

For DENSO Authorized ECD Service Dealer Only

**Diesel Injection Pump** 

# **SERVICE MANUAL**

# Common Rail System for HINO J05D/J08E Type Engine

**OPERATION** 

October, 2003

DENSO CORPORATION

00400041E

# TABLE OF CONTENTS

| 1. Product Application                       | 1  |
|----------------------------------------------|----|
| 1.1 Application                              | 1  |
| 1.2 System Components Parts Numbers          | 1  |
| 2. Outline                                   | 2  |
| 2.1 Features of System                       | 2  |
| [1] System Characteristics                   | 2  |
| [2] Comparison to the Conventional System    |    |
| 2.2 Outline of System                        |    |
| [1] Composition                              | 4  |
| [2] Operation                                | 4  |
| 2.3 Fuel System and Control System           | 5  |
| [3] Fuel System                              | 5  |
| [4] Control System                           | 5  |
| 3. Construction and Operation                | 6  |
| 3.1 Description of Main Components           |    |
| [1] Supply Pump (HP3, HP4)                   |    |
| [2] Description of Supply Pump Components    | 13 |
| [3] Rail                                     | 16 |
| [4] Injector (G2 Type)                       | 17 |
| [5] Engine ECU (Electronic Control Unit)     | 22 |
| 3.2 Description of Control System Components | 22 |
| [1] Engine Control System Diagram            | 22 |
| [2] Sensor and Relays                        | 23 |
| 3.3 Various Types of Controls                | 29 |
| [1] Fuel Injection Rate Control              | 30 |
| [2] Fuel Injection Quantity Control          |    |
| [3] Fuel Injection Timing Control            |    |
| 3.4 Other Relevant Engine Control            | 36 |
| [1] EGR Control                              |    |
| 3.5 Engine ECU                               |    |
| [1] Diagnosis Codes                          |    |
| