- S Suction port, feed pump
- FS closed
- FE closed
- Fa,Fa1 closed
- G Feed-pressure measuring point
- PS Pilot pressure, orifice Ø1.4 mm
- X1, X2 Control pressure measuring points

X3, X4 Adjusting cavity pressure measuring points

T, R Tank resp. return

Description

The slewing circuit is a closed circuit. It consists mainly of the slewing pump (4) and the slewing oil motor attached to the slewing gearbox (15).

Filling of the closed circuit requires an auxiliary or feed circuit. The feed circuit is supplied from the integrated feed pump. The pressure is limited by the feed-pressure valve.

This pressure is available via two feeding nonreturn valves to the closed circuit for filling purposes. It compensates the leakage oil losses generated on the high-pressure side. Feeding takes place on the low-pressure side of the closed system.

The slewing high pressure and thus the slewing torque are limited on both sides by a pressure cut-off valve.

The closed circuit is protected against inadmissibly high pressure peaks by high-pressure safety valves called secondary valves. The oil temperature in the slewing system is limited by fresh oil from the feed circuit on the one hand and by transverse flushing of the slewing oil motor on the other hand.

The admission of fresh oil via a feeding non-return valve depends on the amount of leakage on the high pressure side.

The oil motor transverse flushing is generated by the pressure differential in both lines on the oil motor housing.

A control unit for variation of the discharge flow is provided directly on the adjusting cylinder.

After engine start, the pilot pressure is available at the pilot-control unit (60).

On actuation of a slewing movement direction, the ESX switches on solenoid valve Y113 and the pilot pressure is admitted through the orifice Ø1.4 to port PS of the control unit.

The slewing movement is controlled by means of the joystick which transmits electrical signals to the ESX. The ESX is moreover informed of whether the slewing power limitation is on and which power level is preset. The ESX evaluates these signals and energizes the corresponding pressure-control valve in the control unit.

The slewing angle sensor B213 senses the angle of the swashplate and thus the actual discharge flow of the pump (Vg_{actual}) and transmits the value as a voltage signal to the ESX.

The joystick excursion preselects the desired discharge flow of the pump (Vg _{reference}).

During the acceleration phase of the superstructure, the joystick preselects a higher discharge flow. As long as there is a difference between Vg _{actual} and Vg _{reference}, the controller in the ESX increases the control current to the pressurecontrol valve until the actual discharge volume (Vg _{actual}) corresponds to the discharge flow preselected by the joysticks (Vg _{reference}).

During deceleration, the control works in the opposite direction.

Slewing pump A 4 VG (No. 4)

Key

- A Working connection
- B Working connection
- 1 Drive shaft
- 2 Shaft seal
- 3 Bearing
- 4 Roller bearing
- 5 Swash-plate
- 6 Slipper pad
- 7 Axial piston
- 8 Cylinder block
- 9 Cup springs

- 10 Helical spring
- 11 Angle plate
- 12 Bearing
- 13 Valve plate
- 14 Feed pump
- 15 Feed-pressure limiting valve
- 16 Secondary valve
- 17 Secondary valve
- 18 Pressure cut-off
- 19 Control unit
- 20 Pressure-control valve Y209
- 21 Pressure-control valve Y212
- 22 Replenishing valves
- 23 Adjusting cylinder
- 24 Slewing angle sensor B213

Description

The slewing pump is an axial piston pump in swash-plate design for closed hydraulic circuits.

The discharge flow rises in proportion to the tilting angle of the swash-plate from zero to maximum. When the swash-plate crosses zero position, the discharge flow changes its direction without jerk.

To protect the drive system, the pump is equipped with high-pressure safety valves (called secondary valves). These valves comprise also socalled feeding non-return valves. An integrated auxiliary pump (called feed pump) ensures that the closed circuit is always kept filled.

A control mechanism receiving its control instructions from the ESX and the joystick actuates the adjusting cylinder which varies the tilting angle and direction of the swash-plate. The maximum pressure is limited by the pressure cut-off.

When the pump is turning, drive shaft (1) drives cylinder block (8) and feed pump (12). Cylinder block (8) is interlocked with the drive shaft. The block has cylinder bores in which the axial pistons (7) work. The axial piston takes support on the swash-plate (5) via slipper pads (6). The friction surfaces of the slipper pads on the swash-plate and on the ball sockets are lubricated by pressure oil which gets through a central bore in the axial piston to the ball socket and through another bore below the slipper pad.

To achieve sufficient tightness in the low-pressure range, cylinder block (8) is pressed by cup spring assembly (9) and helical spring (10) against angle plate (11). The angle plate is positioned with positioning screw (15). The positioning screw is equipped with a cam engageing in a groove of the angle plate. Positioning achieved by cam adjustment of the angle plate permits a variation of the slewing pump characteristics. Positioning of the angle plate changes the influence of the high-pressureinduced resetting forces acting on the angle plate (5).

The drive shaft (1) drives the feed pump (14) with its shaft end. For pressure limiting in the feed circuit, a feed-pressure limiting valve (15) is provided.

The valve plate (13) contains the secondary valves for right / left slewing (16+17) with their integrated feeding non-return valves.

The pressure cut-off (18) limits the high pressure and thus the slewing torque for both slewing directions. A shuttle valve in the circuit directs the slewing high pressure towards the metering piston of the pressure cut-off.

The control unit (19) with the pressure-control valves (20) and the replenishing valves (21) is used for swash-plate adjustment. The pressure-control valves (20) are energized by the ESX.

The pilot pressure is available via port PS with a metering orifice of \emptyset 1.4 mm at both pressurecontrol valves and at the pressure cut-off. Orifice \emptyset 1.4 is necessary for protection of the pressure cut-off against the external pressure.

During slewing, a pressure-control valve is activated so that the pilot pressure gets into the adjusting cavity of adjusting cylinder (22) as control pressure. The adjusting piston performs a stroke and the swash-plate angle (5) is changed. During deceleration of the superstructure, the adjusting cylinder (22) is reset by spring force and a replenishing valve (21) ensures filling of the increased cavity volume.

Fig. 1

Fig. 2

Key

- 1 Port plate
- 2 Feed-pressure valve, fixed setting
- 3 Secondary valve, fixed setting
- 4 Pressure cut-off, adjustable

Fig. 3

Key

- 1 Port plate
- 2 Feed-pressure valve, adjustable
- 3 Secondary valves, adjustable
- 4 Pressure cut-off, adjustable

Slewing pump valves

Feed-pressure limiting valve (No. 15) of slewing pump A 4 VG 56

Fig. 4

Kev	
1.09	

- P Feed pressure
- M Metering surface
- G Housing / tank
- 1 Valve piston
- 2 Spring
- 3 Spring plate

The feed-pressure limiting valve limits the pressure of the integrated auxiliary pump. This valve is a directly controlled pressure limiting valve with surge-damping.

Feed pressure P acts on the metering surface M via the tapered section of the piston.

The hydraulic force opposing the spring force is generated here.

In operation, the feed pump fills the feeding circuit.

Excess oil flows past the opened valve piston into the housing and returns through the tank line. The existing feed pressure remains constant.

Secondary valve of slewing pump A 4 VG 56

Fig. 5

- Key
- HD High pressure 1 Spring plate
- 2 Spindle
- 3 High-pressure spring
- 4 Spring plate, adjustable
- 5 Safety screw
- 6 Feed spring

The secondary valve fulfills two functions in the closed slewing circuit. It protects against pressure peaks and ensures filling of the system.

The system has one valve for each slewing direction. Filling of the system (also called feeding) always takes place automatically on the side without high pressure. The force of the feed pressure lifts the entire spring assembly (1 - 5) against the spring (6) with the high-pressure side being supplied with oil.

The high pressure gets into the spring cavity between the spring plates and through a gap also into the spring cavity of the feed spring (6) where the downward hydraulic force opposing the force of high-pressure spring (3) is generated.

An inadmissibly high pressure peak pushes spring plate (4) with spindle (2) downwards against spring (3). The conical section at the end of spindle (2) is lifted off its seat. The pressure peak escapes against the feed pressure through the second secondary valve to the low-pressure side.

Fig. 1

- Key
- pSp Speisedruck M Metering surface
- G Housing / tank
- 1 Valve piston
- 2 Spring
- 3 Spring plate
- 4 Setscrew

The feed-pressure limiting valve limits the pressure of the integrated auxiliary pump. This valve is a directly controlled pressure limiting valve with surge-damping.

Feed pressure pSp acts on the metering surface M via the tapered section of the piston. The hydraulic force opposing the spring force is generated here.

The force of spring (2) is adjustable with setscrew (4).

In operation, the feed pump fills the feeding circuit. Excess oil flows past the opened valve piston into the housing and returns through the tank line. The existing feed pressure remains constant.

Secondary valve of slewing pump A 4 VG 71

Fig. 2

Key	
pHD	High pressure
pSp	Feed pressure
1	Spring plate
2	Spindle
3	High-pressure spring
4	Spring plate, adjustable
5	Safety screw

- 6 Feed spring
- 7 Bypass screw

The secondary valve fulfills two functions in the closed slewing circuit. It protects against pressure peaks and ensures filling of the system.

The system has one valve for each slewing direction.

The valve is moreover equipped with a bypass function.

Filling of the system (also called feeding) always takes place automatically on the side without high pressure. The force of the feed pressure lifts the entire spring assembly (1 - 5) against the spring (6) with the high-pressure side being supplied with oil.

The high pressure gets into the spring cavity between the spring plates and through a gap also into the spring cavity of the feed spring (6) where the downward hydraulic force opposing the force of the high-pressure spring is generated. An inadmissibly high pressure peak pushes spring plate (4) with spindle (2) downwards against spring (3). The conical section at the end of spindle (2) is lifted off its seat. The pressure peak escapes against the feed pressure through the second secondary valve to the low-pressure side.

The bypass function of the valve is inoperational for use in the excavator. For this purpose, screw (7) must be turned counter clockwise to the limit stop and secured.

Pressure cut-off valve (No. 18)

Fig. 6

кеу	
pSt	Control pressure
G	Housing / tank
HD-A	High pressure, side A
HD-B	High pressure, side B
1	Shuttle valve
2	High-pressure piston
3	Control piston
4	Spring plate
5	Spring
6	Spring plate
7	Setscrew

The pressure cut-off valve limits the slewing high pressure by way of control pressure regulation.

The shuttle valve (1) ensures this function for both slewing directions.

High pressure prevailing on one side pushes highpressure piston (2) against control piston (3) and spring (5). If the hydraulic force below piston (2) is greater, control piston (3) with its control edge is lifted. The control pressure flows into the housing until the high pressure diminishes again. The force of spring (5) now displaces control piston (3) downwards and the control edge is closed again. This results in a regulation of control pressure pSt which determines the slewing high pressure and in which the force of the high pressure below piston (2) is compared to the spring force.

Rising high pressure reduces the control pressure and vice versa.

The spring force can be adjusted with setscrew (7).
Pressure-control valve

Fig. 7

Key

- 1 Valve housing
- 2 Solenoid
- 3 Electrical connection
- 4 Control piston
- 5 Spring

The pressure-control valve consists basically of a solenoid actuating a control piston. The PWM signals from the ESX are converted proportionally into control pressure.

Without current, the adjusting cavity is connected via the control piston pressureless to the housing.

A control current generates the electrical force which displaces the control piston downwards against the spring. The connection to the housing is interrupted and the pilot pressure gets via the opening cross-section into the adjusting cavity. The pressure building up in the cavity depends on the intensity of the control current. When the control current decreases, the spring pushes the control piston back upwards and the flow crosssection diminishes.

Slewing pump control unit

, ig. 0

Key

- 1 Valve housing
- 2 Pressure-control valve Y209, left
- 3 Pressure-control valve Y212, right
- 4 Replenishing valves, 2 units
- 5 Plug
- 6 Adjusting cylinder
- 7 Adjusting cavity, slewing to the left
- 8 Adjusting cavity, slewing to the right
- 9 Housing, tank

Slewing direction:	Y209	Y212
MH 6.6	left	right
MH 8.6	right	left

Description

The control unit serves the purpose of adjusting the swash-plate position and thus the discharge flow.

Valve housing (1) contains pressure-control valves (2+3) and replenishing valves (4) for both slewing directions.

The pressure-control valves convert ESX control current into control pressure.

The replenishing valves (4) ensure filling of the adjusting cavities after slewing.

Neutral

In neutral position, the control unit is without pilot pressure.

The cavities of the adjusting cylinders (6) are pressure-relieved via the pressure-control valves (2+3) towards the housing (9). The swash-plate is in zero position.

Slewing

When the joystick is actuated, the ESX activates solenoid valve Y113 even before the movement starts and the pilot pressure passes through the orifice of Ø1.4 in port PS to the pressure-control valves Y209 and Y212.

The control current from the ESX flows to one of the pressure-control valves so that control pressure is admitted to one of the adjusting cavities. The oil from the opposite cavity can flow via the second pressure-control valve to the housing.

After setting the joystick back to neutral, the pilot pressure supply is shut off. The adjusting cylinder and the swash-plate are reset by the control pressure drop and the spring forces. The cavity with its now increased volume sucks in oil from housing (9) via replenishing valve (4).

Braking

The braking effect can be preselected in three steps by means of the corresponding key.

The ESX reduces its the control current to the pressure-control valves correspondingly so that three significantly different braking effects are obtained.

Slewing gearbox assembly (No. 15)

Fig. 1

Key

- 1 Slewing gearbox S10
- 2 Oil motor
- 3 Speed sensor B35.2
- 4 Oil level indicator expansion tank
- 5 Oil draining line

Slewing gearbox (No. 15)

Fig. 2

The slewing gearbox is a two-stage planetary gearbox engageing in the ball-bearing slewing ring.

The gearbox is designed in such a way that the slewing movement is started and braked by the axial-piston motor.

The output shaft of the axial-piston motor drives the sun wheel of the first planetary stage. The planetary wheels are in mesh with the toothing of the housing. The planetary carrier of the first stage drives the sun wheel of the second stage. The planetary gears of the second stage are also in mesh with the housing toothing. The planetary carrier of the second stage drives the pinion shaft. The pinion engages in the toothing of the slewing ring.

The slewing oil motor is an axial-piston unit with constant displacement.

The output speed is proportional to the inflowing discharge oil. The torque supplied increases with the pressure differential between high-pressure and low-pressure side.

Oil motor

Als Ölmotor wird eine Axialkolbeneinheit mit konstantem Schluckvolumen eingesetzt. Die Abtriebsdrehzahl verhält sich proportional zum zufließenden Volumenstrom der Schwenkpumpe.

Das Abtriebsmoment nimmt mit dem Druckgefälle zwischen der Hochdruckseite und der Niederdruckseite zu.

Der Ölmotor wird mit einer Querspülung zwecks Temperatur-Abführung betrieben.

The different pressure levels building up during the work in connected tank lines T1 and T2 lead to an oil flow carrying away the heat towards the tank.

Speed sensor B35.2

Fig. 4

Description

The sensor is composed of two Hall-effect elements for speed and sense-of-rotation detection. The frequency signals are phase-shifted by 90° , i.e. that for a supposed rotation to the right frequency signal f2 is phase-shifted by approx. 90° with respect to frequency f1. See timing diagram below.

The frequencies are evaluated by the ESX.

In the event of sensor failure, a fault message is issued and the brake applied 3 seconds later.

Timing diagram

Carefully read personal and machine SAFETY INSTRUCTIONS (at the beginning of this manual)

Integrated holding brake

Fig. 7

Key

- 1 Housing
- 2 Oil motor
- 3 Oil motor output shaft
- 4 Hub
- 5 Brake disks
- 6 Brake piston
- 7 Springs
- 8 Pressure compartment

A multi-disk brake integrated in the slewing gearbox is used as superstructure holding brake. The brake works in accordance with the spring brake principle, i.e. the brake is applied by spring force when no pilot pressure is available. When pilot pressure is applied, the brake piston compresses the springs so that the disks are free to turn.

When the pilot control is shut off in the driver's cab, the brake is applied automatically for safety reasons. By the press of a key, the driver can choose among several modes of operation for the brake:

Brake applied

Solenoid valve Y35 is then without current and the brake is depressurized to the tank

Brake permanently released

Solenoid valve Y35 is energized by the ESX. In this case, pilot pressure is admitted to the brake.

Brake in automatic mode of operation

In the automatic mode, the holding brake is released when slewing is initiated and applied automatically when the superstructure is stationary.

The excursion of the joystick is sensed by the ESX.

The ESX switches on solenoid valve Y35.

The slewing movement is detected by speed sensor B35.2 in the slewing oil motor.

When the joystick is brought back to neutral, the superstructure slows down depending on the preselected braking effect until it is stationary. The stop condition is detected by speed sensor B35.2 and the ESX shuts off solenoid valve Y35. The braking pressure escapes via solenoid valve Y35 to the tank and the brake is applied by spring force.

GRAB ROTATION MECHANISM

Schematic diagram

Description

By means of the grab rotation mechanism, a clamshell grab can be rotated in any direction, for instance, for the excavation of trenches or shafts. The system can also be used for positioning a trenching backhoe or for adjusting the positioning movements of other attachments.

The oil is directed by one of the pumps of twin gear pump (6) to solenoid valve (231). This solenoid has an open zero position so that the oil can flow back pressureless to the tank. The solenoid valves is equipped with two magnet coils.

When one direction or the other is selected, the control piston is displaced by either solenoid Y37.1 or Y37.2 and the oil flows forwards through the express coupling to grab rotation motor (232) or alternative attachments.

The pressure in the system is limited by an adjustable pressure-limiting valve in the connection block of the solenoid valve.

Fig. 2

Key

- P Pump connection
- T Tank connection
- A Working connection
- B Working connection
- 1 Blanking plate
- 2 Direct-controlled pressure-limiting valve, adjustable
- 3 Double solenoid valve Y 37.1 and Y 37.2

Description

The solenoid valve is used for grab positioning movements by controlling the grab rotation motor.

It consists of a blanking plate with integrated pressure-limiting valve as primary valve for pump pressure. The valve is adjustable.

The control piston of the double solenoid valve has an open zero position to ensure that there is no pressure build-up after the system is put into operation and that the power demands remain low. After activation of a solenoid, the control piston is displaced correspondingly by magnetic force so that the pressure fluid must flow to the respective working connection and to the oil motor. The return from the oil motor is connected via the control piston to the tank.

Grab rotation motor

Key

- A Working connection
- B Working connection
- 1 Direct-controlled secondary valves
- 2 Replenishing valves

Description

The grab rotation motor is a slow-turning hydraulic motor working in accordance with the Gerotor principle.

The motor has to turn the grab with its clamshells so that material can be picked up and deposited with high precision. The shaft of the rotation motor drives a pinion engageing a gear ring.

External forces acting on the rotation motor are limited on both sides by secondary valves. An inadmissibly high pressure opens one of these valves and the pressure peak is directed to the low-pressure side. Oil shortages are avoided by replenishing valves on both sides.

SECTION 6

INDEX

BEFORE UNDERTAKING CALIBRATION WORK	
Generalities	6-1
Measures to be taken on main pump A8V	6-2
Adjustment of the setscrews and currents	6-2
Measures to be taken on slewing pump A4V	6-3
Setting of mechanical zero position	6-3
DISPLAY, SERVICE, CALIBRATION	6-4
General information	6-4
Display, Service, Calibration (engine ON)	6-6
Setting of calibration parameters	6-7
Calibration (engine ON), VDO	6-8
Calibration (engine ON), POWER	
Calibration (engine ON), MAIN VALVE	
Calibration (engine ON), PUMP DEMAND	
Calibration (engine ON), SWING PUMP.	
Calibration (engine ON), AUX. PRESS	6-20
Display, Service, Calibration (engine OFF)	6-22
Setting of calibration parameters	
Calibration (engine OFF), ALL SOLENOIDS, MAIN PUMP, SWING PUMP, AUX. PRESS	
Calibration (engine OFF), MAIN VALVE	

BEFORE UNDERTAKING CALIBRATION WORK

Generalities

In order to perform and accomplish calibration work successfully, the following requirements must be fulfilled:

- The pilot-control pressure must be set to 45+3 bars; measuring point M (4, Fig. 1) and setscrew (3, Fig. 1).
- The high pressure values of the main pumps and of the slewing pump has been checked and, if necessary, been readjusted.
- Presetting of the main pumps by means of the demand setscrews has been checked and, if necessary, been performed. (see also: "Measures to be taken on main pump A8V")
- The mechanical zero positon of the slewing pump has been checked and, if necessary, been readjusted (see also: "Measures to be taken on slewing pump A4V")
- The area 10 m before and behind the machine not equipped with stabilizers must be barred, as the machine moves during calibration of the "Travelling" function.
- In machines equipped with stabilizers, the stabilizers must be used to lift the machine clear of the ground.

Measures to be taken on main pump A8V

Adjustment of the setscrews and currents

Objective

Adapting the setscrew adjustment to the pumps and the currents of proportional valves Y241 (1, Fig. 1) and Y242 (2, Fig. 1) of the pilot-control unit in such a way that the movement in each machine begins with the same high pressure.

Prerequisites

- The hydraulic oil temperature at least 40 °C
- The pilot-control pressure set to 45 48 bars at high idle
- The control block has been calibrated
- The power level is set to "Heavy 2"

Presetting of the pumps with the demand setscrews

Pump 1 – Boom

Fig. 2

- Extend the equipment, retract the neck cylinder, extend the stick.
- Initiate the boom raising function slowly until the demand pressure is 10 bars. The high pressure of pump 1 must be between 120 bars and 200 bars, adjust if necessary with the setscrew (1, Fig. 2) of pump 1.

Pump 2 – Stick

- Extend the stick until it is virtually horizontal just before the limit stop.
- Initiate the boom extending function slowly until the demand pressure is 10 bars. The high pressure of pump 2 must be between 120 bars and 200 bars, adjust, if necessary, with setscrew (2, Fig. 2) of pump 2.

(Fine tuning of the pumps by means of the calibration procedure: see calibration instructions).

Measures to be taken on slewing pump A4V

Setting of mechanical zero position

Readjustment is required whenever – after automatic calibration of the slewing pump – the slewing start is not satisfactory, i.e. when the speed does not rise with increasing joystick travel.

Prerequisites

- The hydraulic oil temperature at least 40 °C
- The power level is set to "Heavy 2" (see: "Selecting the power level")

Fig. 3

Adjusting procedure

- Connect the high-pressure gauge to points MH (1, Fig. 3) and MA (2) or to MB (3).
- Lock the superstructure.
- Loosen the lock-nut of the zero position setscrew.
- Turn in the setscrew until high pressure builds up.
- Turn out setscrew until high pressure builds up on the opposite side. Do not forget to count the number of turns.
- Turn the screw back in by half the number of turns counted and tighten the lock-nut.

After the adjustment of the zero position, it is vital to perform the calibration of the slewing pump in the following order:

- In the calibration menu (ENGINE OFF), select PROP. SOLENOID and press SET.
- In the PROP. SOLENOID menu, select SWING PUMP and START CALIB. Wait until the message "calibration successful" is displayed. Quit with the SET key.
- In the calibration menu (ENGINE ON), select SWING PUMP and press SET.
- Follow the calibration instructions displayed (the element being calibrated is the slewing angle sensor B213).

DISPLAY, SERVICE, CALIBRATION

General information

This menu is used for the calibration of proportional and control valves, hydraulic pumps, combustion engines and electric and hydraulic motors.

Calibration or recalibration is necessary for new machines and after repair and replacement of assemblies.

The hydraulic oil temperature must be at least 40 °C. If this is not the case, the calibration procedure will be aborted (see also the chapter: "After engine start / warm-up" in the operating instructions).

- The individual calibration categories can be selected with the arrow UP [îi] or with the arrow DOWN [IJ] key.
- After confirming the selection with the SET key you are asked whether you want to perform the calibration confirmed "START CALIBRATION" or "DEFAULT" (Fig. 1).

- START CALIBRATION starting the calibration
- DEFAULT preset values
- After confirming the selection "START CALI-BRATION" with the SET key, the calibration procedure is performed. The calibration procedure can be aborted at any time by pressing the arrow UP [î] key. After the abortion, the message "CALIBRATION ABORTED" is displayed with the program returning after 3 seconds to the next higher menu.

After corresponding selection and confirmation with the SET key, the display shows the message "CALIBRATION ON GOING". (Fig. 2).

Fig. 2

The displayed number (Fig. 2) is a progress counter. The time needed for calibration in individual menu points differs and can be as long as several minutes. The progress counter informs you about the current state of the calibration procedure.

The switches, pushbuttons and control elements to be activated for this purpose are indicated by their item number. Further details can be found in the sections "Switches / pushbuttons" and "Control elements" of the Operator's Manual. After the calibration, "CALIBRATION DONE" (Fig. 3) is displayed on the screen. The displayed number is a service information.

Fig. 3

- After pressing the SET key = Exit, the program returns to the next higher menu. Further calibration categories can then be selected and executed.
- To get back to the next higher menu, press the arrow UP [$\hat{\Pi}$] or the arrow DOWN [\hat{I}] key until the start or the end of the display selection is reached.

This menu is used for the calibration of proportional and control valves, hydraulic pumps and electric and hydraulic motors and combustion engines.

Setting of calibration parameters

- In the operation mode, press an arrow key until "SERVICE" appears in the lower part of the display or until the service symbol is highlighted by by a frame and press the SET key.
- Enter the four-digit code with the arrow keys and the SET key and confirm the entered code once again with the SET key.
- To go back to the "SERVICE" menu, press the arrow UP [↑] or the arrow DOWN [↓] key until the start or the end of the display selection is reached. If scrolling is continued on reaching the start or the end, the program goes back to next higher menu. Return is automatic, if the keys are not pressed for a longer period.
- Please contact our Service dept., if you are not authorized to change settings.
- After confirmation of the password (code), the display now offers the following four selections:
 - OPERATING HOURS
 - MAINTENANCE
 - CALIB. (ENGINE ON)
 - CALIB. (ENGINE OFF)
 - OPTIONS
 - ERROR RESET
- Using the arrow keys, move the frame to the "CALIB. (ENGINE ON)" bar and confirm your selection with the SET key.
- The "CALIB. (ENGINE ON)" menu offers the following five selections:
 - VDO
 - POWER
 - MAIN VALVE
 - TRAVEL
 - PUMP DEMAND
 - SWING PUMP
 - AUX. PRESS.

- The individual calibration categories can be selected with the arrow UP [[↑]] or with the arrow DOWN [[↓]] key.
- After confirming the selection with the SET key you are asked whether you want to perform the calibration confirmed "START CALIBRATION" or "DEFAULT".
- After confirming the selection "START CALI-BRATION" with the SET key, the calibration procedure is performed. The calibration procedure can be aborted at any time by pressing the arrow UP [Î] key. After the abortion, the message "CALIBRATION ABORTED" is displayed with the program returning after 3 seconds to the next higher menu.
- After corresponding selection and confirmation with the SET key, the display shows the message "CALIBRATION ONGOING".
- After pressing the SET key = Exit, the program returns to the next higher menu. Further calibration categories can then be selected and executed.
- To get back to the next higher menu, press the arrow UP [↑] or the arrow DOWN [↓] key until the start or the end of the display selection is reached.

Calibration (engine ON), VDO

Fig. 1

VDO

This menu item is used for calibrating the engine characteristic. After confirming the VDO selection with the SET key, the following texts are displayed:

Step	Display text	Remarks
1	START CALIBRATION	
2	calibration of lower speed range	
3	calibration of upper speed range	
4	calibration 20% engine speed	
5	calibration 40% engine speed	
6	calibration 60% engine speed	
7	calibration 80% engine speed	
8	calibration done	

Calibration (engine ON), POWER

POWER

This menu item is used for calibrating the power characteristic of the diesel engine. After confirming the POWER selection with the SET key (Fig. 2), the following instructions are displayed one after another:

Step	Display text	Remarks
1	START CALIBRATION	
2	Close bucket	Shift control lever (69) to the left (fill bucket)
3	Calibration ongoing	
4	Release joystick	Joystick (69) to neutral position
5	Calibration done	

Calibration (engine ON), MAIN VALVE

Fig. 1

MAIN VALVE

This menu item is used for calibrating the control characteristics of the spools in the control block. After confirming the MAIN VALVE selection with the SET key, the display offers 10 selections: COMPLETE, DE-FAULT and SPOOLS 1 to 8. The individual steps are executed automatically one after another. On completion of the respective calibration procedure, the program returns automatically to the next higher menu.

Before calibration of "spool 1" (travel), drive the machine in first gear and jack up in such a way that the wheels come clear of the ground. (See operating instructions "Stabilization of the machine"). During calibration in stabilized condition, the wheels will perform slow rotary movements. For this reason, all persons must keep out of the hazard zone. In machines without stabilizers, the machine must be parked on level ground. During calibration, the machine will roll slowly a few meters forwards or backwards when the motor drives the individual wheels. A free space of at least 10 m without obstacles and objects before and behind the machine is therefore required. During the calibration procedure, nobody must enter the hazard zone.

Step	Display text	Remarks
1	COMPLETE	As an alternative to the COMPLETE selection (Fig. 2), the menus DEFAULT (Fig. 3) or individually SPOOL 1 to SPOOL 8 can be selected. On confirmation of the COMPLETE selection, the following calibration steps are executed one after another.
2	Safety lever to bottom position 1	Safety lever (72) to position 1, electrohydraulic pilot control ON
3	Close bucket	Shift joystick (69) to the left (fill bucket)
4	Hold joystick imn max. position	
5	Spool 1 started	
6	Calibration bottom hood spool 1 - 8	
7	Measure at test point pressure xxx bars	
8	Calibration top hood spool 1 - 8	
9	Measure at test point pressure xxx bars	
10	Joysticks and pedale to neutral position	
11	Calibration sucessfully completed	
12	Safety lever to top position 0	Safety lever (72) to position 0, electrohydraulic pilot control OFF
13	Calibration done	

Step	Display text	Remarks
1	DEFAULT	
2	Restore default settings Successfully completed	

Calibration (engine ON), TRAVEL

Fig. 2

TRAVELLING

If the SET key is pressed in the "TRAVEL" item of the menu, the bar jumps to the "VDO" item. The "TRAVEL" function is calibrated by the calibration of piston 1 in the control block (see section: "Calibration (Engine ON), MAIN VALVE").

Calibration (engine ON), PUMP DEMAND

Fig. 1

PUMP DEMAND PRESSURE

This menu item is used for calibrating the pump demand pressure for the boom and stick cylinders. After confirming the PUMP DEMAND selection with the SET key, the display offers two selections: START CALI-BRATION and DEFAULT. The individual steps are executed automatically one after another. After the calibration, the program returns automatically to the next higher menu.

Step	Display text	Remarks
1	START CALIBRATION	
2	Safety lever to bottom position 1	Move safety lever (72) downwards, electro- hydraulic pilot control ON.
3	Boom rising	Pull joystick (69) backwards, the boom rises
4	In max. position press <set> key</set>	Press the SET key when the boom / mono is in max. lifting position
5	Next step	
6	Calibration ongoing	
7	Measuring at test point pressure xxx bars	
8	Stick out	Move joystick (70) forwards, extend stick to the stop
9	In max. position press <set> key</set>	Press the SET key when the stick is in max. extended position
10	Next step	
11	Calibration ongoing	
12	Joysticks and pedals in neutral position	
13	Calibration successfully completed	
14	Safety lever to top position 0	Move safety lever (72) to position 0, electro- hydraulic pilot-control OFF
15	Calibration done	

Step	Display text	Remarks
1	DEFAULT	
2	Restore default data Successfully completed	

Calibration (engine ON), SWING PUMP

Fig. 1

SWING PUMP

This menu item is used for calibrating the swing pump and thus the slewing movement of the superstructure. After confirming the SWING PUMP selection with the SET key, the display offers two selections: START CALIBRATION or DEFAULT. The individual steps are executed automatically one after another. On completion of the calibration the program returns automatically to the next higher menu.

Step	Display text	Remarks
1	START CALIBRATION	
2	Calibration started	
3	Safety lever to bottom position 1	Move safety lever (72) downwards, electro- hydraulic pilot control ON.
4	Swing to the right	Move joystick (70) to the right. The superstruc- ture holding brake is automatically blocked. Su- perstructure slewing is not possible.
5	Hold joystick in max. position	
	Superstructure standstill test	
	Calibration ongoing	
	Next step	
	Calibration ongoing	
	Calibration successfully completed	
	Joysticks and pedals in neutral position	
	Safety lever to top position 0	Move safety lever (72) to position 0, electro- hydraulic pilot-control OFF

Step	Display text	Remarks
1	DEFAULT	
2	Restore default data Successfully completed	

Calibration (engine ON), AUX. PRESS.

Fig. 1

6-20

AUXILIARY EQUIPMENT PRESSURE

This menu item is used for calibrating the load pressure for the attachment. After confirming the AUX. PRESS. selection with the SET key, the display offers two selections: START CALIBRATION and DEFAULT. The individual steps are executed automatically one after another. After the calibration, the program returns automatically to the next higher menu.

Step	Display text	Remarks
1	START CALIBRATION	
2	Safety lever to bottom position 1	Move safety lever (72) downwards, electro- hydraulic pilot control ON.
3	Close bucket	Move joystick (69) to the left (fill bucket)
4	Hold joystick in max. position	
5	Calibration prepare measuring	
6	Measure at test point pressure xxx bars	
7	Next step	
8	Calibration prepare measuring	
9	Measure at test point pressure xxx bars	
10	Calibration successfully completed	
11	Joysticks and pedals in neutral position	
12	Safety lever in top position 0	Move safety lever (72) to position 0, electro- hydraulic pilot-control OFF

Step	Display text	Remarks
1	DEFAULT	
2	Restore default data Successfully completed	

Fig. 1

This menu is used for the calibration of proportional and control valves, hydraulic pumps and electric and hydraulic motors and combustion engines.

Setting of calibration parameters

- In the operation mode, press an arrow key until "SERVICE" appears in the lower part of the display or until the service symbol is highlighted by by a frame and press the SET key.
- Enter the four-digit code with the arrow keys and the SET key and confirm the entered code once again with the SET key.
- To go back to the "SERVICE" menu, press the arrow UP [↑] or the arrow DOWN [↓] key until the start or the end of the display selection is reached. If scrolling is continued on reaching the start or the end, the program goes back to the next higher menu. Return is automatic, if the keys are not pressed for a longer period.
- Please contact our Service dept., if you are not authorized to change settings.
- After confirmation of the password (code), the display now offers the following four selections:
 - OPERATING HOURS
 - MAINTENANCE
 - CALIB. (ENGINE ON)
 - CALIB. (ENGINE OFF)
 - OPTIONS
 - ERROR RESET
- Using the arrow keys, move the frame to the "CALIB. (ENGINE OFF)" bar and confirm your selection with the SET key
- The "CALIB. (ENGINE OFF)" menu offers the following five selections:
 - PROP. SOLENOIDS
- After confirming the PROP. SOLENOIDS selection with the SET key five other selections are available:
 - ALL SOLENOIDS
 - MAIN VALVE
 - MAIN PUMP
 - SWING PUMP
 - AUX. PRESS.

- The individual calibration categories can be selected with the arrow UP [î] or with the arrow DOWN [↓] key.
- After confirming the selection with the SET key you are asked whether you want to perform the calibration confirmed "START CALIBRATION" or "DEFAULT".
- After confirming the selection "START CALI-BRATION" with the SET key, the calibration procedure is performed. The calibration procedure can be aborted at any time by pressing the arrow UP [Î] key. After the abortion, the message "CALIBRATION ABORTED" is displayed with the program returning after 3 seconds to the next higher menu.
- After corresponding selection and confirmation with the SET key, the display shows the message "CALIBRATION ONGOING".
- After pressing the SET key = Exit, the program returns to the next higher menu. Further calibration categories can then be selected and executed.
- To get back to the next higher menu, press the arrow UP [î] or the arrow DOWN [IJ] key until the start or the end of the display selection is reached.

Fig. 1

ALL SOLENOIDS, MAIN PUMP, SWING PUMP, AUXILIARY ATTACHMENT PRESSURES

This menu item is used for calibrating the control characteristics of the proportional solenoid valves. After confirming the PROP. SOLENOIDS selection with the SET key, the display offers five selections: ALL SO-LENOIDS, MAIN VALVE, MAIN PUMP, SWING PUMP and AUX.-PRESS. Each menu item has the following two sub-selections: START CALIB. or DEFAULT. The individual steps are executed automatically one after another. On completion of the respective calibration procedure, the program returns to the next higher menu.

Step	Display text	Remarks
1	ALL SOLENOIDS	As an alternative to the ALL SOLENOIDS selec- tion, the menus MAIN PUMP, SWING PUMP or AUX. PRESS. can be selected.
3	Calibration ongoing	
23	Calibration successfully completed	
24	Exit with the < SET > key	
25	Calibration done	

Step	Display text	Remarks
1	DEFAULT	
2	Restore default data Successfully completed	

Calibration (engine OFF), MAIN VALVE

Fig. 1

Fig. 2

MAIN VALVE

This menu item is used for calibrating the control characteristics of the proportional solenoid valves. After confirming the PROP. SOLENOIDS selection with the SET key, the display offers five selections: ALL SO-LENOIDS, MAIN VALVE, MAIN PUMP, SWING PUMP and AUX.-PRESS. The MAIN VALVE menu has 10 submenu items for selection: COMPLETE, DEFAULT and SPOOLS 1 to 8.

Step	Display text	Remarks
1	COMPLETE	As an alternative to the ALL selection, the DE- FAULT and SPOOLS 1 to 8 menus can be se- lected.
3	Calibration ongoing	
23	Calibration successfully completed	
24	Exit with the < SET> key	
25	Calibration done	

Step	Display text	Remarks
1	DEFAULT	
2	Restore default data Successfully completed	

SECTION 7 TROUBLESHOOTING AND REPAIR

INDEX

Page

FAULT CODES	
General information on fault codes	7-1
Fault codes	7-3
Fault codes PCS unit	7-15
Fault codes, Central Unit	7-16

FAULT CODES

General information on fault codes

The following units of the machine are permanently monitored:

- Central Unit (CU)
- Power-Control-System (PCS)
- Electro-Hydraulic Controller (ESX)

In the event of a fault, a **fault code** (e.g. N°7004) is diplayed in the upper half of the multi-function display (108, Fig. 1) in combination with two **coloured warning lights** (112 yellow and 113 red, Fig. 1) which will light up individually or together, depending on the type of fault. Depending on the severity of the fault, a special tone signal will be heard in addition.

Meaning of signals:

RED	Severe fault
+	The safety of persons and/or the
CONTINUOUS TONE	functioning of essential units of the machine is at risk.

Severe faults must be rectified immediately.
Shut off the machine at once.

YELLOWThe fault signalled is not relevent to the safety of persons or to functioning of the machine.	
+	These faults must be rectified as
SINGLE BEEP	fast as possible. In most of the cases, however, the machine re- mains fully functional.

(see also "Multi-function display")

Fig. 1

In addition to the fault code, the lower half of the multi-function display (108, Fig. 1) gives an explanation of the fault code (error text).

In individual cases there is the possibility of several faults occurring at the same time.

The corresponding error codes are then displayed one after another in alternation with the normal display contents. The following groups of error codes can be displayed:

Group	Unit
7000	Central unit and engine
8000	Power-Control-System
9000	Hydraulics

These faults can, as a rule, not be rectified by your own means as they require special tools and special knowledge.

Therefore, note the fault code and inform our Service Dept. accordingly if you cannot rectify the fault yourself.

Apart from the fault code, the Service Dept. needs the following information:

- machine type, machine no., possibly also the engine no.
- part number P/N of the PCS, ESX
- what work was being done when the fault occurred?
- did the machine behave differently from normal situations?
- which pilot and warning lamps were lit up?
- what else was displayed on the screen?
- what external influences was the machine exposed to (great heat/cold, dust, continuous loading over a long time)?

Fault codes

- 9000 (German)
- 9011 ESX checksum fault
- 9012 ESX cutoff fault
- 9013 SPI communication of ESX defective
- 9014 SPI bus of ESX reserved
- 9015 Checksum fault on initialization of ESX system monitoring
- 9016 Plausibility fault on initialization of ESX system monitoring
- 9017 ESX reset through user watchdog
- 9018 ESX reset through system watchdog
- 9019 ESX hardware fault
- 9020 Checksum fault during readout of ESX fault memory
- 9021 Fault in reading of ESX fault memory
- 9022 ESX value outside valid range
- 9023 Supply voltage of ESX operation amplifier and multiplexer defective
- 9024 ESX temperature outside permitted range
- 9025 Processor configuration faulty due to ESX hardware
- 9026 Multiplexer or ESX A/D converter defective.
- 9027 Threshold voltage of ESX inputs faulty
- 9028 ESX frame potential faulty
- 9029 Supply voltage of ESX watchdog module defective
- 9030 Frame potential at BTS module of ESX faulty
- 9031 ESX relay defective
- 9032 ESX watchdog module cannot switch off relay
- 9033 ESX watchdog module defective
- 9034 CPU of ESX defective
- 9035 ESX flags cannot be set
- 9036 ESX flags cannot be scanned
- 9037 ESX arithmetic unit defective
- 9038 ESX multiplier defective
- 9039 Fault in CPU test sequence of ESX
- 9040 External RAM or ROM of ESX defective
- 9041 Shadow memory module of ESX defective
- 9042 Net current measurement on start of ESX faulty
- 9043 Cyclic net current measurement of ESX faulty
- 9044 Internal RAM defective on start of ESX
- 9045 Cyclic internal RAM test of ESX defective
- 9046 Ignition lock input status of ESX faulty
- 9047 Cyclic diagnosis of ESX faulty

9048	Other diagnostic fault at ESX
9055	Read machine information from ESX memory
9056	Read options from ESX memory
9057	Read configuration parameters from ESX memory
9058	Read pump diagram parameters from ESX memory
9059	Read equipment parameters from ESX memory
9060	Read servo control parameters from ESX memory
9061	Read mode parameters from ESX memory
9062	Read control block parameters from ESX memory
9063	Read main pump parameters from ESX memory
9064	Read slewing pump parameters from ESX memory
9065	Read component parameters from ESX memory
9066	Read fault range 1 from ESX memory
9067	Read fault range 2 from ESX memory
9068	Read fault range 3 from ESX memory
9069	Write equipment information into ESX memory
9070	Write options into ESX memory
9071	Write configuration parameters into ESX memory
9072	Write pump diagram parameters into ESX memory
9073	Write equipment parameters into ESX memory
9074	Write servo control parameter into ESX memory
9075	Write mode parameters into ESX memory
9076	Write control block parameters into ESX memory
9077	Write main pump parameters into ESX memory
9078	Write slewing pump parameters into ESX memory
9079	Write component parameters into ESX memory
9080	Write fault range 1 into ESX memory
9081	Write fault range 2 into ESX memory
9082	Write fault range 3 into ESX memory
9083	Read machine settings from ESX memory
9084	Write machine settings into ESX memory
9085	Machine settings contradictory
9086	Machine settings not in admissible range
9087	Read hammer configuration from ESX memory
9088	Write hammer configuration into ESX memory
9089	hammer configuration data contradictory
9090	hammer configuration data not in admissible range
9091	Read milling configuration from ESX memory
9092	Write milling configuration into ESX memory

- 9093 Milling configuration data contradictory
- 9094 Milling configuration data not in admissible range
- 9095 Read slewing range limit from ESX memory
- 9096 Write slewing range limit into ESX memory
- 9097 Slewing range limit contradictory
- 9098 Slewing range limit not in admissible range
- 9103 Write control block solenoids calibration into ESX memory
- 9104 Write proportional demand solenoids calibration into ESX memory
- 9105 Write slewing pump solenoids calibration into ESX memory
- 9106 Write calibration of pressure relief valve solenoid for attachment into ESX memory
- 9107 Write analogy input calibration into ESX memory
- 9108 Write control block calibration into ESX memory
- 9109 Write proportional demand control calibration into ESX memory
- 9110 Write slewing pump calibration into ESX memory
- 9117 Excavator type not initialised
- 9118 Excavator type: faulty CAN data
- 9119 Read excavator type from ESX memory
- 9120 Write excavator type into ESX memory
- 9121 Excavator type contradictory
- 9122 Excavator type not in admissible range
- 9123 Read equipment configuration from ESX memory
- 9124 Write equipment configuration into ESX memory
- 9125 Equipment configuration contradictory
- 9126 Equipment configuration not in admissible range
- 9127 Read keyboard field status from ESX memory
- 9128 Write keyboard field status into ESX memory
- 9129 Keyboard field status contradictory
- 9130 Keyboard field status not in admissible range
- 9131 Read optional equipment from ESX memory
- 9132 Write optional equipment into ESX memory
- 9135 Read configuration of specific components from ESX memory
- 9136 Write configuration of specific components into ESX memory
- 9139 Read software options from ESX memory
- 9140 Write software options into ESX memory
- 9141 Read configuration results from ESX memory
- 9142 Write configuration results into ESX memory
- 9143 Immobilizer release in ESX not correct
- 9144 System status not available on start of ESX
- 9145 Inadmissible change in system status of ESX requested

9151	CAN bus No. 1 Bus OFF
9152	CAN bus No. 1 Bus warning
9153	CAN bus No. 1 overrun on transmission
9154	CAN bus No. 1 overrun on reception
9155	CAN bus No. 1 warning on reception
9161	CAN bus No. 2 Bus OFF
9162	CAN bus No. 2 Bus warning
9163	CAN bus No. 2 overrun on transmission
9164	CAN bus No. 2 overrun on reception
9165	CAN bus No. 2 warning on reception
9171	Central electronic unit message CID_CU_SYSTEM failure
9173	Central electronic unit message CID_CU_DEVICE_STATUS failure
9175	Central electronic unit message CID_CU_TIME_STAMP failure
9177	Central electronic unit message CID_CU_ANALOG failure
9181	PCS message CID_PCS_STATUS failure
9183	PCS message CID_PCS_TEMP failure
9185	PCS message CID_PCS_RPM failure
9187	PCS message CID_PCS_IOSTAT failure
9191	Display message CID_C4_STATUS failure
9193	Display message CID_C4_COUNTER failure
9201	Keyboard field 1 status message failure
9203	Keyboard field 2 status message failure
9205	Keyboard field 3 status message failure
9231	Mechanical slewing brake display status fault
9232	Forward travel display status fault
9234	Reverse travel display status fault
9251	Highway travel key not available
9252	Highway travel key not responding
9253	Highway travel key, display fault left LED
9254	Highway travel key, display fault right LED
9261	Slewing brake key not available
9262	Slewing brake key not responding
9263	Slewing brake key, display fault left LED
9264	Slewing brake key, display fault right LED
9266	Overload warning device key not available
9267	Overload warning device key not responding
9268	Overload warning device key, display fault left LED
9269	Overload warning device key, display fault right LED
9271	Slewing delay key not available

- 9272 Slewing delay key not responding
- 9273 Slewing delay key, display fault left LED
- 9274 Slewing delay key, display fault right LED
- 9281 Operating scheme coding plug, cable parting
- 9282 Operating scheme coding plug, dual short circuit after supply voltage
- 9283 Operating scheme coding plug not available
- 9286 Boom adjusting mechanism coding plug, cable parting
- 9287 Boom adjusting mechanism coding plug, short circuit after supply voltage
- 9288 Boom adjusting mechanism coding plug not available
- 9291 Servo control system changeover switch, cable parting
- 9292 Servo control system changeover switch, short circuit after supply voltage
- 9293 Servo control system changeover switch not available
- 9301 Right joystick failure
- 9302 Right joystick, message counter faulty
- 9303 Right joystick, CAN communication faulty
- 9304 Right joystick, initialization message faulty
- 9305 Right joystick, faulty EEPROM access
- 9306 Right joystick, inverse message failure
- 9307 Right joystick, inverse message defective
- 9308 Right joystick, message counter of inverse message faulty
- 9309 Right joystick, faulty processor
- 9310 Right joystick, Alive message failure
- 9312 Right joystick, pushbutton 1 defective
- 9313 Right joystick, pushbutton 2 defective
- 9314 Right joystick, pushbutton 3 defective
- 9315 Right joystick, pushbutton 4 defective
- 9316 Right joystick, pushbutton 5 defective
- 9319 Right joystick, sensor in "X" direction not installed
- 9320 Right joystick, sensor in "X" direction defective
- 9321 Right joystick incompatible status in "X" direction
- 9322 Right joystick, sensor in "Y" direction not installed
- 9323 Right joystick, sensor in "Y" direction defective
- 9324 Right joystick incompatible status in "Y" direction
- 9331 Left joystick, failure
- 9332 Left joystick, message counter faulty
- 9333 Left joystick, CAN communication faulty
- 9334 Left joystick, initialization message faulty
- 9335 Left joystick, faulty EEPROM access
- 9336 Left joystick, inverse message failure

9337	Left joystick, inverse message defective
9338	Left joystick, message counter of inverse message faulty
9339	Left joystick, faulty processor
9340	Left joystick, Alive message failure
9342	Left joystick, pushbutton 1 defective
9343	Left joystick, pushbutton 2 defective
9344	Left joystick, pushbutton 3 defective
9345	Left joystick, pushbutton 4 defective
9346	Left joystick, pushbutton 5 defective
9349	Left joystick, sensor in "X" direction not installed
9350	Left joystick, sensor in "X" direction defective
9351	Left joystick incompatible status in "X" direction
9352	Left joystick, sensor in "Y" direction not installed
9353	Left joystick, sensor in "Y" direction defective
9354	Left joystick, incompatible status in "Y" direction
9361	Bulldozer master pedal failure
9362	Bulldozer master pedal, message counter faulty
9363	Bulldozer master pedal, CAN communication faulty
9364	Bulldozer master pedal, initialization message faulty
9365	Bulldozer master pedal, faulty EEPROM access
9366	Bulldozer master pedal, inverse message failure
9367	Bulldozer master pedal, inverse message defective
9368	Bulldozer master pedal, message counter of inverse message
9369	Bulldozer master pedal, faulty processor
9370	Bulldozer master pedal, Alive message failure
9379	Sensor of Bulldozer master pedal not installed
9380	Sensor of bulldozer master pedal defective
9381	Incompatible status of bulldozer master pedal
9382	Sensor of 1 st slave pedal not installed
9383	Sensor of 1 st slave pedal defective
9384	Incompatible status of 1 st slave pedal
9385	Sensor of 2 nd slave pedal not installed
9386	Sensor of 2 nd slave pedal defective
9387	Incompatible status of 2 nd slave pedal
9388	Sensor of 3 rd slave pedal not installed
9389	Sensor of 3 rd slave pedal defective
9390	Incompatible status of 3 rd slave pedal
9391	Driving pedal failure
9392	Driving pedal, message counter faulty
	9337 9338 9339 9340 9342 9343 9344 9345 9346 9349 9350 9351 9352 9353 9354 9361 9363 9364 9363 9364 9365 9363 9364 9365 9366 9367 9368 9367 9368 9369 9370 9380 9381 9382 9383 9384 9385 9383 9384 9385 9386 9387 9388 9385 9386 9387 9388 9386 9387 9388 9387 9388 9386 9387 9388 9387 9388

faulty

9393

9394 Driving pedal, initialization message faulty 9395 Driving pedal, faulty EEPROM access 9396 Driving pedal, inverse message failure 9397 Driving pedal, inverse message defective 9398 Driving pedal, message counter of inverse message faulty 9399 Driving pedal, faulty processor 9400 Driving pedal, Alive message failure 9409 Sensor of driving pedal not installed 9410 Sensor of driving pedal defective 9411 Incompatible status of driving pedal Sensor of 1st slave pedal not installed 9412 9413 Sensor of 1st slave pedal defective Incompatible status of 1st slave pedal 9414 Sensor of 2nd slave pedal not installed 9415 Sensor of 2nd slave pedal defective 9416 Incompatible status of 2nd slave pedal 9417 9418 Sensor of 3rd slave pedal not installed 9419 Sensor of 3rd slave pedal defective Incompatible status of 3rd slave pedal 9420 9421 Auxiliary joystick failure 9422 Auxiliary joystick, message counter faulty 9423 Auxiliary joystick, CAN communication faulty 9424 Auxiliary joystick, initialization message faulty 9425 Auxiliary joystick, faulty EEPROM access 9426 Auxiliary joystick, inverse message failure 9427 Auxiliary joystick, inverse message defective 9428 Auxiliary joystick, message counter of inverse message faulty 9429 Auxiliary joystick, faulty processor

Driving pedal, CAN communication faulty

- 9430 Auxiliary joystick, Alive message failure
- 9432 Auxiliary joystick, pushbutton 1 defective
- 9433 Auxiliary joystick, pushbutton 2 defective
- 9434 Auxiliary joystick, pushbutton 3 defective
- 9435 Auxiliary joystick, pushbutton 4 defective
- 9436 Auxiliary joystick, pushbutton 5 defective
- 9439 Auxiliary joystick, sensor in "X" direction not installed
- 9440 Auxiliary joystick, sensor in "X" direction defective
- 9441 Auxiliary joystick, incompatible status in "X" direction
- 9442 Auxiliary joystick, sensor in "Y" direction not installed

- 9443 Auxiliary joystick, sensor in "Y" direction defective
- 9444 Auxiliary joystick, incompatible status in "Y" direction
- 9511 Safety lever, cable parting
- 9512 Safety lever, short circuit after supply voltage
- 9513 Safety lever not available
- 9521 Safety valve, equipment, cable parting
- 9522 Safety valve, equipment, accidental ground
- 9523 Safety valve, equipment, short circuit after supply voltage
- 9524 Safety valve, equipment, defective
- 9531 Safety valve, driving, cable parting
- 9532 Safety valve, driving, accidental ground
- 9533 Safety valve, driving, short circuit after supply voltage
- 9534 Safety valve, driving, defective
- 9536 Safety valve, slewing, cable parting
- 9537 Safety valve, slewing, accidental ground
- 9538 Safety valve, slewing, short circuit after supply voltage
- 9539 Safety valve, slewing, defective
- 9551 Pressure switch, parking brake, defective
- 9611 Proportional demand valve, pump P1, cable parting
- 9612 Proportional demand valve, pump P1, accidental ground
- 9613 Proportional demand valve, pump P1, short circuit after supply voltage
- 9614 Proportional demand valve, pump P1, control fault
- 9615 Proportional demand valve, pump P1, defective
- 9618 Pressure sensor, pump P1, cable parting
- 9619 Pressure sensor, pump P1, short circuit after supply voltage
- 9621 Proportional demand valve, pump P2, cable parting
- 9622 Proportional demand valve, pump P2, accidental ground
- 9623 Proportional demand valve, pump P2, short circuit after supply voltage
- 9624 Proportional demand valve, pump P2, control fault
- 9625 Proportional demand valve, pump P2, defective
- 9628 Pressure sensor, pump P2, cable parting
- 9629 Pressure sensor, pump P2, short circuit after supply voltage
- 9651 Pressure sensor, boom, piston surface, cable parting
- 9652 Pressure sensor, boom, piston surface, short circuit after supply voltage
- 9653 Load pressure sensor, cable parting
- 9654 Load pressure sensor, short circuit after supply voltage
- 9655 Pressure sensor, driving function, cable parting
- 9656 Pressure sensor, driving function, short circuit after supply voltage
- 9711 Left servo-valve, slewing, cable parting

- 9712 Left servo-valve, slewing, accidental ground
- 9713 Left servo-valve, slewing, short circuit after supply voltage
- 9714 Left servo-valve, slewing, control fault
- 9715 Left servo-valve, slewing, defective
- 9716 Left servo-valve, slewing, flow measurement deviation
- 9721 Right servo-valve, slewing, cable parting
- 9722 Right servo-valve, slewing, accidental ground
- 9723 Right servo-valve, slewing, short circuit after supply voltage
- 9724 Right servo-valve, slewing, control fault
- 9725 Right servo-valve, slewing, defective
- 9726 Right servo-valve, slewing, flow measurement deviation
- 9731 Valve, mechanical slewing brake, cable parting
- 9732 Valve, mechanical slewing brake, accidental ground
- 9733 Valve, mechanical slewing brake, short circuit after supply voltage
- 9741 Angle sensor, slewing pump, cable parting
- 9742 Angle sensor, slewing pump, short circuit after supply voltage
- 9743 Angle sensor, slewing pump, faulty calibration
- 9744 Angle sensor, slewing pump, faulty sense of rotation
- 9747 Speed sensor, slewing, accidental ground, input 1
- 9748 Speed sensor, slewing, accidental ground, input 2
- 9749 Speed sensor, slewing, short circuit after supply voltage, input 1
- 9750 Speed sensor, slewing, short circuit after supply voltage, input 2
- 9751 Speed sensor, slewing, inadequate number of pulses
- 9753 Speed sensor, slewing, max. admissible frequency exceeded
- 9754 Speed sensor, slewing, faulty direction evaluation
- 9755 Speed sensor, slewing, cable parting, input 1
- 9756 Speed sensor, slewing, cable parting, input 2
- 9757 Speed sensor, slewing, faulty sense of rotation
- 9758 Speed sensor, slewing, differing frequency inputs
- 9759 Speed sensor, slewing, ground cable defective
- 9761 Pressure sensor, slewing, cable parting
- 9762 Pressure sensor, slewing, short circuit after supply voltage
- 9764 Pressure sensor, slewing pump connection A, cable parting
- 9765 Pressure sensor, slewing pump connection A, short circuit after supply voltage
- 9767 Pressure sensor, slewing pump connection B, cable parting
- 9768 Pressure sensor, slewing pump connection B, short circuit after supply voltage
- 9781 Control piston 1, cable parting, solenoid, lower hood
- 9782 Control piston 1, accidental ground, solenoid, lower hood
- 9783 Control piston 1, short circuit after supply voltage, solenoid, lower hood

9784 Control piston 1, flow measurement deviation, solenoid, lower hood 9785 Control piston 1, defective cut-off, solenoid, lower hood 9786 Control piston 1, cable parting, solenoid, upper hood 9787 Control piston 1, accidental ground, solenoid, upper hood 9788 Control piston 1, short circuit after supply voltage, solenoid, upper hood 9789 Control piston 1, flow measurement deviation, solenoid, upper hood 9790 Control piston 1, defective cut-off, solenoid, upper hood 9791 Control piston 1, control fault 9792 Control piston 1, pilot valve defective 9796 Control piston 2, cable parting, solenoid, lower hood 9797 Control piston 2, accidental ground, solenoid, lower hood 9798 Control piston 2, short circuit after supply voltage, solenoid, lower hood 9799 Control piston 2, flow measurement deviation, solenoid, lower hood 9800 Control piston 2, defective cut-off, solenoid, lower hood 9801 Control piston 2, cable parting, solenoid, upper hood 9802 Control piston 2, accidental ground, solenoid, upper hood 9803 Control piston 2, short circuit after supply voltage, solenoid, upper hood 9804 Control piston 2, flow measurement deviation, solenoid, upper hood 9805 Control piston 2, defective cut-off, solenoid, upper hood 9806 Control piston 2, control fault 9807 Control piston 2, pilot valve defective 9811 Control piston 3, cable parting, solenoid, lower hood 9812 Control piston 3, accidental ground, solenoid, lower hood 9813 Control piston 3, short circuit after supply voltage, solenoid, lower hood 9814 Control piston 3, flow measurement deviation, solenoid, lower hood 9815 Control piston 3, defective cut-off, solenoid, lower hood 9816 Control piston 3, cable parting, solenoid, upper hood 9817 Control piston 3, accidental ground, solenoid, upper hood 9818 Control piston 3, short circuit after supply voltage, solenoid, upper hood 9819 Control piston 3, flow measurement deviation, solenoid, upper hood 9820 Control piston 3, defective cut-off, solenoid, upper hood 9821 Control piston 3, control fault 9822 Control piston 3, pilot valve defective 9826 Control piston 4, cable parting, solenoid, lower hood 9827 Control piston 4, accidental ground, solenoid, lower hood 9828 Control piston 4, short circuit after supply voltage, solenoid, lower hood 9829 Control piston 4, flow measurement deviation, solenoid, lower hood 9830 Control piston 4, defective cut-off, solenoid, lower hood 9831 Control piston 4, cable parting, solenoid, upper hood

9832 Control piston 4, accidental ground, solenoid, upper hood 9833 Control piston 4, short circuit after supply voltage, solenoid, upper hood 9834 Control piston 4, low measurement deviation, solenoid, upper hood 9835 Control piston 4, defective cut-off, solenoid, upper hood 9836 Control piston 4, control fault 9837 Control piston 4, pilot valve defective 9841 Control piston 5, cable parting, solenoid, lower hood 9842 Control piston 5, accidental ground, solenoid, lower hood 9843 Control piston 5, short circuit after supply voltage, solenoid, lower hood 9844 Control piston 5, flow measurement deviation, solenoid, lower hood 9845 Control piston 5, defective cut-off, solenoid, lower hood 9846 Control piston 5, cable parting, solenoid, upper hood 9847 Control piston 5, accidental ground, solenoid, upper hood 9848 Control piston 5, short circuit after supply voltage, solenoid, upper hood 9849 Control piston 5, flow measurement deviation, solenoid, upper hood 9850 Control piston 5, defective cut-off, solenoid, upper hood 9851 Control piston 5, control fault 9852 Control piston 5, pilot valve defective 9856 Control piston 6, cable parting, solenoid, lower hood 9857 Control piston 6, accidental ground, solenoid, lower hood 9858 Control piston 6, short circuit after supply voltage, solenoid, lower hood 9859 Control piston 6, flow measurement deviation, solenoid, lower hood 9860 Control piston 6, defective cut-off, solenoid, lower hood 9861 Control piston 6, cable parting, solenoid, upper hood 9862 Control piston 6, accidental ground, solenoid, upper hood 9863 Control piston 6, short circuit after supply voltage, solenoid, upper hood 9864 Control piston 6, flow measurement deviation, solenoid, upper hood 9865 Control piston 6, defective cut-off, solenoid, upper hood 9866 Control piston 6, control fault 9867 Control piston 6, pilot valve defective 9871 Control piston 7, cable parting, solenoid, lower hood 9872 Control piston 7, accidental ground, solenoid, lower hood 9873 Control piston 7, short circuit after supply voltage, solenoid, lower hood 9874 Control piston 7, flow measurement deviation, solenoid, lower hood 9875 Control piston 7, defective cut-off, solenoid, lower hood 9876 Control piston 7, cable parting, solenoid, upper hood 9877 Control piston 7, accidental ground, solenoid, upper hood 9878 Control piston 7, short circuit after supply voltage, solenoid, upper hood 9879 Control piston 7, flow measurement deviation, solenoid, upper hood

- 9880 Control piston 7, defective cut-off, solenoid, upper hood
- 9881 Control piston 7, control fault
- 9882 Control piston 7, pilot valve defective
- 9886 Control piston 8 cable parting, solenoid, lower hood
- 9887 Control piston 8, accidental ground, solenoid, lower hood
- 9888 Control piston 8, short circuit after supply voltage, solenoid, lower hood
- 9889 Control piston 8, flow measurement deviation, solenoid, lower hood
- 9890 Control piston 8, defective cut-off, solenoid, lower hood
- 9891 Control piston 8, cable parting, solenoid, upper hood
- 9892 Control piston 8, accidental ground, solenoid, upper hood
- 9893 Control piston 8, short circuit after supply voltage, solenoid, upper hood
- 9894 Control piston 8, flow measurement deviation, solenoid, upper hood
- 9895 Control piston 8, defective cut-off, solenoid, upper hood
- 9896 Control piston 8, control fault
- 9897 Control piston 8, pilot valve defective
- 9901 Pressure relief valve, attachment, cable parting
- 9902 Pressure relief valve, attachment, accidental ground
- 9903 Pressure relief valve, attachment, short circuit after supply voltage
- 9904 Pressure relief valve, attachment, control fault
- 9905 Pressure relief valve, attachment, defective
- 9911 Left solenoid, auxiliary rotation circuit valve, cable parting
- 9912 Left solenoid, auxiliary rotation circuit valve, accidental ground
- 9913 Left solenoid, auxiliary rotation circuit valve, short circuit after supply voltage
- 9916 Right solenoid, auxiliary rotation circuit valve, cable parting
- 9917 Right solenoid, auxiliary rotation circuit valve, accidental ground
- 9918 Right solenoid, auxiliary rotation circuit valve, short circuit after supply voltage
- 9921 Valve, parallel driving, cable parting
- 9922 Valve, parallel driving, accidental ground
- 9923 Valve, parallel driving, short circuit after supply voltage
- 9926 Valve, volumetric flow summation cable parting
- 9927 Valve, volumetric flow summation accidental ground
- 9928 Valve, volumetric flow summation, short circuit after supply voltage
- 9931 General sensor, cable parting
- 9932 General sensor, short circuit after supply voltage

Fault codes PCS unit

Code Fault type

- 8000 ERR_BROKEN_WIRE_ENGINE
- 8001 ERR_BROKEN_WIRE_COOLER
- 8002 ERR_BROKEN_WIRE_OIL
- 8003 ERR_SHORT_WIRE_ENGINE
- 8004 ERR_SHORT_WIRE_COOLER
- 8005 ERR_SHORT_WIRE_OIL
- 8006 ERR_TEMP_ENGINE_WARN
- 8007 ERR_TEMP_ENGINE_OVER
- 8008 ERR_TEMP_OIL_WARN
- 8009 ERR_TEMP_OIL_OVER
- 8010 ERR_TEMP_AIR_OVER
- 8011 ERR_WIRE_PWM0
- 8012 ERR_WIRE_PWM1
- 8013 ERR_WIRE_PWM2
- 8014 ERR_WIRE_PWM3
- 8015 ERR_STATE_MACHINE
- 8016 ERR_RAM
- 8017 ERR_NVRAM
- 8018 ERR_ROM
- 8019 ERR_NVRAM_RESET

Fault codes, Central Unit

Code	from Version	Fault type	Conditions
7000	0.30	ERR_ENGINE_OIL_PRESSURE	engine on
7001	0.30	ERR_STEERING_PRESSURE	engine on
7002	0.30	ERR_LOW_BRAKE_PRESSURE	
7003	0.30	ERR_CAN_BUS_OFF_PCS	
7004	0.30	ERR_CAN_BUS_OFF_ESX	
7005	0.30	ERR_CAN_BUS_OFF_C4	
7006	0.30	ERR_CAN_BUS_OFF_C51	
7007	0.30	ERR_CAN_BUS_OFF_C52	
7008	0.30	ERR_CAN_BUS_OFF_C53	
7009b	0.32	ERR_ENGINE_OIL_PRESSURE_SENSOR	engine off
7009a	0.30	ERR_LOW_COOLANT_LEVEL	
7010b	0.34a	ERR_ALTERNATOR_DPLUS_WIRE	engine off
7010a	0.30	ERR_ENGINE_OIL_LEVEL	
7011	0.30	ERR_CALIBRATION	
7012	0.30	ERR_HYDOIL_FILTER	engin on
7013	0.30	ERR_AIR_FILTER	engin on
7014	0.30	ERR_GREASE_LEVEL_INDICATOR	
7015	0.30	ERR_FREQUENCY_SENSOR	engin on
7016	0.30	ERR_VDO_POTI_MAX	
7017	0.30	ERR_VDO_POTI_MIN	
7018b	0.31	ERR_POWER_ON_1	
7018a	0.30	ERR_SUM_WHITE	reserved
7019	0.31	ERR_BYPASS_HAMMER	
7020	0.31	ERR_BOOM_LIGHT	
7021b	0.34a	ERR_ALTERNATOR_DPLUS	engin on
7021a	0.31	ERR_START_RELAIS	
7022	0.31	ERR_BRAKE_LIGHT	
7023	0.31	ERR_TRAVEL_LIGHTS	
7024	0.31	ERR_POWER_SUPPLY	

Code	from Version	Fault type	Conditions
7025	0.31	ERR_GEAR_OR_SEC_STEERING	
7026	0.31	ERR_ECU_POWER_OR_PRESSURE_INCREASE	
7027	0.31	ERR_HAZARD_LAMP_OR_STICK_STABS_RELAIS	
7028	0.31	ERR_PARK_LIGHT_RIGHT	
7029	0.31	ERR_LEFT_TURN_LIGHT	
7030	0.31	ERR_PARK_LIGHT_LEFT	
7031	0.31	ERR_RIGHT_TURN_LIGHT	
7032	0.31	ERR_HORN	
7033	0.31	ERR_AFTER_SRC_DRV_MOTOR	
7034	0.31	ERR_ENGINE_CONTROLLER	
7035	0.31	ERR_SNAIL_OR_OSCI_AXLE	
7036	0.31	ERR_POWER_ON_2	
7037	0.31	ERR_SUM_WHITE	reserved

SECTION 8 REPAIR INSTRUCTIONS

INDEX

GENERALITIES	8-1
Foreword	8-1
Introduction	8-1
Safety instructions	8-2
Welding operations General welding instructions Protecting electronic modules during welding operations Effect of electromagnetic fields and electrostatic discharges	8-6 8-7 .8-8 .8-11
Handling of oils and greases	8-12
Securing the machine	8-13
Depressurizing the hydraulic system / brake system Depressurizing the hydraulic system	8-14 8-15
Bearings and bushings Removal of bearings and bushings Fitting of bearings and bushings	8-16 8-16 8-17
SUPERSTRUCTURE COMPONENTS	8-18
Replacing the buffers under the cab baseplate Preparations Front buffers Rear buffers	8-19 8-19 8-19 8-19
Removing and refitting the cab Preparations Separation of water pump Unplugging the electrical connectors Dismantling the cab Refitting the cab	8-20 8-20 8-20 8-20 8-21 8-21 8-21
Driver's seat Preparations Removing the driver's seat. Installing the driver's seat.	8-22 8-22 8-22 8-22

Steering column, steering valve	
Preparations	
Removing the steering column with the steering valve	
Refitting the steering column and the steering valve	
Removing the steering column	
Refitting the steering column	
Control levers	8-26
Prenarations	8-26
Replacing the control lever	
Display	8-27
Prenarations	8-27
Removing the display unit	8-27
Refitting the display unit	
ESX Box	8-28
Drengrations	8 28
Removing the FSX Box	0-20 8_28
Refitting the ESX Box	
Load-limit regulator	8-29
Preparations	
Removing the load-limit regulator	
Refitting the load-limit regulator	
Fan door	
Preparations	
Removing the fan door	
Refitting the fan door	
Combined radiator	
Preparations	
Removing the combined radiator	
Refitting the combined radiator	
Battery box	
Preparations	8-32
Battery box removing the hood	8-32
Battery box, refitting the hood	
Demoving and installing the better.	0.00
Removing and installing the battery	8-33
Battery box panelling	
Removing the metal panel	
Refitting the metal panel	

Rotor	
Preparations	8-36
Removing the rotor.	
Refitting the rotor	
Slewing gearbox	
Preparations	
Removing the slewing gearbox	
Slewing gearbox, fitting	
Dismantling and assembling the slewing gearbox	
Ball-bearing slewing ring	
Preparations	
Removing the ball-bearing slewing ring	
Fitting the ball-bearing slewing ring	
UNDERCARRIAGE COMPONENTS	
Axles and gearboxes	
Instructions for the repair of gearboxes and axles	
Testing procedures	
Service brake	
Brake disks, checking the lining thickness	
Bleeding the multiple-disk brake	
Cardan shaft	
Removing the cardan shaft	
Refitting the cardan shaft	
Rigid axle	
Removing the rigid axle	
ASP100 tightening torques	
Refitting the rigid axle	
Rigid axle, hydraulic motor and flanges	
Removal and fitting of hydraulic motor and flanges	
Rigid axle. gearbox housing	
Removing and fitting the gearbox housing	
Ridid axle. differential unit	
Removing and fitting the differential unit	
Rigid axle, pinion unit	
Removing and fitting the pinion group	

Steered axle	
Removing the steered axle	
Tightening torques ALPP100	
Refitting the steered axle	
5	
Steered axle, steering cylinder	
Removal and fitting of the steering cylinder	
5 5 <i>j</i>	
Steered axle, reducer gear	
Removal and fitting of the reducer gear	
5 5	
Steered axle. articulated joint housing	
Removal and fitting of the articulated joint housing	
,	
Steered axle. differential unit	
Removal and fitting of the differential unit	
Steered axle. pinion group	
Removal and fitting of the pinion group	
Floating-axle cylinder	
Removing the cylinders	
Replacing the rod seal	
Repairing the check valve	
Recommissioning and bleeding	
Speed sensor	8-71
Tyres and wheels	
Tyres and wheels, safety instructions	
Tyre pressure, checking and topping up	
Tyre inflation pressure – table	
Fastening of wheels	
Wheels	
Changing a wheel	
Steps, left side	
Preparation	
Removing the steps on the left side	
Installing the steps on the left side	
Otana vinktaida taal kay	0.04
Steps, right side, tool-box	
Preparation	
Removing the steps on the right side.	
Filling the steps on the right side	

Stabilizers	
Safety instructions	
Outriggers	
Levelling blade	
-	
Outriggers	
Preparations	
Removing the outriggers	
Refitting the outriggers	
Lovelling blade	0.00
Preparations	
Removing the levelling blade	
Refitting the levelling blade	
Outrigger cylinders	
Outrigger cylinder components	8-89
Prenarations	8-89
Removing the outrigger cylinders	8-89
Refitting the outrigger cylinders	8-89
Outrigger cylinders, tightening torques	
Levelling blade cylinders	
Levelling blade cylinder components	
Preparations	
Removing the levelling blade cylinders	
Refitting the levelling blade cylinders	
Levelling blade cylinders, tightening torques	
	9.01
Boom cylinders for monoblock boom equipment	
Preparations	
Boom cylinders for boom adjusting equipment	8-93
Prenarations	8-93
Boom cylinders	
Removing the boom cylinders	
Refitting the boom cylinders	
Boom cylinder, components	
Dismantling the boom cylinder	
Tightening torques	
Assembling the boom cylinder	
Stick outinday	0.400
SUCK CYIINGER	
Preparations	
Removing the stick cylinder	
Relitting the stick cylinder	A 165
Stick cylinder, components	
Dismantling the stick cylinder	
Dismantling the stick cylinder	8-105 8-106 8-108 8-108 8-109 8-109

Bucket cylinder	8-111
Preparations	8-111
Removing the bucket cylinder	8-112
Refitting the bucket cylinder	8-114
Bucket cylinder, components	8-116
Dismantling the bucket cylinder	
Tightening torques	8-119
Assembling the bucket cylinder	8-119
Adjusting cylinder	8-121
Preparations	8-121
Removing the adjusting cylinder	8-122
Refitting the adjusting cylinder	8-123
Boom adjusting cylinder, components	8-124
Dismantling the boom adjusting cylinder	8-124
Tightening torques	8-124
Assembling the boom adjusting cylinder	8-124
WFAR PARTS	8-126
Slip-on tooth	8-127
Safety instructions	8-127
Replacing the slip-on teeth	8-127
Trenching grab, wear limits	8-128
Reworking the stops	8-128
Fuses	
Checking and replacing the fuses	8-129
Location of fuses and modules in the cab and in the engine compartment	8-130
Fuses, table	8-132
Lamp bulbs	
Replacing the lamp bulbs, instructions	
Bulb table	
Replacing the headlamp bulb	
Replacing the lamp bulb in the front direction indicator lamp	
Replacing the lamp bulb of the cab interior lamp	
Replacing the lamp bulb of the tail-light	8-136
Replacing the lamp bulb of the cab floodlamp	8-136
Replacing the lamp bulb of the boom floodlamp	8-137
	0.400
ENGINE	8-138

GENERALITIES

Foreword

The present handbook contains instructions for the repair of components together with information on removal and fitting of the same, and – where necessary – reference to other special technical handbooks.

Topics:

- Superstructure
 - Driver's cab
 - Pumps
 - Valves
- Link between superstructure and undercarriage
 - Rotor
 - Slewing ring
 - Slewing gearbox
- Undercarriage
 - Axles with gearbox and motors
 - Wheels
 - Steps
 - Stabilizers
 - Cardan shaft
- Equipment
 - Fitting and removal
 - Cylinders
- Wear parts
- Engine

Introduction

The Technical Handbook contains important information for machine service personnel.

Machine characteristics stated elsewhere in the documentation are not necessarily repeated in this handbook.

The machine documentation consists of:

- Operating instructions
- Spare-parts list

Dimension tables or dimensional data sheets with the technical characteristics of the machine.

The present handbook does not contain the characteristics of auxiliary units required for the operation of accessories or optional equipment.

The refilling quantities indicated for consumables are approximate values and intended only as guideline for demand planning.

Each unit is equipped with suitable monitoring devices such as dipstick or check plugs permitting to determine the proper filling levels.

Safety instructions

Risks resulting from failure to observe the safety instructions

This hydraulic excavator has been built in accordance with state-ofthe-art standards and recognized safety regulations.

Nevertheless, its use may constitute a risk if it continues to be operated despite damage being suspected or having occurred, or if it is inexpertly repaired.

There is then a risk of:

- life-threatening injury

- irreparable damage to the machine and other assets.

The hydraulic excavator must be stopped immediately if suspected damage or damage that has occurred affects the safety of the operator, other persons at the excavator deployment site, or other assets.

All components are carefully coordinated. Trouble-free operation and a long service life are assured only if original spare parts are used.

Personnel

Unauthorised people must not setthe machine going. Therefore themachine must be secured.

The Accident Prevention Rules must be complied with.

Only skilled and authorised personnel, which must have the corresponding expert knowledge, may operate the hydraulic excavator or carry out maintenance and repair works on it.

If there is no expert knowledge, experienced personnel must provide for an accurate training.

The Operating Instructions, in particular the section "Fundamental Safety Requirements", must have been read and understood.

Only this people may put the machine into operation during assembly works to carry out adjustments on the working equipment.

Incorrect operating on the machine or working equipment can be dangerous to life.

The turn-on and turn-off procedures, specified in the Operating Instructions, must be complied with for all operations.

Personnel

Personal protective outfit and working clothes:

wear safety helmet, work protective shoes and gloves.

Wear close-fitting working clothes, when you are attending on the machine. Loose, wide garments can get caught on parts of the machine and cause injuries.

If some assistants are required during the operations, e.g. instructors, previously the responsibility of each single person must be clearly defined.

When operating the spheres of competence must be strictly adhered to, so that no unclear responsibilities would arise in the field of safety.

Tools and auxiliary material

Tools, tackles and stopping devices, supporting trestles and other auxiliary material must be in operational and working safety condition.

When driving in and out bolts of equipment, metallic splinters can cause injuries. Therefore while driving in and out, use a drift pin of brass or copper and wear eyeprotection glasses.

For getting on and off, use only the designed ladders, steps, platforms and handgrips.

Maintain ladders, steps and platform in running safety condition and handles in gripping safety condition.

Remove immediately any soiling caused by oil, grease, ground, mud, snow, ice and other substances.

Working Equipment Securing

Before carrying out assembly operations, secure device and equipment against unintentional and unauthorized setting into motion, e.g. the chassis by means of wheel chocks and the working equipment by putting it down on the ground.

Put the equipment on the ground so, that no motion can be caused while loosing mechanical or hydraulic connecting parts.

Secure equipment or components, which have to be fitted or dismounted or modified in their mounting position by means of tackles or appropriate mounting and supporting devices against unintentional motion, slipping or dropping.

Before opening, systems and assemblies (e.g. pipings, accumulators) are to be made unpressurised in a suitable way.

Protective devices of movable machine parts may be opened or removed only when the driving system is put out of operation and secured against unintentional setting into motion.

Before reinstating into operation, all protective devices must be reinstalled!

Hydraulic and Lubricating System

When handling oils, greases and other chemical substances, the safety requirements that apply to the product are to be complied with.

Not necessary but uncovered holes, pipe and hose unions are to be closed in a compression-proof manner.

Fill the collected hydraulic oil into the hydraulic system only through the return pipe filter. Dispose not reused oils in a way correct from an environmental point of view.

Observe the sequence of the working operations when mounting or replacing components or outfits.

It was defined and tried by experienced specialists.

In case of operations, in particular on the electric system, in which tools, spare parts, etc. may come in touch with electric lines, the battery main switch must be turned in the position "OFF".

Damaged, mechanically pre-loaded units must be completely replaced. Do not open! Or in exceptional cases only when the system and the working cycle is known with precision.

The technical handbook contains no information in this respect.

At the operating temperature of the machine, when the operating fluids have the same temperature at least, take suitable measures to prevent burns and scalds.

Caution when handling acids.

Also a splash of acid can cause eye and skin injuries.

Do not smoke when handling flammable liquids.

Caution with fire and open light. Not only fuel but also other operating fluids have often low flash points and can lightly ignite.

Conversions or Modifications on the Machine

Arbitrary conversions or modifications on the hydraulic excavator are not permitted due to safety reasons.

Also the nominal pressure of the pressure limiting valves must not be changed.

Do not remove lead seals from the pressure limiting valves and hydraulic accumulators.

AND.

Reinstatement into Service

Before reinstating into service:

- lubricate all lubricating points,

- test all oil levels, if necessary correct them,
- carry out a functional test of the repaired components.

Test all functions of the excavator including braking in test run and release the hydraulic excavator for the reinstatement into service only if it runs in all its functions without objections.

8-5

This page left blank intentionally

Welding operations

Welding operations

Never perform welding operations unless you are qualified to do so.

Observe the accident prevention regulations.

Any work on receptacles that contain or have contained substances

- that are combustible or encourage combustion,
- that are susceptible to explosion or
- that may develop health-hazardous gases, vapours, mist or dust during welding operations

must be carried out only under expert supervision and only by experienced persons authorized to do such work.

Systems and units (e.g. piping, radiator, hydraulic tank, compressed-air reservoir) must be depressurized prior to being opened.

Detailed information on the correct execution of welding operations is given in the Technical Manual "Welding for maintenance and repair".

Should you have any problems or queries, apply to our service department.

If parts of the machine have to be dismantled, read and observe the following sections:

"Installing attachments, safety instructions",

"Inspection and servicing, safety instructions",

"Repair, safety instructions".

Prior to any welding operations on the machine:

- Disconnect battery by disconnecting first negative pole terminal, then positive pole terminal
- Disconnect positive pole terminal at three-phase alternator (generator)
- Detach corresponding terminals and plugs from the electronic control units (read and observe: "Protecting electronic control units during welding operations").
- Protect disconnected terminals and plugs from short-circuiting and soiling by covering them with foil or adhesive tape.

Attach the welding-current pincers in the immediate vicinity of the welding zone.

Never connect the grounding terminal of the welding equipment with electronic components or with the attachment points of these components.

It is not advisable to carry out welding operations on the engine or on components mounted on the engine, as this may damage the components.

The welding current must not flow via the ball-bearing slewing ring or via pin couplings, articulated joints or hydraulic cylinders.

On completion of the welding operation, restore all electrical connections.

When reconnecting the battery, connect first the positive pole terminal, then the negative pole terminal.
General welding instructions

Observe accident prevention regulations, in particular:

- Avoid inhaling gases/vapours constituting a health hazard, e.g. engine exhaust vapours, hazardous substances released in the welding process, vapours from cleaning agents and solvents. Draw them off with appropriate suction equipment.
- Secure machine against inadvertent movement.
- Secure units when dismantling.
- Observe handling instructions for machines and attachments (see also: "Welding, safety instructions").

Thorough preparation of the weld area is essential to the production of a high-grade weld. Sensitive components must be protected or dismantled. The weldment connecting points to the machine and ground terminal at the welding unit must be bright; therefore remove any paint, rust, oil, grease, dirt etc. The welding work must be done with direct current only; the polarity of the electrodes must be checked. Welders must be sufficiently qualified to carry out welding work on vehicles. Therefore specialized training is a precondition for such work. In Germany this is subject to a verification of suitability in accordance with DIN 18800, part 7. Welding must NOT be done when the ambient temperature falls to below +5 °C.

- Prior to disconnecting the batteries, ventilate the battery case thoroughly (detonating gas), e.g. by blowing out with compressed air
- Attach grounding pliers of welding unit with good conductivity directly to the area to be welded
- If two components are to be welded together, they must be connected to each other with good conductivity (e.g. connect the two components with the grounding pliers)

- The frames of our machines are made of highstrength fine-grain steels. The frame material is suitable for all tested and recognized arc welding procedures, including the inert-gas-shielded arc process. Any type of heat treatment is inadmissible
- Only at the following steel components of attachments and modules may welding be done, with cross sections not being changed in any way in shape or area:
 - trenching attachments (e.g. buckets; clamshells)
 - toggle lever and linking elements
 - sticks
 - top boom section / bottom boom section / monoblock boom
 - superstructure frame
 - undercarriage frame
 - stabilizers (claws) and dozer blade

Any other welding work is inadmissible.

Protecting electronic modules during welding operations

To prevent damage to electronic modules (e.g. CU, PCS, ESX, display, keyboard modules) during welding operations, the procedure set out below must be observed.

- Disconnect the negative and positive battery cables (see: "Battery removal and installation") and join loose cable ends (- with +).

Unplug the connectors of the electronic modules and the ground connection

The connectors to the electronic components and the grounding system must then be unplugged at 3 points.

1st point (PCS)

- Remove rear wall of driver's cab (Fig. 1).
- In some cases, a cover to the rear of the driver's cab must also be removed.

Fig. 1

- Push arresting lever (1, Fig. 2) away from plug and withdraw plug (2) of PCS unit upwards. At the front of the plug is an extension (nose) that has to be disengaged in this process.

2nd point (CU)

- The CU is located below the plate on which the PCS is mounted. The plate is fixed to the rear wall of the driver's cab with 3 screws (Fig. 3).

- Withdraw plugs (1 - 5, Fig. 4) from CU, pressing laterally on the plug arresting device. Mark the connectors correspondingly in advance to avoid mix-ups when plugging together.

- Disconnect three further plugs located on a separate p.c. board to the right beside the CU (not shown).

Fig. 4

3rd point (ESX)

The ESX is located to the right below the cab, beside the slewing ring. The grounding cable (3, Fig. 7) is located to the right beside the ESX.

- Unscrew base plate.
- Disconnect grounding cable between frame and cab/platform plate (Fig. 6), insulating the grounding cable in such a way that no ground connection can be inadvertently restored.
- Withdraw arresting lever (1, Fig. 7) at plug forward, and withdraw plug (2) parallel from the control unit.

Removed electronic modules (PCS, ESX) must be stored at least 10 to 15 m away from the welding point. The greater the distance to the welding point, the lower the adverse effects of electromagnet fields. Never store the components on the machine or in the cab.

Once all working steps have been executed, welding operations can be carried out on the machine (read and observe: "Welding operations – safety instructions" and "Welding instructions").

On completion of the welding operation, reconnect all plug and grounding connections by performing the steps listed above in the reverse sequence.

Failure to observe this procedure will rule out any liability and warranty coverage for resulting damage.

Fig. 6

Effect of electromagnetic fields and electrostatic discharges

Strong electromagnetic fields resulting from highvoltage cables, lightning stroke current, transmitter systems or other sources of interference can influence electronic modules in the machine and may lead to malfunctions.

Mobile phones or radio equipment with no separate external aerial may constitute a health hazard due to excessive electromagnetic fields if operated inside the driver's cab. Attention must be paid to the Operator's Manual issued for the mobile phones and radio equipment.

Electrostatic discharges may also cause irreparable damage to electronic components.

If inexplicable malfunctions occur in the machine, stop the machine and secure it. If lightning strikes close to the machine, wait in the driver's cab until the thunderstorm is over.

For safety reasons, work must not be continued in the event of inexplicable malfunctions in the machine. In such cases, the Service Department should be contacted immediately.

Handling of oils and greases

Handling of oils and greases

Skin contact with used oils can be a health hazard.

Avoid contact with the skin. Wear gloves and firm working footwear.

Wash soiled skin thoroughly with warm soapy water and protect with a barrier cream. Do not use fuels or solvents for cleaning of the skin.

If you have swallowed oil, do not induce vomiting, but consult a doctor immediately.

Visible oil losses

When oil losses are visible, have the corresponding leaks repaired immediately.

Escaping oil is a danger to the environment.

Absorb escaping oil with oil-binding agents. Collect oil-binding agents and dipose of separately from other wastes.

Disposal without polluting the environment

Dispose of oils, greases, detergents, solvents and oil-containing components, e.g. filters, cleaning rags, replaced wear parts und unusable machine parts without polluting the environment and separately from each other.

Do not discard these substances together with ordinary domestic wastes.

Fill the substances into the containers provided for this purpose.

Do let oils and oil-containing substances penetrate into the soil or into water. They are a danger to the environment.

Securing the machine

Risk of injury The machine must not be started by

unauthorized persons.

The machine must therefore be secured.

Secure the machine as described below:

- before performing any modification or fitting work on the working equipment;
- before performing any servicing or repair work on the machine.
 - Park the machine on level and firm ground.
 - Lock the superstructure.
 - Stand the working equipment on the ground.
 - Apply the parking brake.

Do not shut off the engine from full load, but rather let it continue to run at idling for about 3 minutes for cooling down.

Shut off the automatic speed reduction function before shutting off the engine as there will otherwise be no 'WARMUP' phase during the next start-up and the engine will run immediately at full speed.

Shut off the engine.

- Turn the electrical system key-switch to position I (ignition ON).
- Depressurize the hydraulic system.
- Withdraw the key from the electrical system keyswitch.
- Shut off the pilot control.
- Turn off the battery main switch and withdraw the lever.
- Before working on the electrical system or before performing welding work on the machine, disconnect the batteries.
- Insulate the connecting terminals.

Depressurizing the hydraulic system / brake system

- Hydraulic systems may be opened only after they are depressurized. Even after a machine has been parked on a horizontal surface with its working equipment resting on the ground and with its drive drive engine shut off, there may still be a substantial amount of residual pressure in parts of the hydraulic system. - Primary pressure left over from the last hydraulic movements before shut-down. Secondary pressure resulting from the excavator's own weight or from the weight of individual components of the working equipment. Secondary pressure is present until
 - the pressure-generating components have reached a position of rest, e.g. on a mechanical support, and must therefore no longer be sustained by the hydraulic system.
 - Precharging pressures in the hydraulic system induced by design constraints.

Residual pressure will disappear only gradually. If work on the hydraulic system is to be performed immediately after shut-down, the system must be depressurized, i.e. the pressure must be removed.

- Locate the system section to be opened.
- Depressurize the system section to be opened. It may also be necessary to combine several of the measures described above.
- Open the depressurized section carefully.

The system comprises the following sections:

- Working hydraulics
- Pilot control
- Service brake

Depressurizing:

Working hydraulics (Fig. 1)

- Move all control levers after shut-down inside the precision control range.

These activities must be planned carefully since the capacity of the pressure accumulator which now feeds the pilot-control system is limited and pressure is reduced by leakage oil losses.

Fig. 1

Pilot control

- Move the control levers several times fully into all directions. After about 30 control movements – the pressure remaining thereafter being only 2 bars – the pilot-control system can be opened.

Service brake

- Depressurize the hydraulic accumulator by depressing the pedal valve repeatedly.

Pressure can be removed faster from the accumulators if minimess hoses are connected to the bleeding ports on the front and rear axles.

Hold the hose ends into a collecting recipient for oil and depress the pedal valve repeatedly.

Depressurizing the hydraulic system

Before beginning the work, the hydraulic system must be depressurized:

- Stand the working equipment on the ground.
- Shut off the engine.
- Turn the electrical system key-switch to position I (ignition ON).
- Switch on the pilot control (lever 72).
- Move the control lever or the pedal of the cylinder on which work is to be performed into both directions.

Special caution is required when working on cylinders equipped with pipe break systems. After actuation of the control levers and pedals, the cylinders may still contain residual pressure.

In boom cylinders with pipe break systems on the piston side, this residual pressure can be removed by lifting the undercarriage about 10 cm. In this case, the machine is pressure-supported by the rod side of the cylinder. The piston side to be opened is without pressure.

In adjusting cylinders or in stick cylinders with a pipe break system on the rod side, the residual pressure can be removed by retracting the respective cylinder almost completely, with the undercarriage being raised about 10 cm with the extended working equipment. In this case, the machine is pressuresupported by the piston side of the respective cylinder. The rod side to be opened is without pressure.

- Turn the electrical system key-switch to position **0** (ignition OFF).

- Switch off the pilot control (lever 72).

Remove the precharging pressure in the hydraulic oil reservoir by inserting the locking pin into the side of the breather valve (Fig. 3). Unscrew the valve (Fig. 2) carefully until the breather bore is open (audible hiss).

The residual pressures in the working equipment and in the hydraulic pilot control are now removed.

Retighten the valve by hand and withdraw the lock-ing pin.

Bearings and bushings

Removal of bearings and bushings

Before removing a bearing, the surroundings of the bearing must be properly cleaned and any existing safety devices (lock-washers, screw locking agents, etc.) removed.

Check how the bearing to be removed was installed by reading the corresponding chapter and choose the tools and the dismantling procedure accordingly.

Outer rings of bearings installed with a tight fit in a housing can, for instance, be driven out more easily when the the housing is uniformly heated beforehand.

The forces required for removing a bearing must always be counteracted by the corresponding opposite forces. These counteracting forces should always be applied als closely as possible to the bearing to be removed. It is necessary to ensure that the forces and impact pressures applied for the removal of a bearing can under no circumstances damage other components of the assembly under repair. It may therefore be necessary to detach the component containing the bearing to be replaced beforehand from the main assembly.

Figure 1

The force "F" needed to remove a bearing (2) from a housing (1) must always be applied by means of an assembly mandrel (4) of suitable dimensions to the **outer ring of the bearing**.

The housing (1) must be supported as closely as possible to the bearing with spacers or a spacing sleeve (3).

The spacers must be designed in such a way that they are able to transfer counteracting force "F 1" to the housing (1).

Figure 2

Bearings (2) should be extracted from shafts (1) using a special extraction tool, e.g. a double-leg or a triple-leg extractor (3). In this case, too, the force "F" needed for the extraction should be applied as closely as possible to the seat of the bearing, i.e. the **inner ring**.

The counteracting force "F 1" acts in this case through the extractor spindle (3) on the shaft (1).

Fitting of bearings and bushings

Unless expressly stated otherwise, roller bearings are on principle installed in such a way that the side with the inscription is visible after fitting.

The information supplied on the previous page for the removal of bearings applies analogously also to the fitting of bearings.

Figure 3

When installing a bearing (2) into a housing (1), the fitting force "F" required must be applied with a suitable assembly mandrel (3) to the **outer ring of the bearing** (2). To cope with counteracting forces "F 1", the housing (1) should be supported as closely as possible to the bearing.

Figure 4

When installing circular seals such as rotary shaft seals (2) into a housing (1), a suitable assembly mandrel or assembly sleeve (3) is to be used to avoid damaging the element.

Fig. 3

Fig. 4

Figure 5

When a bearing (2) is fitted on a shaft (1), the assembly force "F" must be applied by means of a fitting sleeve (3) to the **inner ring of the bearing**. The shaft end opposite the fitting direction of the bearing must be properly supported to cope with counteracting force "F 1".

SUPERSTRUCTURE COMPONENTS

Superstructure Replacing the buffers Removing the driver's cab Removing the seat Removing the steering column Removing the joysticks Removing the display Removing the ESX box Removing the load-limit regulator Gear pumps Single steering/brake steering/brake and grab rotation Double Displacement pump Valve stacking Removing the battery Removing the combined radiator Removing the fuel tank Removing the oil reservoir Removing the counterweight at the rear Removing the monoblock

Replacing the buffers under the cab baseplate

Fig. 1

Key

No.	Q.ty	Designation
1	4	Buffer
2	16	Screw
3	16	Disk
4	2	Screw
5	4	Disk
6	2	Screw
7	2	Disk

Preparations

- Secure the machine as described under 'Securing the machine'.

Front buffers

- Remove the rubber mats over the screws to be loosened.
- Loosen and remove the front screws (4).
- Loosen the rear screws (6), but without removing them.
- Raise the front part of the cab with the baseplate slightly so that the screws of the buffers can be removed.

Place a timber beam between the baseplate and the frame to ensure that the fitting space does not narrow: risk of crushing.

- Loosen and remove the screws (2) and the disks (3) retaining the buffers.
- Lift the buffer out of its housing and replace.
- Fasten the buffer with the screws (2) and the disks (3), remove the safety timber and lower the cab cautiously.
- Fasten the baseplate with the cab using the screws (4) and (5).

Rear buffers

- To replace the rear buffers, observe the same working steps as described for the front buffers.

Removing and refitting the cab

Preparations

- Secure the machine as described under 'Securing the machine'. Shut off the engine and the ignition.

Separation of water pump

- Remove the four screws (Fig. 1, 9), to remove water tank (11).
- Remove water pump (12).

Unplugging the electrical connectors

Fig. 2

- Remove the step (4) behind the driver's cab (Fig. 2) by loosening and removing the screws (5).

Fig. 3

- Remove the cover over the electronics compartment behind the cab.
- Remove the harnesses of the heating system. Prior to performing this work, make sure that the heating switch is in position "KALT" (cold) and the regulator valve is in rightward position.

Fig. 4

- Unplug the connectors X12A, X12B and XCAN.
- Disconnect the ground cable.

Dismantling the cab

- Remove the floor mats from the cab.
- Loosen the six screws (Fig. 1, 1) fixing the cab (3) to the baseplate.
- Screw the 4 eye-bolts (6) into the bores provided in the cab roof.
- Attach the cab with suitable ropes or chains through the eye-bolts to a crane.
- Lift the cab cautiously off the baseplate.

Refitting the cab

- Position the cab with the crane over the baseplate and fasten it with the screws (1).

Tightening torque M_A=80 Nm

with OMNIFIT 100M

- Install and secure the water pump and water tank.
- Place the floor mats into the cab.
- Re-establish the electrical connections.
- Close the electronics compartment and fasten the cover with screws.
- Refit the step.

Driver's seat

Preparations

- Secure the machine as described under 'Securing the machine'.

Removing the driver's seat

Fig. 2

The driver's seat (1) is installed on a slide rail which accomodates also the operating consoles of the excavator.

- Loosen the four screws (3) fixing the driver's seat.
- Unplug the connector for the automatic height adjustment.
- Remove the driver's seat cautiously from the cab.

Weight of the seat:

Seek the assistance of a second person when lifting the seat out of the cab.

Installing the driver's seat

- Lift the the seat into the cab and position it over the screw holes.
- Fasten the driver's seat with the four screws (3).

This page left blank intentionally

Steering column, steering valve

Preparations

Secure the machine as described under 'Securing the machine'.

Fig. 1

- Shut off the engine and the ignition.
- Detach the steering column panelling (1) and (2) by removing the fastening screws (3).
- Unplug the connectors of the operating elements on the panels and remove the panelling.
- Unplug the connectors of the steering column.

Removing the steering column with the steering valve

Fig. 2

- Depressurize the hydraulic system, remove all hoses from the steering valve and close the openings of the hoses and of the valve.

Collect any escaping oil in a suitable recipient and discard without polluting the environment.

- Loosen and remove the four screws (4) and withdraw the complete unit.

Refitting the steering column and the steering valve

- Slide the preassembled steering column with the steering valve into the opening provided in the cab floor.
- Fasten the unit with the screws (4).
- Reconnect the cables of the electrical system.
- Refit the panelling.
- Reconnect the hydraulic hoses.
- Bleed the hydraulic circuit before recommissioning.

Removing the steering column

- Mark the position of the steering column in the steering valve.
- The steering valve is fastened to the steering column with the screws (5). Loosen these screws and remove them together with the disks (6) and the spacers (7) and (8).
- Loosen the screws (4) retaining the steering column in the cab as described before and remove the steering column.

Refitting the steering column

- Slide the steering column into the opening provided in the cab floor and stick the gearing into the steering valve.
- Fasten the steering column with the screws (5) to the steering valve.
- Fasten the complete unit with the screws (4) in the cab.
- Reconnect the connectors of the electrical system.
- Refit the panelling.

Control levers

Preparations

- Secure the machine as described under 'Securing the machine'.
- Shut off the engine and the ignition.

Replacing the control lever

The control lever is fastened to the console with a screw (1) in all four corners of its base.

- Lift the rubber bellows over the screw.
- Loosen the four screws (1).
- Lift the control lever cautiously out of the opening.
- Withdraw the plug.
- Plug the connector into the new control lever.
- Place the control lever into the opening provided.
- Fasten the lever with the four screws in the corners of its base.

Display

Fig. 1

Preparations

- Secure the machine as described under 'Securing the machine'.
- Shut off the engine and the ignition.

Removing the display unit

- Remove the six screws (1) in the lateral console panel.
- Mark the connectors (7) and unplug them.
- Remove the four screws (3).
- Remove the upper part of display unit (4) from display base (6) and replace it.
- To remove the base, loosen the screws (5) and withdraw the base from the tube.

Refitting the display unit

- Slide the display base onto the end of the tube and fasten it with the screws (5).
- Bring the display unit into position over the base and fasten with the screws (3) leading the cables through the groove provided in the console.
- Replug the connectors (7).
- Place the panel back onto the lateral console and fasten it with the screws (1).

Make sure no cables are getting caught between the parts when refitting the console panel.

ESX Box

Preparations

The ESX Box is located on the right under the cab beside the slewing ring.

- Secure the machine as described under 'Securing the machine'.
- Shut off the engine and the ignition.

Removing the ESX Box

Fig. 1

- Screw off the baseplate (102).

Fig. 2

- Pull locking lever (1) of the connector forwards and withdraw connector (2) from the control unit.
- Detach the grounding cable of the ESX Box on the excavator.

Fig. 3

- Loosen the screws (4) and remove the control unit.

Refitting the ESX Box

- To refit the ESX Box, perform the above working steps in reverse order.

Load-limit regulator

Preparations

- Secure the machine as described under 'Securing the machine'.
- Shut off the engine and the ignition.

Removing the load-limit regulator

Fig. 1

- Detach the step (4) behind the cab (Fig. 2) by loosening and removing the screws (5).

Fig. 2

- Remove the cover of the electronics compartment at the rear of the cab. - Withdraw the connector by pulling locking lever (1) away from the connector and by pulling out connector (2) upwards from the PCS unit. The front extension of the connector must be disengaged.

Fig. 3

- Loosen the nuts fixing the load-limit regulator and lift the regulator out of the electronics compartment.

Refitting the load-limit regulator

- To refit the load-limit regulator, perform the above working steps in reverse order.

Fan door

Preparations

- Secure the machine as described under 'Securing the machine'.
- Shut off the engine and the ignition.
- Depressurize the hydraulic system.

Removing the fan door

Fig. 1

- Open the fan door (9).
- Mark the hoses (7) connected to fan motor (8).
- Remove the hoses and withdraw the connector from the fan motor. Close the openings of the fan motor and of the hoses.

Collect any escaping oil in a suitable recipient and discard without polluting the environment.

- Attach the fan door to a crane and lift it slightly to compensate for the weight.
- Remove the four screws (11) in the door hinges (10) and remove the door.

Refitting the fan door

- Position the fan door with the crane in such a way that it can be fastened with the screws (11) and the hinge (10) to the superstructure frame.
- Fasten the door with the four screws (11).
- Reconnect the hoses and the connector of the fan motor.
- Refill and bleed the hydraulic system.

Combined radiator

To remove the combined radiator, it is necessary to detach the panelling sheets at the battery box to ensure sufficient room for working. The panelling sheets must not be removed completely, though. It is sufficient to loosen and to shift them aside.

To shift the panelling sheets, it is necessary to remove the cover of the battery box, the battery itself and the flap of the fan.

Preparations

- Secure the machine as described under 'Securing the machine'.
- Shut off the engine and the ignition.
- Depressurize the hydraulic system.

Removing the combined radiator

- Remove the above-mentioned components.
- see: battery box fan flap battery box panelling sheets

Collect escaping oil in a suitable recipient and discard without polluting the environment.

- Detach and remove the hosepipes.

Fig. 1

Fig. 2

- Loosen the screws (31) fixing the radiator to the frame.
- Attach the radiator by means of eye-bolts to a crane and lift it slightly.
- Push the combined radiator slightly forwards to disengage the connecting pieces.
- Lift the combined radiator out of the frame and slew it aside.

Refitting the combined radiator

- Position the combined radiator with the crane inside the frame and fasten it with the screws (31) and the washers (33).
- Make sure insulating element (19) is in the correct position.
- Refit all hoses.
- Refill and bleed the hydraulic system.

Battery box

Preparations

- Secure the machine as described under 'Securing the machine'.
- Shut off the engine and the ignition.
- Depressurize the hydraulic system.

Shut off the engine before removing the batteries to prevent the alternator and the regulator as well as the electronic modules from being damaged.

Turn the electrical system key-switch to position '0' and withdraw the key.

Disconnect and reconnect the battery terminals in the described order.

Disconnecting and reconnecting in the wrong order may result in short circuits

Fig. 1

- Key
- 1 Hood
- 2 Gas-filled spring
- 3 Hinge
- 4 Battery

Fig. 2

Battery box, removing the hood

- Remove the gas-filled springs. To do so, open the wire clips (6) in the spherical spring heads (5) and pull them out of the bore.
- Withdraw the spherical spring heads from the balls.
- Loosen the four screws of the hinges (3) and remove the hood (1).

Battery box, refitting the hood

- Position the hood over the battery box (1) in such a way that the four screws of the hinges (3) can be screwed in.
- Fasten the hood with the four screws.
- Place the spherical heads of the gas-filled springs on the balls.
- Secure the gas-filled springs with the wire clips.

Removing and installing the battery

Non-observance of the correct sequence may result in short-circuiting.

Fig. 1

The two 12-Volt batteries are connected in series. The voltage in the electrical system of the machine is therefore 24 Volts.

Open the flap in front at the right over the batteries.

- Unscrew the battery holders and remove the cover over the batteries.
- Detach the negative battery terminal.
- Remove the bridging cables between the batteries.
- Detach the positive battery terminal.
- Insulate the pole terminals.
- Lift the battery out of the battery box.

Prior to installing the new battery, make the contact surfaces of the battery poles and the terminals bright.

- Install the new battery.
- Connect the pole terminal to the positive pole of the battery.
- Refit the bridging cables between the batteries.
- Tighten the clamping screws of the terminals

Never use force when tightening the clamping screws, however, as this might result in damage.

- Connect the terminal to the negative pole of the battery.

Then coat battery poles and terminals with pole grease or non-acid Vaseline.

Loose or corroded terminals overload the alternator and the regulator.

Battery box panelling

Removing the metal panel

To remove the combined radiator, the panel must be slided a bit in forward direction. The components fastened to the panel may therefore remain in place.

Fig. 1

- Loosen the screws holding the panel in place.
- Slide the panel forwards.

Refitting the metal panel

- Fasten the metal panel with the screws to the frame.

LINK BETWEEN SUPERSTRUCTURE AND UNDERCARRIAGE COMPONENTS

Removal and refitting of the rotor

Removal and refitting of the slewing gearbox

Removal and refitting of the ball-bearing slewing ring

Rotor

Preparations

- Park the excavator on a level surface and secure the undercarriage with chocks under the wheels to prevent inadvertent movements.
- Depressurize the hydraulic system.

Removing the rotor

Fig. 1

- Detach all hydraulic lines from the rotor (1). Mark the positions of the hoses for refitting.

Collect any escaping oil in a suitable recipient and discard without polluting the environment.

- Close all openings of the hoses and of the rotor with plugs to prevent soiling.
- Withdraw the connector from the electric slip-ring carrier at the undercarriage.
- Loosen screw (4) which fastens the slip-ring to the rotor and remove the slip-ring carrier, pulling the cable with precaution through the rotor.
- Loosen the screws (No. 2) from below and let the rotor down.

Refitting the rotor

- Lift the rotor (1) from below into the opening of the undercarriage, tighten the screws (2) with the washers (3).
- Slide the slip-ring carrier cable through the rotor, place the slip-ring carrier on the rotor and fasten it with the screws.
- Reconnect the hydraulic hoses and the connector.
- Bleed the hydraulic system.

Slewing gearbox

Preparations

To remove the slewing gearbox, it is necessary to remove the complete control block beforehand.

For repairs and overhauls, the slewing gearbox unit should be removed as a whole and dismantled in the workshop.

Only the slewing brake can be reasonably repaired or replaced without removing it from the machine.

Removing the slewing gearbox

Fig. 1

- Park the excavator on a level surface and secure the undercarriage with chocks under all wheels to prevent inadvertent movements.
- Lock the superstructure.
- Depressurize the hydraulic system.
- Mark and remove all hydraulic lines, the expansion tank (2) and the speed sensor (3) from the gearbox (1).

Collect any escaping oil in a suitable recipient and discard without polluting the environment.

- Close all openings of the hoses and of the gearbox with plugs to prevent soiling.
- Mark the position of the gearbox and fasten it with a rope through the eyes to a crane (Pos. 5).

- Remove the screws (4) and lift the gearbox with the help of a crane out of the opening.

The slewing gearbox is fixed with adhesive at the contact surfaces. To loosen the glued connection, knock lightly with a hammer against the flange edge.

Slewing gearbox, fitting

- Clean the contact surfaces of the slewing gearbox and the undercarriage frame thoroughly with a diluting agent to remove paint and grease before checking it for damage.

The contact surfaces must be metallically bright, dry and free from grease.

- Apply a 1-mm thick round strip of adhesive around each hole of the fastening screws.

When applying the adhesive, keep some distance from the holes to prevent adhesive from getting in contact with the threads of the screws when assembling the parts.

Apply the adhesive only when the gearbox is ready for fitting.

- Attach the gearbox to the lifting device, bring into mounting position and place on the undercarriage without changing its position.
- Turn in the screws (4) and tighten.
- Tighten the screws crosswise and mark all screws that have been tightened.
- Tightening torque: M_A=250 Nm
- Reconnect all hydraulic lines.
- Fit the speed sensor.
- Reconnect the line to the expansion tank (2) and fill the gearbox with oil in accordance with the operating instructions.
- Bleed the hydraulic system.

Dismantling and assembling the slewing gearbox

See slewing gearbox handbook.

Ball-bearing slewing ring

Fig. 1

Preparations

For replacement of the ball-bearing slewing ring, it is necessary to lift the superstructure off the machine.

For this work, the following auxiliary means are required:

- two cranes (lifting capacity 20,000 kg each), traverse as shown in Fig. 3 and lifting belts with a capacity of 20,000 kg for removal of the super-structure.
- crane and lifting gear for lifting and handling of the ball-bearing slewing ring with a capacity of at least 260 kg.
- wrench / socket insert, wrench size SW 24.

Moreover needed:

- torque wrench capable of applying a tightening torque of 250 Nm,
- spatula / triangular scraper for cleaning of the contact surfaces,
- detergent,
- adhesive for glueing of the ball-bearing slewing ring,
- lubricating grease and
- new fastening screws for the slewing ring (see spare-parts list).

Removing the ball-bearing slewing ring

Risk of accident

Some components of the machine (e.g. counterweight and boom) have lifting eyes welded onto them.

Never lift the whole machine at these lifting eyes. They are not designed for such heavy loads and might break.

The lifting eyes may only be used for lifting of the respective component when it is being fitted.

- Park the excavator on a level surface and secure the undercarriage with chocks under all wheels to prevent inadvertent movements.
- Depressurize the hydraulic system.
- Remove the rotor as described before or detach all hoses and electrical cables between super-structure and rotor.

Fig. 2

- The toothed inner ring (1) of the slewing ring is bolted to the undercarriage, whereas the outer ring (2) is bolted to the superstructure.
- Attach the superstructure to the lifting gear as shown in Fig. 3. Pull the slings tight without, however, lifting the superstructure.
- Loosen the screws (3) of the ball-bearing slewing ring in the superstructure, keeping the spacers (5) for re-use.
- The superstructure is now no longer attached to the undercarriage.
- Lift the superstructure carefully until the pinion of the slewing gear is free. Slew the superstructure away from the undercarriage.

- Attach the ball-bearing slewing ring to a lifting device (Fig. 5). To do so, stick three eye-bolts through three bores 120° apart and fasten them with nuts.
- Remove the screws (4) and keep the spacers (6) for re-use.
- Lift the slewing ring off the undercarriage.

Fitting the ball-bearing slewing ring

- Remove the corrosion protection lining when a new slewing ring is to be installed.
- Clean all surfaces on the superstructure and the undercarriage thoroughly. The contact faces must be metallically bright, dry and free from grease. Remove any surface irregularities and burrs.
- Clean the bores in the undercarriage. Clean the threaded holes in the superstructure carefully, check the threads and rethread if they are damaged.
- Apply adhesive on the contact surface of the undercarriage using a paint roller, a hard brush or a plastic spatula.

Prevent the adhesive from getting into the bores: adhesive in the threads leads to higher friction and thus to wrong tightening torque results.

Fig. 4

- Attach the new slewing ring to the lifting gear.
- Turn the inner and the outer ring so that the "S" marking on the outer ring is at 90 degrees to the direction of travel and that the "S" marking on the inner ring is located opposite (Fig. 6).

Slewing rings are induction-hardened. The "S" – markings designate the area between the beginning and the end of the hardened part of the race which, due to hardening constraints, could not be hardened.

For this reason, the slewing ring is intentionally installed in such a way that these areas are located outside the zones of main stress.

- Slew the slewing ring with the crane over the undercarriage and let it hover above the contact area without lowering it at this time. Turn in at least three new screws (4) with spacers (6) as a guiding aid.
- Let down the slewing ring carefully.
- Detach the lifting gear from the slewing ring.
- Insert the new screws with spacers and tighten crosswise with a torque wrench.
 - Tightening torque M_A=250 Nm
- Mark the tightened screws.
- Now apply adhesive also on the contact surface of the superstructure.
- Apply a thick layer of grease on the slwewing ring toothing until the gaps between the teeth are filled with grease.
- Slew the superstructure with a crane over the undercarriage and let it hover over the slewing ring without, however, lowering it at this time.
- Lower the superstructure further, engaging the pinion in the toothing.
- Turn in at least three new screws (3) with spacers (5) as a guiding aid.
- Lower the superstructure carefully.
- Insert the remaining new screws with spacers and tighten crosswise with a torque wrench.
 - Tightening torque M_A=250 Nm
- Mark the tigtened screws.
- Refit the rotor.
- Reconnect all hydraulic lines to the rotor.
- Detach the lifting gear from the superstructure.
- Fill and bleed the hydraulic system, put the machine into operation and check all hydraulic lines at the rotor for leaks and tigthness.
- The adhesive between the slewing ring and the superstructure and undercarriage increases the resistance of the bolted joints and seals at the same time the joint gaps.
- The adhesive hardens under exclusion of air.
- The adhesive is fully hardened after about 6 hours. The machine should not be loaded beforehand.

This page left blank intentionally

UNDERCARRIAGE COMPONENTS

No.	Q.ty	Designation	Weights
1	1	Steered axle, floating	650 kg
2	1	Rear axle, gearbox	650 kg
3	8	Wheels	105 kg
4	1	Steps, left side	35 kg
5	1	Steps, right side	60 kg
6	2	Stabilizers	
7	1	Levelling blade	260 kg
8	1	Cardan shaft	30 kg
9	1	Speed sensor	
10	4	Floating-axle cylinder	
Axles and gearboxes

Instructions for the repair of gearboxes and axles

Care and cleanliness are important prerequisites for the proper assembly of a gearbox.

Improperly installed parts can lead to severe gearbox trouble even after a short time.

Gearbox casings must be cleaned with a detergent. If no detergent is available, diesel fuel will do the job, too.

Damage (e.g. scratches) caused during the work to machined surfaces must be repaired.

Clean each part before the assembly and check for damage or wear and replace, if necessary.

Before pressing in shafts, bearings etc., both parts must be oiled.

Do not use open flames for warming bearings or seats, but hot plates, ovens or similar appliances. Parts installed warm must be redriven after cooling to ensure a perfect fit.

Testing procedures

Running noises

Mechanical gearboxes develop running noises when in operation. The noises depend on the state of loading and the gearbox condition. Normal gearbox noise consists of a whole spectrum of frequencies.

The greater part of the noise stems from friction bearings and meshing gear teeth. This means that damage of bearings or toothings can be heard as rumbling, knocking or beating. A simple stethoscope can be used to detect these phenomena and, in many cases, to determine their cause.

Leaks

Oil losses due to leaks are critical for more than one reason and must therefore be attended to immediately. On the one hand, there is always a loss of oil and on the other the risk of polluting the environment.

Leaks can occur at sealing faces, partial joints and, above all, at shaft ends.

Fast detection of leaks is possible when leakdetection sprays are used. The gearbox is filled with compressed air at low pressure and the spray is applied on the area to be tested. Leaks are then visible as air bubbles.

Another method consists in the application of oilabsorbing contrast agents (e.g. Spanish white), with which even the smallest leaks can be detected.

Gross leaks with the formation of droplets or even oil puddles on the ground require immediate resealing of the parts concerned, if possible by replacing the sealing rings.

Service brake

Brake disks, checking the lining thickness

Preparations

The brake disks must be checked in compliance with the servicing plans.

The required measuring equipment can be ordered from our spare-parts service under the respective parts number (see 'special tools' price list).

Checking

Fig. 1

The checking procedure must be performed on all wheels. For checking, proceed as follows:

- Position the machine so that the screw plugs in the wheel hub are in the position shown (Fig. 1).
- Secure the machine (see: "Securing the machine".
- Screw out the plug (1, Fig. 1).
- Block the service brake, see: "Using the service brake".
- Screw the measuring device (2, Fig. 2) into the open bore of the screw plug (fork wrench SW 22).
- Slacken the lock-nut (4) of the measuring device.
- Screw down the measuring spindle (5) to the limit stop by turning the knurled knob.
- Set the graduated drum (3) to mark "**0**" and lock in this position with lock-nut (4).

- Release the service brake blocking.
- Turn the spindle (5) with the knurled knob down to the limit stop.
- Note the number of full turns (see mark "0") and the number of the partial turn.

A full turn corresponds to a spindle travel of 1 mm. A turn by one graduation mark corresponds to 0.1 mm.

For maximum release clearance, see 'checking the brake disks'.

- If the value found is greater or equal to the reference limit value, the brake disks must be replaced. Contact our Service Dept.
- Screw out the measuring spindle (2) and screw the plug (1, Fig. 1) back in place.

Fig. 2

Bleeding the multiple-disk brake

Preparations

The brake system of this machine consists of two braking circuits. One circuit for the wheel pairs of the steered axle and the other circuit for the wheel pairs of the rigid axle.

If work has been performed on the brake system during which air might have got into the system (e.g. replacement of a line), the braking circuit concerned must be bled after the work.

Bleeding

- Secure the machine against inadvertent movements.
- Connect a hose to the minimess port of a multiple-disk brake (Fig. 1).
- Hold the other end of the hose into a recipient filled with the same hydraulic oil or fluid as that used in the machine.
- Start the engine.
- Depress the brake pedal until the hydraulic fluid flowing out of the minimess hose is bubble-free.
- Repeat the bleeding procedure on the second multiple-disk brake of this axle.

Bleeding of one braking circuit is then terminated.

Fig. 1

Cardan shaft

Key

No.	Q.ty	Designation
1	1	Cardan shaft
2	16	Screw
3	16	Nut
4	1	Gearbox

Removing the cardan shaft

- Park the machine safely.
- Attach the cardan shaft (No. 1) with slings to the undercarriage frame.

Weight of multiple-disk gearbox: ca. 80 kg

Weight of cardan shaft: ca. 30 kg

Do not attach the slings to hydraulic hoses, pipes or electric cables.

- Remove the screws (No. 2) and the nuts (No. 3), lower the cardan shaft and pull inner and outer halves apart.

Refitting the cardan shaft

Fig. 2

- Make sure during refitting that the markings on inner and outer shaft are perfectly aligned when re-assembling the shaft.
- Fix the cardan shaft with slings to the undercarriage and fasten it with the screws and nuts.

Rigid axle

Fig.1

Key

No.	Q.ty	Designation
1	1	Axial piston motor
2	1	Travel gearbox
3	1	Wheel-hub
4	1	Differential
5	1	Pinion

8-49

Removing the rigid axle

- Lift the excavator with the outriggers so that the wheels of the rigid axle can turn freely.
- Secure the steered axle against inadvertent movements with wedges and by lowering the levelling blade.
- Prop up the undercarriage safely.
- Shut off the engine and secure the machine as described under 'Securing the machine'.
- Depressurize the hydraulic system as described under 'Depressurizing the hydraulic system / brake system'.
- Remove the the wheels from the rigid axle (Fig. 1)

Fig. 3

- Remove the hydraulic and brake lines and close all openings to prevent the ingress of dirt.

Fig. 4

Fig. 5

- Remove the cardan shaft by loosening the screws
- Prop up the rigid axle using an appropriate device (e.g. lift truck) (Fig. 3).
- Loosen the fastening screws (1, Fig. 4).
- Lower the axle and remove.

ASP100 tightening torques

Fig. 6

Refitting the rigid axle

- Bring the rigid axle into position under the undercarriage and fasten it with the screws. Lock the screws with liquid locking agent.
- Install the cardan shaft using new, self-locking nuts.

Make sure the marker arrows on the outer and inner part point exactly towards each each other.

Fig. 7

Tightening torque $M_A = 60 \text{ Nm}$

- Reconnect the hydraulic hoses and the brake hoses.
- Fill and bleed the hydraulic system and the brake system.
- Grease the cardan shaft.

Fig. 1

Key

No.	Q.ty	Designation
1	1	Nut
2	1	Flange
3	1	Сар
4	1	Screw
5	1	Spring
6	1	Ball
7	1	Pin
8	1	O-ring
9	4	Screw
10	1	Axial piston motor
11	1	O-ring
12	8	Screw
13	1	Flange
14	1	O-ring
15	1	Sealing ring

Removal and fitting of hydraulic motor and flanges

Removal and fitting are described in the axle manual.

This page left blank intentionally

Rigid axle, gearbox housing

Fig. 1

Removing and fitting the gearbox housing

Removal and fitting of the gearbox housing are described in the axle manual.

Key

Г

NO.	Q.ty	Designation
1	24	Compression spring
2	24	Compression spring
3	10	Compression spring
4	1	Compression spring
5	1	Piston
6	1	Intermediate ring
7	1	Piston seal
8	1	O-ring
9	1	Ring
10	1	Ring
11	1	Ring
12	8	Outer disk
13	7	Inner disk
14	1	Flange
15	1	Hollow wheel
16	1	Thrust piece
17	1	Retaining ring
18	1	Ring
19	11	Outer disk
20	11	Inner disk
21	1	Thrust ring
22	1	Bushing
23	8	Screw
24	4	Screw
25	1	Sun wheel
26	1	O-ring
27	1	O-ring
28	1	O-ring

No.	Q.ty	Designation
29	1	Bearing
30	1	Coupling wheel
31	1	Retaining ring
32	1	Bearing
33		Adjusting washer
34	1	Retaining ring
35	1	Bearing
36	1	Ring
37	1	Retaining ring
38	1	Bearing
39	1	Spur wheel
40	1	Pin
41	1	Spacer
42	1	Pinion
43	4	Screw
44	1	Washer
45	1	Piston
46	12	Compression spring
47	24	Compression spring
48	24	Compression spring
49	1	Retaining ring
50	1	O-ring
51	1	O-ring
52	1	Ring
53	1	Washer
54	1	O-ring
55	1	Housing
56	1	Housing

Ridid axle, differential unit

Fig. 1

Removing and fitting the differential unit

Removal and fitting of the differential unit are described in the axle manual.

Key

No.	Q.ty	Designation
1	15	Screw
2	1	Conical gear ring
3	1	Axle body
4	1	Axle body
5	1	Bearing
6	1	Disk
7	1	Bearing
8	1	Washer
9	1	O-ring
10	12	Screw
11	1	Housing segment
12	1	Housing segment
13	1	Differential pin

No.	Q.ty	Designation
14	1	Differential pin
15	1	Bevel gear
16	1	Bevel gear
17	1	Bevel gear
18	1	Bevel gear
19	1	Washer
20	1	Washer
21	1	Washer
22	1	Washer
23	1	Planet wheel
24	1	Planet wheel
25	1	Disk
26	1	Disk

Rigid axle, pinion unit

Fig. 1

Removing and fitting the pinion group

Removal and fitting of the pinion unit are described in the axle manual.

Kev	
i toy	

No.	Q.ty	Designation
1	15	Screw
2	1	Bevel gear pinion
3	1	Axle body
4	1	Axle body
5	1	O-ring
6	1	Nut
7	1	Inner sleeve
8	1	Outer sleeve
9	1	Hollow wheel
10	1	Flange

No.	Q.ty	Designation
11	1	Bearing
12	1	Disk
13	1	Bearing
14	1	Spacer
15	1	Disk
16	1	Retaining ring
17	1	Disk
18	1	O-ring
19	1	O-ring
20	2	O-ring

Steered axle

Fig. 1

Key

No.	Q.ty	Designation
1	1	Steering cylinder
2	1	Reducer gear
3	1	Articulated joint housing
4	1	Differential
5	1	Pinion
6	1	Floating-axle cylinder
7	1	Floating-axle support

Removing the steered axle

Fig. 3

- Jack up the excavator with the levelling blade until the wheels are free to turn.
- Secure the rigid axle against inadvertent movements by placing wedges underneath and by lowering the outriggers.
- Prop up the undercarriage safely.
- Shut off the engine and secure the machine as described under "Securing the machine".
- Depressurize the hydraulic system as described under "Depressurizing the hydraulic system / brake system".
- Remove the wheels of the steered axle.

Fig. 4

Fig. 5

- Detach the hydraulic hoses (6 + 7) from the steering cylinder and the brake lines (1 + 2) in both wheel-hubs. Close the openings to prevent the ingress of dirt.
- Remove the cardan shaft (5) and pull the two halves apart.

NOTE: Make sure the marker arrows on the outer and inner part point exactly towards each other.

Fit the fastening screws using **new** self-locking nusts.

- Prop up the rigid axle safely using an appropriate device (e.g. lift truck)
- Loosen hex screw (10, Fig. 4).
- Drive out floating pin (4, Fig. 4 + 6).
- Lower the axle and remove.

Fig. 6

Tightening torques ALPP100

Refitting the steered axle

- Bring the steered axle into position under the undercarriage and fasten it with the pin.
- Secure the pin with the screws.

If the piston of the supporting cylinders (3, Fig. 1) are extended too far, the cylinders must be bled (see corresponding chapter).

- Fit the new cardan shaft using new self-locking nuts.

Make sure the marker arrows on the outer and inner part point exactly towards each other. (Fig. 4).

Tightening torque $M_A = 60 \text{ Nm}$

- Reconnect the hydraulic hoses and the brake hoses.
- Fill up the hydraulic system and the brake system.
- Grease floating pin, cardan shaft and steering knuckle.

8-62

Steered axle, steering cylinder

Fig. 1

Removal and fitting of the steering cylinder

Removal and fitting of the steering cylinder are described in the axle manual.

No.	Q.ty	Designation
1	4	Cotter pin
2	4	Pin
3	2	Steering rod
4	8	Disk
5	2	Screw
6	2	Forkhead
7	5	Screws
8	1	Cover
9	2	Sealing ring
10	1	Sealing ring
11	2	Sealing ring
12	2	Sealing ring

No.	Q.ty	Designation
13	2	Sealing ring
14	1	Bushing
15	1	Sealing ring
16	1	Piston rod
17	1	Cylinder barrel
18	2	Piston seal
19	1	Piston seal
20	1	Sealing ring
21	1	Sealing ring
22	1	Sealing ring
23	1	Sealing ring
24		Shim ring

Steered axle, reducer gear

Fig. 1

Removal and fitting of the reducer gear

Removal and fitting of the reducer gear are described in the axle manual.

No.	Q.ty	Designation
1	1	Screw plug
2	2	Screw
3	1	Planetary gear carrier
4	1	Split ring
5	1	Hollow wheel
6	10	Inner and outer disk
7	8	Screw
8	1	Piston
9	1	Sealing ring
10	1	Sealing ring
11	4	Screw
12	1	Brake carrier
13	1	Sealing ring
14	1	Sealing ring
15	8	Spring

No.	Q.ty	Designation
16	1	Wheel-hub
17	1	Bleeder valve
18	1	Bearing
19	1	Sealing ring
20	1	Bearing
21	4	Washer
22	8	Bushing
23	3	Planet wheels
24	1	Retaining ring
25	1	Spacer
26		Shim ring
27	1	Screw
28	1	Coupling wheel
29	1	Retaining ring
30	1	Sealing ring

Steered axle, articulated joint housing

Fig. 1

Removal and fitting of the articulated joint housing

Removal and fitting of the articulated joint housing are described in the axle manual.

Key

No.	Q.ty	Designation
1	1	Screw plug
2	4	Screw
3	1	Planetary gear carrier
4	1	Split ring
5	1	Spacer
6	1	O-ring
7	4	Screw
8	4	Screw
9	1	Pin
10	1	Pin
11	1	Articulated joint
12	1	Seal
13	1	Seal
14	1	Split ring
15	1	Shaft

No.	Q.ty	Designation
16	1	Split ring
17	1	Shaft
18	1	Bushing
19	1	O-ring
20	1	Washer
21	1	Bushing
22	1	O-ring
23	1	Washer
24	1	Seal
25	1	Bushing
26	4	Pins
27	1	Spacer
28	1	Seal
29	1	Bushing

Steered axle, differential unit

Fig. 1

Removal and fitting of the differential unit

Removal and fitting of the differential unit are described in the axle manual.

Key

No.	Q.ty	Designation
1	18	Screw
2	1	Bevel gear crown
3	1	Axle body
4	1	Axle body
5	1	Bearing
6	1	Disk
7	1	Bearing
8	1	Disk
9	1	O-ring
10	12	Screw
11	1	Casing half
12	1	Casing half
13	1	Differential pin

No.	Q.ty	Designation
14	1	Differential pin
15	1	Bevel gear
16	1	Bevel gear
17	1	Bevel gear
18	1	Bevel gear
19	1	Disk
20	1	Disk
21	1	Disk
22	1	Disk
23	1	Planetary gear
24	1	Planetary gear
25	1	Disk
26	1	Disk

Steered axle, pinion group

Fig. 1

Removal and fitting of the pinion group

Key

Removal and fitting of the pinion group are described in the axle manual.

No.	Q.ty	Designation
1	18	Screw
2	1	Pinion
3	1	Axle body
4	1	Axle body
5	1	O-ring
6	1	Nut
7	1	Seal
8	1	Spacer
9	1	Disk
10	1	Flange
11	1	Bearing
12	1	Disk
13	1	Bearing
14	1	Disk

Floating-axle cylinder

Fig. 1

Key

-		
No.	Q.ty	Designation
1	1	Housing
2	1	Rod
3	1	Valve insert
4	1	Switching cylinder
5	1	Control piston
6	1	Scraper

No.	Q.ty	Designation
7	1	Lip seal
8	1	O-ring
9	5	Screw
10	1	Screw plug
11	1	Screw plug
12	1	Screw plug

Removing the cylinders

- Park the machine safely and relieve the cylinder to be dismantled.
- Shut off the engine and depressurize the hydraulic components.
- Detach the hoses from the cylinder and close the hoses and openings in the cylinder with plugs.
- Remove the cylinder from the undercarriage.

Replacing the rod seal

- Remove the screw plug (No. 10).
- Push the rod out of the housing bottom (No. 2).

- Remove the lip seal (No. 7) with rounded tool.

Make sure not to damage the surface of the groove. 4100771

Fig. 2

Fig. 3

- Depress the new lip seal in the center and install it in the groove (Fig. 2 and Fig. 3).
- Check the scraper (No. 6) for damage and replace if necessary.
- Oil the seals.
- Insert the rod.
- Fit the cylinder on the undercarriage, reconnect the hoses and bleed the cylinder as described below.

Repairing the check valve

- Depressurize the cylinder as described above and remove it from the undercarriage.
- Remove the cylinder screw (No. 9).
- Withdraw the switching cylinder (No. 4).
- Withdraw the control piston (No. 5).

The piston must be able to move easily in the check valve insert and in the switching cylinder.

- Push the check valve insert (No. 3) out of the housing from the inside through the filling bore (No. 10).
- Check the seals for damage and replace them, if necessary.
- The cylinder is re-assembled in reverse order.

Tightening torque: $M_A = 16 \text{ Nm}$

- Attach the cylinder to the undercarriage, connect the hoses and bleed the cylinder as described below.

Recommissioning and bleeding

For recommissioning, all components must be filled with mineral oil and bled.

- Loosen the screw plug (No. 10).
- Push the rod down on the axle support.
- Fill the cylinder with oil and tighten the screw plug.

Tightening torque M_A = 180 Nm

- To bleed the cylinder, screw out the bleeder screw (No. 11) and fill with the cylinder chamber with oil until there are no more air bubbles rising from the cylinder.
- Screw bleeder screw into the bore, but do not yet tighten.
- Admit control pressure to the cylinder and tighten the screw completely when the oil emerging from the bore is free from bubbles.

Tightening torque M_A = 28 Nm

Speed sensor

Info: Starrachse 02.062 2984497

Tyres and wheels

Tyres and wheels, safety instructions

Risk of injury

Heat-induced gas combustion in the tyre may lead to explosions in airfilled tyres. This heat may result, for example, from frequent braking or when welding is being carried out on the machine. A tyre explosion induced in this way is far stronger than normal bursting of tyres and may hurl tyre and rim parts several hundred meters. Exploding or bursting tyres and breaking-away tyre or rim parts may cause very serious, potentially fatal injury.

Therefore:

- If a tyre is suspected to have overheated, secure the machine and wait at a safe distance until the tyre has cooled down again.
- Before inflating tyres, check rims and rim components for damage, penetrated foreign matter and a firm fit.
- Always have any damage repaired at a professional workshop.

 If in doubt as to the safety of tyres, rims or rim components, have the complete wheel removed from the machine at a professional workshop.

Special tools and special methods are needed to change tyres, rims or rim components. Therefore always have such work carried out at a specially equipped professional workshop.

Never carry out on tyres and rims any work for which you are not qualified.

Tyre pressure

- Check the tyre pressure only when the tyre is cold; higher pressures are recorded when tyres heat up.
- Use inflating equipment with a long inflating hose, self-locking nozzle and pressure gauge (Fig. 1).
- Inflate tyres only with compressed ambient air. Never use combustible gases: risk of explosion.
- While the tyre is being inflated, stand at some distance from the tyre, facing the tread.
- Keep an eye on the tyre and the pressure gauge of the inflating equipment throughout the inflating time. Never exceed the prescribed tyre pressures.
- If the tyre has been removed from the vehicle, enclose it in a safety cage.
- Ensure that no persons are within reach of the tyre while it is being inflated.

Always inflate tyres to the prescribed pressure:

- Excessive pressure means poor handling properties on terrain and a risk of bursting tyres.
- Inadequate pressure means increased wear on the tyres and poor machine stability.

Twin fitment

- In the case of twin fitment, pay special attention to the inner sidewalls, where damage may result from unnoticed foreign bodies if the tyres have been mounted without spacing rings.
- If the inside wheel of a twin fitment has been driven without or with excessively low pressure, there is a risk of parts of a multipart rim (e.g. the lock ring) becoming unseated without being noticed.

In this case, check the state of the wheel and rim with special care before inflating the tyre. If in doubt, consult an expert.

Wheel nuts

Always tighten wheel nuts with a torque spanner. After some operating hours, check with a torque spanner for a firm fit.

Fig. 1

Driving on the highway

When driving on the highway, ensure that the tyres have the prescribed minimum tread depth and the correct pressure.

Always ensure that both axles are fitted with tyres of the same size and the same state of wear.

Non-uniform tyre diameters may cause damage to the differentials.

Therefore prevent excessive wear on the tyres by:

- inflating to the correct pressure,
- avoiding abrupt starting or braking,
- avoiding rapid cornering.

Clean tyres and spaces between tyres before driving on the highway. This will prevent other drivers from being put at risk through soiled roadways or through clumps of earth or stones being thrown up from the tyres.

Spacing rings

If your machine has radial tyres for twin fitment, never install spacing rings. Radial tyres are not designed for spacing rings to be used and would very soon be irreparably damaged.

Radial tyres can be identified by the "R" in the marking, e.g. "18-R19.5".

If you have any queries, consult the Service Department or a professional workshop.

Tyre pressure, checking and topping up

Read and observe:

"Tyre pressure, safety instructions".

- Park machine on level, firm ground. Set working equipment down on the ground.
- Apply parking brake and superstructure retaining brake.
- Shut off engine.
- Fit self-locking nozzle of inflating equipment onto tyre valve (Fig. 1).
- Inflate all tyres to prescribed pressure (see: "Tyre pressure -Table")

Fig. 1

Tyre inflation pressure - table

Tyre size	Inflation pressure	Tightening torque Nm		
10.00–20PR16	6.5	450		
18–19.5PR16	6.5	450		

The pressures indicated for the above tyre sizes are valid under the following conditions:

- working equipment atttached,
- bucket empty,
- tyres at ambient temperature (approx. 20 °C),
- fuel tank full.

For queries, please contact your dealer.

Fastening of wheels

Fig. 2

Table Fig. 2

No.	Number	Designation	Weight kg	Tightening torques			
				Threads	Quality	Wrench size SW in mm	M _A Nm
1	32	Washer					
2	4	Intermediate ring					
3	32	Wheel-nut		M22x1.5		30	450
4	32	Spring washer					
5	8	Wheel					

The intermediate ring (2, Fig. 2) prevents matter thrown up from the ground from getting stuck in the space between the tyres. These objects together with tyre flexing may damage the tyres.

Wheels

Fig. 3

Table Fig. 3

No.	Number	Designation	Weight kg	Tightening torques			
				Threads	Quality	Wrench size SW in mm	M _A Nm
1	8	Disk wheel	42				
2	8	Tyre	55				
3	8	Tube	5				
4	8	Rim tape	3				

Changing a wheel

Read and observe:

"Tyres and wheels, safety instructions".

- Park the machine on firm and level ground.
- Apply the parking brake.
- Slacken the wheel-nuts by about 1 full turn.
- Raise the axle with the defective wheel until the tyres lose contact with the ground by jacking up the machine with the help of the working equipment or the stabilizers on the respective side of the machine.
- Support the raised axle with squared timber to prevent it from lowering.
- Secure the machine as described under "Securing the machine".
- Deflate the tyres.

The wheels have been pre-fitted pairwise at the factory. When removing the wheels for the first time, the complete pair must be removed and then dismantled.

- Slacken the wheel-nuts and remove the damaged wheel and the intermediate ring (optional equipment) using appropriate lifting gear.
- Mark inner and outer wheel. Do not lose centering rings, spring washers and wheel-nuts. Reuse these parts when refitting the wheel.

Fitting new wheels

- Inflate both tyres with approx. 1 bar. Observe the fitting sequence:
- Place inner wheel (rim with high-offset dish) on the mounting studs.
- Place intermediate ring (optional equipment) on the wheel.
- Place outer wheel (rim with low-offset dish) on the ring. Observe the fitting sequence. Incorrect mounting of the wheels may result in the total admissible width of the machine being exceeded.
- Observe the information set out in "Wheels, tread position".
- Do not damage the threads of the wheel-studs.
- Center the intermediate ring.
- Make sure there are no foreign objects between tyre and intermediate ring.
- Apply special tool (WXXX) on opposite studs.
- Prestress the wheel pair by tightening the special tool until the wheel-nuts can be screwed onto the studs.
- Tighten the wheel-nuts with centering rings crosswise until the axle is in contact with the disk wheel.
- Remove the timber from under the raised axle and lower the axle.
- Tighten the wheel-nuts with the prescribed torque.
- Inflate the tyres with the correct pressure.
- Recheck the wheel-nuts after several hours in operation with a torque wrench for tight fit.
Wheels, tread position

Observe the tread position when fitting the wheels (Fig. 4 and 5).

Fig. 4

Fig. 4 shows the tread position recommended for all-wheel driven machines which need to have the same traction power for both driving directions.

Fig. 5 shows the tread position of the tyres when the all-wheel-driven machine needs especially good traction in one direction, e.g. during work with the levelling blade.

In some cases, tread positions other than those above may be of advantage. In these cases, please contact your local dealer. 8-79

Steps, left side

Fig. 1

Key

No.	Q.ty	Designation
1	1	Step
2	4	Screw
3	4	Washer

Preparation

- Park the machine safely.

Removing the steps on the left side

- Attach the step assembly (Pos. 1) with slings to a crane.

Weight of left-hand step assembly: appr. 35 kg

- Slacken the screws (Pos. 2) and washers (Pos. 3) and remove the step assembly.

Installing the steps on the left side

- Hold the step assembly with a crane in fitting position and fasten it with screws and washers to the undercarriage.

Steps, right side, tool-box

Fig. 1

Key

No.	Q.ty	Designation
1	1	Steps with tool-box
2	4	Screw
3	4	Washer

Preparation

- Park the machine safely.

Removing the steps on the right side

- Attach the step assembly (Pos. 1) with slings to a crane.

Weight of right-hand step assembly: appr. 60 kg

- Slacken the screws (Pos. 2) and washers (Pos. 3) and remove the step assembly.

Fitting the steps on the right side

- Hold the step assembly with a crane in fitting position and fasten it with screws and washers to the undercarriage.

Dismantling the tool-box

Fig. 2

Key

No.	Q.ty	Designation
1	1	Step
2	1	Edge protector
3	1	Button handle
4	1	Lock
5	2	Buffer
6	1	Latch
7	1	Pin
11	3	Screw
12	6	Nut

No.	Q.ty	Designation
13	10	Washer
16	2	Screw
17	2	Screw
18	2	Washer
19	2	Nut
20	1	Screw
21	1	Washer
22	1	Nut
103	1	Cover

Stabilizers

Fig. 1

Safety instructions

Read also the safety instructions at the beginning of this chapter and those in the operating instructions.

The stabilizers ensure safe standing of the excavator during working movements. By enlarging the supporting surface and by making the undercarriage stiffer, the excavator's stability is increased.

The machine is stabilized by the outriggers (1 and 2, Fig. 1) and additionally by the levelling blade (3, Fig. 1).

During road travel, the outriggers must be secured in retracted position with a bar (17).

Outriggers

The outriggers are extended by means of hydraulic cylinders (10).

Levelling blade

The levelling blade is provided behind the floating steering axle and used for levelling the surface on which the excavator is to stand for better stability during working movements. Together with the outriggers, the levelling blade also supports the excavator.

The levelling blade is designed in such a way that vertical movement parallel to the frame of the undercarriage is ensured over the full moving range of the hydraulic cylinders.

Outriggers

Fig. 1

Key

No.	Q.ty	Designation
1	2	Outrigger cylinder
2	2	Outrigger arm
3	2	Baseplate
4	2	Pin
5	2	Washer
6	2	Washer
7	2	Hex screw
8	4	Bearing bush
9	2	Pin
10	2	Washer

No.	Q.ty	Designation
11	2	Washer
12	2	Hex screw
13	8	Hex screw
14	8	Washer
15	4	Disk
16	2	Pin
17	2	Rod
18	2	Pin
19	2	Pin
20	2	Hex screw

Preparations

W009	19 mm 36 mm
W010	Hammer
W011	Brass drift
	Extractor M20

- Place the outriggers safely on the ground.
- Shut off the engine.
- Secure the machine against inadvertent starting, for instance, by placing a warning sign in the cab.

Removing the outriggers

- Attach the outrigger cylinder (1) with a rope to a crane so that there is no longer any load on the cylinder and that it cannot fall during the removal.
- Loosen the screws (13) and remove washer (14) and disk (15).
- Drive out pin (16) using a brass drift and a hammer.

Wear protective equipment such as googles and helmet to protect yourself against knocked-off metal fragments.

- Retract the piston rod completely and fasten it to the cylinder barrel to prevent movements.
- Shut off the engine and depressurize the hydraulic components by extending and retracting the cylinders with the control lever shifted slightly in both directions. During this procedure, the engine must be off and the ignition on.
- Detach the hydraulic hoses and close them and the openings in the cylinder with plugs.

- Loosen the screw (20) which retains pin (1) and remove the washer (19).
- Screw the extractor into the threaded hole of pin (1) and extract it by knocking lightly against the extractor mass .
- Remove the cylinder with the crane.

- Fasten outrigger arm (2) by means of a rope to the crane so that there is no longer any load on the outrigger and that it cannot fall during the removal.
- Loosen the screws (7) at outrigger baseplate (3) remove washers (5) and (6) and drive out the pin with a brass drift and a hammer.
- Remove the baseplate (3).
- Drive out pin (9) in the same way and remove outrigger arm (2).

Refitting the outriggers

- Position the outrigger arm (2) with a crane in the frame of the undercarriage and fit pin (9) with washers (10) and (11) and screw (12).
- Make sure the clearance between frame and outrigger arm is less than 1 mm and correct it with shims, if necessary.
- Position the baseplate (3) on outrigger arm (2) and fit pin (4) with washers (5) and (6) and screw (7).
- Make sure the clearance between arm and baseplate is less than 1 mm and correct it with shims, if necessary.
- Position cylinder (1) in the frame and fasten it with pin (18).
- Secure the pin with washer (19) and screw (20).
- Connect the hydraulic hoses to the cylinder and bleed the hydraulic system. To do so, extend and retract the piston rod of the cylinder slowly several times.

Fill the hydraulic reservoir up to the prescribed level with hydraulic oil.

Let the engine run at idling and check the hose connections for oil leaks.

Bleed the hydraulic circuit.

- Lift cylinder (1) with a crane and align the eye of the piston rod with the bore in the outrigger arm (2).

To facilitate the aligning operation, move the the rod of the outrigger cylinder with the control lever into the correct position.

- Fit pin (16) and secure it with washers (14) and disks (15) and the screws (13).

Levelling blade

TBD

Preparations

TBD

Removing the levelling blade

TBD

Refitting the levelling blade

TBD

Outrigger cylinders

Outrigger cylinder components

Preparations

TBD

Removing the outrigger cylinders

TBD

Refitting the outrigger cylinders

TBD

Outrigger cylinders, tightening torques

TBD

Levelling blade cylinders

Levelling blade cylinder components TBD

Preparations

TBD

Removing the levelling blade cylinders

TBD

Refitting the levelling blade cylinders

TBD

Levelling blade cylinders, tightening torques

TBD

EQUIPMENT, COMPONENTS

Toggle link and levers Stick Monoblock boom

Upper boom section

Lower boom section

Boom cylinders

Stick cylinder

Bucket cylinder

Adjusting cylinder

Preparations

Park the excavator on a firm, horizontal and level surface and secure it against inadvertent movements. Stand the working equipment on the ground, switch off the engine and protect the machine against inadvertent starting.

Boom cylinders for boom adjusting equipment

Preparations

Park the excavator on a level, horizontal and firm surface and secure it against inadvertent movements. Stand the working equipment on the ground, shut off the engine and secure the machine against inadvertent starting.

Boom cylinders

Removing the boom cylinders

W009	19 mm 36 mm
W010	Hammer
W011	Brass drift

- Place the equipment safely on the ground and secure the machine against inadvertent movements.
- Shut off the engine.
- Secure the machine against inadvertent starting, e.g. with a warning sign attached to the machine.
- Remove the leakage oil lines, if any (1).

Fig. 1

- Attach the cylinder with a rope to a crane and lift slightly so that the cylinder is load-relieved and cannot drop during the removal.

	<u>?</u>	
-		

Weight of the boom cylinder: 215 kg MH6.6 225 kg MH8.6

Wear protective equipment such as goggles and helmet to protect yourself against metal splinters resulting from hammering.

Fig. 2

- Slacken the nuts (13) and remove screw (3) and washers (4).
- Use hammer and brass drift to drive pin (6) inwards until the boom cylinder is clear. Remove the spacer rings (7) in the process.
- Move the piston rod fully into the boom cylinder and secure it to the cylinder barrel to prevent it from moving.
- Shut off the engine and depressurize all hydraulic components by moving the cylinders with the control levers gently in both directions, the engine being off, but the ignition on.
- Detach the hoses from the pipes and close the hose, pipe and cylinder openings with plugs.

Fig. 3

- Remove screw (8) which fixes pin (9) to the A-frame.
- Drive out pin (9) with a hammer and a brass drift, removing the spacers (10) at the same time.
- Lift the boom cylinder with a crane.
- Remove the other boom cylinder in the same way.

Refitting the boom cylinders

W009	19 mm 36 mm
WO10	Hammer
W011	Brass drift
St W012	Torque wrench

Fig. 4

- Refit the boom cylinder on the A-frame using a crane.
- Insert spacers (10) and pin (9) and fasten pin (9) with screw (8), washer (11) and lock-washer (12).
- Refit the other boom cylinder on the A-frame in the same way.
- Re-attach the hydraulic hoses to the pipes of the boom cylinders.

Tightening torque: 175 Nm

Fill the hydraulic reservoir up to the prescribed level with hydraulic oil.

Let the engine run at idling and check the hose connections for oil leaks.

Bleed the hydraulic system.

- To bleed the hydraulic circuit, move the piston rods of the cylinders several times slowly in an and out.

- Lift the boom cylinder with a crane and align the eye of the piston rod with the bore on the boom.

For easier alignment of the bores, move the piston rod of the boom cylinder with the control lever into the correct position.

Fig. 5

- Install pin (6) and fill the gap between cylinder head and boom with the spacers (7).
- Slide the pin only so far through the boom that it fills the bore on the other side.
- Align the second boom cylinder as described above.
- Push the pin further through the boom until both boom cylinder eyes are attached to the pin.
- Slide the rings (5) over the pin and fill the gap between cylinder and rings with the spacers.
- Secure the rings (5) with washers (4) and nuts (13).
- Refit the leakage oil lines if any.

Boom cylinder, components

Fig. 2

Key

No.	Q.ty	Designation
1	1	Scraper ring
2	1	Backing ring
3	1	Lip seal
4	1	Damper ring
5	61	Bushing
6	1	Retaining ring
7	1	Rod guide
8	12	Hex socket screw
9	1	Backing ring
10	1	O-ring
11	1	Piston rod
12	1	Cylinder barrel
13	1	Damper bearing
14	1	Damper seal
15	1	Piston

No.	Q.ty	Designation
16	2	Backing ring
17	1	Sealing ring
18	1	O-ring
19	2	Guide ring
20	2	Guide ring
21	1	Spacer
22	1	Retaining screw
23	1	Ball
24	1	Adjusting nut
25	2	Greasing nipple
26	2	Bushing
27	2	Bushing
28	2	Scraper ring
29	2	Scraper ring

Dismantling the boom cylinder

WOO1	14 mm Allen key 6 mm Allen key
W002	Plastic hammer
WOOJ	95 mm hex socket insert 100 mm hex socket insert
W004	Special tool (W004) see list of special tools
D W005	Special tool (W005) see list of special tools

Before dismantling, read all safety and working instructions in the corresponding chapter.

- Lift the cylinder with a crane onto a workbench and fix in horizontal position.
- Drain off all the hydraulic oil from the cylinder into a suitable recipient.

Fig. 3

When drawing out the piston rod, make sure not to damage the seals and guides by jamming the rod.

- Pull out piston rod (11) of the cylinder to the limit stop securing the end of the rod with a sling attached to a crane.

- Remove retaining screws (8) of rod guide (7).

(14 mm Allen key)

- Drive rod guide (7) with a plastic hammer out of cylinder barrel (12).
- Attach piston rod (11) to special tool (W004). Mark the position of adjusting nut (24) with respect to piston rod (11).
- Remove retaining screw (22) and ball (23) from nut (24).

(6 mm Allen key)

IMPORTANT: Remove the two toe-ins on retaining screw (22), which were applied after tigthening of the screw with hammer and chisel by reboring.

- Loosen nut (24) and screw off using special tool (W004) and the 95 mm (MH6.6) / 100 mm (MH8.6) hex socket insert.
- Withdraw piston (15), spacer disk (21) and damper bearing (13) from piston rod (11). With-draw also damper seal (14).
- Withdraw seal (17), guide rings (19) and (20), O-ring (18) and the two backing rings (16) from piston (15).
- Withdraw now also rod guide (7) from piston rod (11).
- Withdraw O-ring (10) and backing rings (9) and (2) from the rod guide.
- Then, remove scraper ring (1), lip seal (3), damper ring (4), retaining ring (6) and bushing (5) from the rod guide using special tool (W005).

Tightening torques

No.	Q.ty	Designation	Model	Tightening torques			
				Thread	Quality	Spanner size SW (mm)	M _A (Nm)
8	12	Hex socket screw		M18x2.5		14	367
22	1	Hex socket screw		M12x1.75		6	57
24	1	Hex nut	MH6.6	M65x3		95	6075
24	1	Hex nut	MH8.6	M70x3		105	7484

Assembling the boom cylinder

W001	14 mm Allen key 6 mm Allen key
W002	Plastic hammer
WO O 3	95 mm hex socket insert 100 mm hex socket insert
W004	Special tool (W004) see list of special tools
D W005	Special tool (W005) see list of special tools
W006	Special tool (W006) see list of special tools
₩007	Special tool (W007) see list of special tools
	Special tool (W008) see list of special tools

- Insert bushing (5) with a press into rod guide (7) using special tool (W005).
- Insert lip seal (3), backing ring (2), damper ring (4) and retaining ring (6) into rod guide (7).
- Insert scraper ring (1) with special tool (W006) and a hammer into rod guide (7).
- Then place O-ring (10) and backing ring (9) in the corresponding grooves of rod guide (7).
- Now, install the rings and seals for the piston.
- O-ring (18), the two backing rings (16), sealing ring (17) and the four guide rings (two No. 19 and two No. 20) are slid over piston (15) using special tool (W007).
- Rod guide (7) is mounted on piston rod (11) with special tool (W008).

- Place damper ring (14) in the groove provided in piston rod (11). Damper bearing (13) is mounted on piston rod (11) and slid over the damper ring.

Piston (15) can now be mounted on piston rod (11).

Make sure the notch in damper seal (14) points in the direction of the piston. The oil grooves on the outside of damper ring (13) must point in the proper direction (see illustration Fig. 1).

- Slide spacer ring (21) over piston rod (11) and tighten nut (24).

To do so, fix piston rod (11) pre-assembled with rod guide (7) and piston (15) in special tool (W004).

When tightening the nut with the 95 mm (MH6.6) / 100 mm (MH8.6) hex socket insert, make sure the markings applied during dismantling on piston (15) and on nut (24) are in line when the torque is reached (tightening torques see table).

When nut (24) is tight and when the threaded holes of nut (24) and of piston rod (11) are aligned above one another, place ball (23) in the threaded hole of nut (24).

- Thereafter, screw retaining screw (22) into the threaded hole.

(6 mm Allen key)

- Make a toe-in on retaining screw (22) at two places with hammer and chisel to block it with nut (24) for protection against loss.

- Place cylinder barrel (12) with a crane on the workbench in horizontal position and fix.
- Introduce piston rod (11) pre-assembled with rod guide (7) and piston (15) into cylinder barrel (12).

- Slide rod guide (7) into cylinder barrel (12) and fasten with the screws (8). (Tightening torques see table)

(14 mm Allen key).

Stick cylinder

Fig. 1

Preparations

Park the excavator on a level, horizontal and firm surface and secure it against inadvertent movements. Stand the working equipment on the ground, shut off the engine and secure the machine against inadvertent starting.

19 mm 36 mm W000 Hammer W010 Brass drift

Removing the stick cylinder

- Place the equipment safely on the ground and secure the machine against inadvertent movements.
- Shut off the engine.
- Secure the machine against inadvertent starting, e.g. with a warning sign attached to the machine.
- Place a piece of squared timber between stick cylinder and boom.
- Remove the leakage oil lines, if any (1).

- Remove screw (2) which fixes pin (3) to the stick.

Weight of the boom cylinder: 270 kg MH6.6 280 kg MH8.6

Wear protective equipment such as goggles and helmet to protect yourself against metal splinters resulting from hammering.

Fig. 3

- Drive out pin (3) with a brass drift and a hammer, removing spacers (4) at the same time.
- Move the piston rod fully into the stick cylinder and secure it to the cylinder barrel to prevent it from moving.
- Shut off the engine and depressurize all hydraulic components by moving the cylinders with the control levers gently in both directions, the engine being off, but the ignition on.
- Detach the hoses from the pipes and close the hose, pipe and cylinder openings with plugs.

- Remove screw (5) which fixes pin (6) to the boom.
- Drive out pin (6) with a brass drift and a hammer, removing spacers (7) at the same time.
- Lift the stick cylinder with a crane.

Refitting the stick cylinder

W009	19 mm 36 mm
W010	Hammer
W011	Brass drift
W012	Torque wrench

Fig. 5

- Lift the stick cylinder with a crane into the cylinder support on the boom.
- Install spacers (7) and pin (6) and fasten pin (6) with screw (8), washers (9) and lock-washer (8).
- Re-attach the hydraulic hoses to the cylinder.

Fill the hydraulic reservoir up to the prescribed level with hydraulic oil.

Let the engine run at idling and check the hose connections for oil leaks.

Bleed the hydraulic system.

- To bleed the hydraulic circuit, move the piston rod of the cylinder several times slowly in an and out.
- Lift the stick cylinder with a crane and align the eye of the piston rod with the bore on the stick.

For easier alignment of the bores, move the piston rod of the boom cylinder with the control lever into the correct position.

Fig. 6

- Install spacers (4) and pin (3). Fix pin (3) with screw (2), washers (10) and lock-washer (11).

Stick cylinder, components

Fig. 2

Key

No.	Q.ty	Designation
1	1	Scraper ring
2	1	Backing ring
3	1	Lip seal
4	1	Damper ring
5	1	Bushing
6	1	Retaining ring
7	1	Rod guide
8	12	Hex socket screw
9	1	Backing ring
10	1	O-ring
11	1	Piston rod
12	1	Cylinder barrel
13	1	Damper bearing
14	1	Damper seal
15	1	Piston

No.	Q.ty	Designation
16	2	Backing ring
17	1	Piston
18	1	O-ring
19	2	Guide ring
20	2	Guide ring
21	1	Spacer
22	1	Retaining screw
23	1	Ball
24	1	Adjusting nut
25	1	Retaining ring
26	1	Damper bearing
27	1	Damper seal
28	2	Limit stop
29	2	Greasing nipple
30	2	Bushing
31	2	Bushing

Dismantling the stick cylinder

WOO1	14 mm Allen key 17 mm Allen key 6 mm Allen key
W002	Plastic hammer
W003	100 mm hex socket insert
W013	Screwdriver
W004	Special tool (W004) see list of special tools
O WOOS	Special tool (W005) see list of special tools

Before dismantling, read all safety and working instructions in the corresponding chapter.

- Lift the cylinder with a crane onto a workbench and fix in horizontal position.
- Drain off all the hydraulic oil from the cylinder into a suitable recipient.

Fig. 3

- Pull out piston rod (11) of the cylinder to the limit stop securing the end of the rod with a sling attached to a crane.

When drawing out the piston rod, make sure not to damage the seals and guides by jamming the rod. - Remove retaining screws (8) of rod guide (7).

(14 mm Allen key for MH6.6)

- (17 mm Allen key for MH8.6)
- Drive rod guide (7) with a plastic hammer out of cylinder barrel (12).
- Attach piston rod (11) to special tool (W004). Mark the position of adjusting nut (24) with respect to piston rod (11).
- Remove retaining screw (22) and ball (23) from nut (24).

(6 mm Allen key)

IMPORTANT: Remove the two toe-ins on retaining screw (22), which were applied after tigthening of the screw with hammer and chisel by reboring.

- Loosen nut (24) and screw off using special tool (W004) and the 100 mm hex socket insert.
- Withdraw piston (15), spacer disk (21) and damper bearing (13) from piston rod (11).
- Withdraw seal (17), guide rings (19) and (20), O-ring (18) and the two backing rings (16) from piston (15).

Withdraw now also rod guide (7) from piston rod (11).

- Withdraw O-ring (10) and backing rings (9) and (2) from the rod guide.

Then, remove scraper ring (1), lip seal (3), damper ring (4), retaining ring (6) and bushing (5) from the rod guide using special tool (W005).

- Lever limit stop (28) off the piston rod using a screwdriver.

Then remove damper bearing (27), damper seal (26) and retaining ring (25).

Tightening torques

No.	Q.ty	Designation	Model	Tightening torques			
				Thread	Quality	Spanner size SW (mm)	M _A (Nm)
8	12	Hex socket insert	MH6.6	M18x2.5		14	367
8	10	Hex socket insert	MH8.6	M20x2.5		17	520
22	1	Hex socket screw	MH6.6	M12x1.75		6	57
22	1	Hex socket screw	MH8.6	M14x2		6	57
24	1	Hex nut	MH6.6	M70x3		100	10200
24	1	Hex nut	MH8.6	M70x3		100	10990

Assembling the stick cylinder

WOO1	14 mm Allen key 17 mm Allen key 6 mm Allen key
W002	Plastic hammer
WOOJ	100 mm hex socket insert
W004	Special tool (W004) see list of special tools
D W005	Special tool (W005) see list of special tools
1 17 17 1006	Special tool (W006) see list of special tools
₩007	Special tool (W007) see list of special tools
	Special tool (W008) see list of special tools

- Insert bushing (5) with a press into rod guide (7) using special tool (W005).
- Insert lip seal (3), backing ring (2), damper ring (4) and retaining ring (6) into rod guide (7).
- Insert scraper ring (1) with special tool (W006) and a hammer into rod guide (7).
- Then place O-ring (10) and backing ring (9) in the corresponding grooves of rod guide (7).
- Now, install the rings and seals for the piston.
- O-ring (18), the two backing rings (16), sealing ring (17) and the four guide rings (two No. 19 and two No. 20) are slid over piston (15) using special tool (W007).
- Rod guide (7) is mounted on piston rod (11) with special tool (W008).

- Place damper seal (14) into the groove provided in piston rod (11) and slide damper ring (13) over seal. Piston (15) can now be mounted on piston rod (11).

Make sure the notch in damper seal (14) points in the direction of the piston. The oil grooves on the outside of damper ring (13) must point in the proper direction (see illustration Fig. 1).

- Slide spacer ring (21) over piston rod (11) and tighten nut (24).

To do so, fix piston rod (11) pre-assembled with rod guide (7) and piston (15) in special tool (W004).

- When tightening the nut with the 100 mm hex socket insert, make sure the markings applied during dismantling on piston (15) and on nut (24) are in line when the torque is reached (tightening torques see table).

When nut (24) is tight and when the threaded holes of nut (24) and of piston rod (11) are aligned above one another, place ball (23) in the threaded hole of nut (24).

- Thereafter, screw retaining screw (22) into the threaded hole.

(6 mm Allen key)

- Make a toe-in on retaining screw (22) at two places with hammer and chisel to block it with nut (24) for protection against loss.

- For the second limit-stop dampener, retaining ring (25) is mounted on piston rod (11) and damper seal (26) then placed in the groove provided on piston rod (11) before damper ring (27) is placed on piston rod (11) over damper seal (26).
- Limit stop (28) placed on piston rod (11) completes the second limit-stop dampener.

Make sure the notch in damper seal (14) points in the direction of the piston. The oil grooves on the outside of damper ring (13) must point in the proper direction (see illustration Fig. 1)

- Place cylinder barrel (12) with a crane on the workbench in horizontal position and fix.
- Introduce piston rod (11) pre-assembled with rod guide (7) and piston (15) into cylinder barrel (12).

Place piston rod (11) centrally into cylinder barrel (12) to avoid damaging the guide rings and seals.

Slide rod guide (7) into cylinder barrel (12) and fasten with the screws (8). (Tightening torques see table).

(14 mm Allen key for MH6.6) (17 mm Allen key for MH8.6)

Bucket cylinder

Fig. 1

Preparations

Park the excavator on a level, horizontal and firm surface and secure it against inadvertent movements. Stand the working equipment on the ground, shut off the engine and secure the machine against inadvertent starting.

Be careful with hot hydraulic oil.

8-112

Removing the bucket cylinder

	24 mm
W009	
W010	Hammer
	Droop drift
W011	Brass unit

- Place the equipment safely on the ground and secure the machine against inadvertent movements.
- Place a piece of squared timber between the stick and the ground and another one between the bucket cylinder and the stick.

- Shut off the engine.
- Secure the machine against inadvertent starting, e.g. with a warning sign attached to the machine.
- Remove the leakage oil lines, if any.

Fig. 3

Weight of the bucket cylinder: 165 kg MH6.6 198 kg MH8.6

Wear protective equipment such as goggles and helmet to protect yourself against metal splinters resulting from hammering.

Secure the toggle link and the toggle levers (1) to prevent them from falling during removal of the pin.

- Loosen both nuts (4) of screw (3) and remove.
- Drive the pin out of its housing using a hammer and a brass drift.
- Remove spacers (5) when removing pin (2).

- Retract the piston rod completely into the bucket cylinder. Secure the rod to the cylinder barrel to prevent it from moving.
- Shut off the engine and depressurize all hydraulic components by moving the cylinders with the control levers gently in both directions, the engine being off, but the ignition on.
- Detach the hoses from the pipes and close the hose, pipe and cylinder openings with plugs.

Fig. 4

- Remove screw (6) which fixes pin (8) to the stick.
- Drive out pin (8) with a brass drift and a hammer, removing spacers (9) at the same time.
- Lift the bucket cylinder with a crane.

W009 24 mm W009 Hammer W010 Brass drift

Refitting the bucket cylinder

- Lift the bucket cylinder with a crane into the cylinder support on the stick.

Fig. 5

- Install spacers (9) and pin (8) and fasten pin (8) with screw (6) and washer (7).
- Re-attach the hydraulic hoses to the cylinder.

Fill the hydraulic reservoir up to the prescribed level with hydraulic oil.

Let the engine run at idling and check the hose connections for oil leaks.

Bleed the hydraulic system.

- To bleed the hydraulic circuit, move the piston rod of the cylinder several times slowly in an and out.

Fig. 6

- Lower the bucket cylinder slowly with the crane and align the eye of the piston rod with the bores in toggle link and toggle levers.

> For easier alignment of the bores, move the piston rod of the bucket cylinder with the control lever into the correct position.

- Slide pin (2) through the bores, filling the gaps between cylinder head and toggle link and levers with spacers (5).
- Align the bore in the pin with that in the toggle lever and stick screw (3) through the bores.
- Secure the connection with nuts (4).
- Refit the leakage oil lines, if any.
This page left blank intentionally

Bucket cylinder, components

Key

No.	Q.ty	Designation
1	1	Scraper ring
2	1	Backing ring
3	1	Lip seal
4	1	Damper ring
5	61	Bushing
6	1	Retaining ring
7	1	Rod guide
8	12	Hex socket screw
9	1	Backing ring
10	1	O-ring
11	1	Piston rod
12	1	Cylinder barrel
13	1	Damper bearing
14	1	Damper seal
15	1	Piston

No.	Q.ty	Designation
16	2	Backing ring
17	1	Sealing ring
18	1	O-ring
19	2	Guide ring
20	2	Guide ring
21	1	Spacer
22	1	Retaining screw
23	1	Ball
24	1	Adjusting nut
25	2	Greasing nipple
26	2	Bushing
27	2	Bushing
28	2	Scraper ring
29	2	Scraper ring

Dismantling the bucket cylinder

WOO1	14 mm Allen key 6 mm Allen key
W002	Plastic hammer
W003	85 mm hex socket insert 95 mm hex socket insert
W004	Special tool (W004) see list of special tools
O W005	Special tool (W005) see list of special tools

Before dismantling, read all safety and working instructions in the corresponding chapter.

- Lift the cylinder with a crane onto a workbench and fix in horizontal position.
- Drain off all the hydraulic oil from the cylinder into a suitable recipient.

Fig. 3

- Pull out piston rod (11) of the cylinder to the limit stop securing the end of the rod with a sling attached to a crane.

When drawing out the piston rod, make sure not to damage the seals and guides by jamming the rod. - Remove retaining screws (8) of rod guide (7).

(14 mm Allen key).

- Drive rod guide (7) with a plastic hammer out of cylinder barrel (12).
- Attach piston rod (11) to special tool (W004). Mark the position of adjusting nut (24) with respect to piston rod (11).
- Remove retaining screw (22) and ball (23) from nut (24).

(6 mm Allen key)

IMPORTANT: Remove the two toe-ins on retaining screw (22), which were applied after tigthening of the screw with hammer and chisel by reboring.

- Loosen nut (24) and screw off using special tool (W004) and the 85 mm (MH6.6) / 95 mm (MH8.6) hex socket insert.
- Withdraw piston (15), spacer disk (21) and damper bearing (13) from piston rod (11). With-draw also damper seal (14).
- Withdraw seal (17), guide rings (19) and (20), O-ring (18) and the two backing rings (16) from piston (15).

Withdraw now also rod guide (7) from piston rod (11).

- Withdraw O-ring (10) and backing rings (9) and (2) from the rod guide.

Then, remove scraper ring (1), lip seal (3), damper ring (4), retaining ring (6) and bushing (5) from the rod guide using special tool (W005).

Tightening torques

No.	Q.ty	Designation	Model	Tightening torques			
				Thread	Quality	Spanner size SW (mm)	M _A (Nm)
8	10	Hex socket screw	MH6.6	M16x2		14	267
8	12	Hex socket screw	MH8.6	M16x2		14	267
22	1	Hex socket screw		M12x1.75		6	57
24	1	Hex nut	MH6.6	M58x3		85	5640
24	1	Hex nut	MH8.6	M65x3		95	5470

Assembling the bucket cylinder

WOO1	14 mm Allen key 6 mm Allen key
W002	Plastic hammer
WOOJ	85 mm hex socket insert 95 mm hex socket insert
W004	Special tool (W004) see list of special tools
O W005	Special tool (W005) see list of special tools
W006	Special tool (W006) see list of special tools
	Special tool (W007) see list of special tools
	Special tool (W008) see list of special tools

- Insert bushing (5) with a press into rod guide (7) using special tool (W005).
- Insert lip seal (3), backing ring (2), damper ring (4) and retaining ring (6) into rod guide (7).
- Insert scraper ring (1) with special tool (W006) and a hammer into rod guide (7).
- Then place O-ring (10) and backing ring (9) in the corresponding grooves of rod guide (7).
- Now, install the rings and seals for the piston.
- O-ring (18), the two backing rings (16), sealing ring (17) and the four guide rings (two No. 19 and two No. 20) are slid over piston (15) using special tool (W007).
- Rod guide (7) is mounted on piston rod (11) with special tool (W008).

- Damper bearing (13) is mounted on piston rod (11).
- Piston (15) can now be mounted on piston rod (11).

- Slide spacer ring (21) over piston rod (11) and tighten nut (24).

To do so, fix piston rod (11) pre-assembled with rod guide (7) and piston (15) in special tool (W004).

When tightening the nut with the 85 mm (MH6.6) / 95 mm (MH8.6) hex socket insert, make sure the markings applied during dismantling on piston (15) and on nut (24) are in line when the torque is reached (tightening torques see table).

When nut (24) is tight and when the threaded holes of nut (24) and of piston rod (11) are aligned above one another, place ball (23) in the threaded hole of nut (24).

- Thereafter, screw retaining screw (22) into the threaded hole.
- (6 mm Allen key)

Make a toe-in on retaining screw (22) at two places with hammer and chisel to block it with nut (24) for protection against loss.

- Place cylinder barrel (12) with a crane on the workbench in horizontal position and fix.
- Introduce piston rod (11) pre-assembled with rod guide (7) and piston (15) into cylinder barrel (12).

- Slide rod guide (7) into cylinder barrel (12) and fasten with the screws (8). (Tightening torques see table).

(14 mm Allen key)

Adjusting cylinder

Fig. 1

Preparations

Park the excavator on a level, horizontal and firm surface and secure it against inadvertent movements. Stand the working equipment on the ground, shut off the engine and secure the machine against inadvertent starting.

Removing the adjusting cylinder

<u> </u>	24 mm
W009	
	Hammer
W010	
	Brass drift
W011	

Weight of the adjusting cylinder: 271 kg MH6.6 289 kg MH8.6

Wear protective equipment such as goggles and helmet to protect yourself against metal splinters resulting from hammering.

- Shut off the engine.
- Secure the machine against inadvertent starting, e.g. with a warning sign attached to the machine.
- Place the equipment safely on the ground and secure the machine against inadvertent movements.
- Remove the leakage oil lines, if any.
- Place a piece of squared timber between the adjusting cylinder and the lower boom section.

Fig. 2

- Remove screw (1) which fixes pin (2) to the boom.

Fig. 3

- Drive the pin out of its housing using a hammer and a brass drift.
- Remove spacers (3) when removing pin (2).
- Retract the piston rod completely into the adjusting cylinder. Secure the rod to the cylinder barrel to prevent it from moving.
- Shut off the engine and depressurize all hydraulic components by moving the cylinders with the control levers gently in both directions, the engine being off, but the ignition on.
- Detach the hoses from the pipes and close the hose, pipe and cylinder openings with plugs.

- Loosen screw (4) which secures pin (5).
- Drive the pin out of its housing using a hammer and a brass drift.
- Remove spacers (6) when removing pin (5).
- Lift the adjusting cylinder with a crane.

Refitting the adjusting cylinder

C.	24 mm
W009	
\square	Hammer
WO10	
	Brass drift
W011	

- Lift the adjusting cylinder with a crane into the cylinder support of the lower boom section.

Fig. 5

- Install spacers (6) and pin (5) and fasten pin (5) with screw (4) and washer (7).
- Re-attach the hydraulic hoses to the cylinder.

Fill the hydraulic reservoir up to the prescribed level with hydraulic oil.

Let the engine run at idling and check the hose connections for oil leaks.

Bleed the hydraulic system.

- To bleed the hydraulic circuit, move the piston rod of the cylinder several times slowly in an and out.

Fig. 6

- Move the adjusting cylinder slowly with the crane and align the eye of the piston rod with the bore on the adjustable upper boom section.

For easier alignment of the bores, move the piston rod of the adjusting cylinder with the control lever into the correct position.

- Slide pin (2) through the bores, filling the gaps between the cylinder head and the cylinder support with spacers (3).
- Secure the pin with screw (1) and washer (8).
- Refit the leakage oil lines, if any.

Boom adjusting cylinder, components

Dismantling the boom adjusting cylinder

TBD

Tightening torques

TBD

Assembling the boom adjusting cylinder

TBD

This page left blank intentionally

WEAR PARTS

Replacing the slip-on teeth Trenching grab, wear limits Checking and replacing the fuses Replacing the lamp bulbs

Slip-on tooth

Safety instructions

Read also the safety instructions at the beginning of this chapter and in the operating instructions.

Replacing the slip-on teeth

The area facing the driven-out toothsecuring device and the driven-out tooth must be free of all persons.

The tooth-securing device or the tooth may suddenly be released while being driven out and hit persons.

Knocked-off metal fragments may result in injury.

Wear your personal protective equipment and goggles.

Fig. 1

- Strike tooth-securing device (1, Fig. 1) with an appropriate flat object made of soft metal or hardwood (2).
- Drive tooth (3, Fig. 2) out of socket (4) with an appropriate flat object made of soft metal or hardwood.
- Clean inside of socket, removing any dirt and corrosion.
- Insert new tooth (3) into socket (4, Fig. 3). The tooth must fit at the point marked with an arrow (Fig. 4).

Fig. 2

Fig. 3

- Knock new tooth-securing device (1, Fig. 4) into opening (5) of socket (4).
- The securing device can be mounted from either side.

Trenching grab, wear limits

If the natural wear on grab edges and stops exceeds an admissible degree, this may result in damage to the grab cylinder. The admissible stroke of the grab cylinder is then exceeded, with piston and cylindrical pipe impacting in their limit positions.

To enable the wear status to be checked, factorynew trenching grabs are marked (Fig. 5):

- by prick-punching at the guide rail (1),
- with a notch at the cylinder guide (2).

Fig. 1

The trenching grab must be repaired before the marking on the cylinder guide (2) is at the same level as one of the markings on the guide rail (1).

The lower marking (1) provides information on the wear at the grab edges, and the upper marking on the wear at the stops on the clamshells.

Reworking the stops

- Detach the grab completely from the excavator.
- Rework the corresponding wear edges by applying a hard-facing layer.

When carrying out welding work, it is absolutely necessary to observe the safety instructions in the operating instructions and at the beginning of this chapter.

Fuses

Checking and replacing the fuses

Shut off the engine and turn the keyswitch to '0' before removing a fuse.

Replace defective fuses only by fuses of the same rating.

The fuses are housed in a fuse-box in the right-hand cover panel (Fig. 1).

Fig. 1

- Remove the transparent cover of the fuse-box by unsnapping the clips on both sides.

The fuses are now accessible (Fig. 2). Fuse assignment and rating see: "Table of fuses".

If an electrical function fails, check first the corresponding fuse:

- Withdraw the fuse from the holder with the special fuse removal tool provided in the fuse-box (Fig. 2).
- Check the fuse. In most cases, a blown fuse wire can be seen with the naked eye (Fig. 3). In case of doubt, check the fuse with an ohmmeter or replace right away by a new one.
- If the fuse is defective, insert a new one of the same rating into the fuse holder.
- If the fuse is not defective, check the electrical components, the connectors and the cables (or have them checked).

Fig. 3

Location of fuses and modules in the cab and in the engine compartment

Key

No.	Q.ty	Designation
1	1	Driver's cab
2	1	Driver's seat
3	1	Fuse box 1, cab
4	1	Fuse box 2, cab
5	1	Hydraulic pump
6	1	Fuel tank
7	1	Counterweight
8	1	Grid-Heater fuse
9	1	Hydraulic oil reservoir
10	1	Starter
11	1	Engine
12	1	Combined radiator
13	1	Battery

Fuses, table

Pedestal (fuse-box on the right behind the driver's seat, Fig. 1)

FA.1	5 A	Power relay (main switch function), central electronics,
EA 2	5 ۸	Start relay, ontion: Grid Heater Controller
FA.2	10 A	
FA.3		
FA.4	2 A	ESX ground for sensors
FA.5	15 A	Option: refuelling system
FA.6	5 A	Safety switch electro-hydraulic pilot control,
		Relay for power supply of central unit, Bilet control working system pressure switch, pilet control travelling pressure switch
ΕΔ 7	5Δ	Prior control working system pressure switch, prior control travening pressure switch
FA 8	5 A	Parking brake switch brake pressure switch (stop-light)
17.00	077	Alternator (exciter voltage)
FA.9	10 A	Option: driver's seat compressor, auxiliary heating timer
FA.10	5 A	Option: stabilizers / levelling blade
FA.11	10 A	Main beam via relay
FA.12	1 A	Power supply for joystick left and right
FA.13	2 A	Power supply (ESX) ²⁾
FA.14	30 A	Power supply (ESX)
FA.15	1 A	Power supply for travel pedal and keyboard module on steering wheel
FA.16	5 A	Option: Power supply for greasing pump
FA.17	15 A	Option: auxiliary heating
FA.18	5 A	Option: auxiliary heating
FA.19	7.5 A	Option: blower stage 1 for auxiliary heating
FA.20	-	- not used -
FA.21	5 A	Option: heating filter relay, Grid-Heater-Controller
FA.22	30 A	Option: heating filter
FA.23	25 A	Stop magnet energizing coil
FA.24	5 A	Diagnosis socket CAN1 and CAN2 ³⁾
FA.25	10 A	24V/12V voltage converter supply
		Radio and socket, Option : conditioner actuator (electrically operated flap for switch-
FA 00	0.4	ing between recirculated and fresh air)
FA.26	ZA	
FA.27	1 A	Power relay (main switch function)
FA.28	15 A	
FA.29	5 A	Hazaro warning signal switch
FA.30	15 A	Biower / air conditioner compressor
FA.31	-	- not used -
FA.32	-	- not used -

¹⁾ PCS: Power Contol System

 $^{^{2)}\,\}textbf{ESX}$: Electro-hydraulic Controller

³⁾ CAN: Acronym for Control Area Network (2-wire bus)

Driver's cab (fuse-box on the right beside the driver's seat, Fig. 2)

FB.1	10 A	Option: rotary beacon
FB.2	10 A	Option: floodlamp at the rear of driver's cab
FB.3	10 A	Floodlamp in front of driver's cab
FB.4	10 A	Wiper motor and wash pump
FB.5	5 A	Cab interior lighting
FB.6	7.5 A	24V/12V voltage converter supply for radio and socket
FB.7	2 A	Power supply for display and keyboard modules in cab
FB.8	5 A	Option: frequency switching solenoid
FB.9	5 A	Illumination of switches
FB.10		
FB.11		
FB.12		
FB.13		
FB.14		
FB.15		
FB.16		

Engine compartment

F 20	125 A	Grid-Heater

Lamp bulbs

Replacing the lamp bulbs, instructions

Remove all traces of corrosion from

lamp holder and electrical contacts.

Contact problems and high contact resistance can thus be avoided.

Do not touch new bulbs with bare fingers. Sweat and dirt evaporating and burning in when the lamp is hot may reduce the service life of the bulb and of the reflector.

Hold the bulb therefore with a clean rag or a piece of packing paper and insert it into the lamp holder.

Bulb table

Headlamps	55/50W/24V
Sidemarker lamps	4W/24V
Working floodlamps	70W/24V
Turn signal lamps	21W/24V
Stop lamps	21W/24V
Tail lamps	10W/24V
Cab interior lighting	10W/24V

Replacing the headlamp bulb

Fig. 1

- Remove the headlamp from the superstructure frame (Fig. 1).

- Withdraw the big rubber cap from the back of the headlamp body.
- Withdraw the electrical connector (Fig. 2).
- Remove the protective cap from the lamp holder.
- Swing the lamp retaining clip aside.
- Replace the lamp bulb.
- Refit the headlamp.

Replacing the lamp bulb in the front direction indicator lamp

- Remove the screws of the lamp glass (Fig. 3).
- Remove the lamp glass.

- The lamp bulb is installed in a socket (Fig. 4):
- Press down the lamp bulb and turn counterclockwise.
- Withdraw the lamp bulb.
- Engage the new lamp bulb safely in the holder.
- Screw the lamp glass back in place.

Replacing the lamp bulb of the cab interior lamp

Fig. 5

- Unsnap the cover of the lamp and remove (Fig. 5).
- The lamp bulb is now accessible and can be replaced.
- Place the cover back on the lamp.

Replacing the lamp bulb of the tail-light

Fig. 6

- Unscrew the fastening screws of the lamp glass (Fig. 6)
- Remove the lamp glass.

Fig. 7

- The lamp bulbs (Fig. 7) are installed in plug-in holders.
- Press down lamp bulb and turn counterclock-wise.
- Withdraw the lamp bulb.
- Engage the new lamp bulb safely in the holder.
- Screw the lamp glass back in place.

Replacing the lamp bulb of the cab floodlamp

Fig. 8

Remove the lamp body from the floodlamp on the cab roof (Fig. 8).

Fig. 9

- Swing lamp retaining clip aside (Fig. 9).
- Replace the lamp bulb.
- Re-install the floodlamp.

Replacing the lamp bulb of the boom floodlamp

- Unscrew the fastening screws of the lamp glass (Fig.10)
- Remove the lamp glass.
- Swing lamp retaining clip aside (Fig. 11).
- Replace the lamp bulb.
- Screw the lamp glass back in place.

ENGINE

see Annex

CNH Baumaschinen GmbH Product Support Staakener Strasse, 53-63-13581 Berlin - Germany

Reproduction of text or illustration, in whole or in part, is strictly prohibited.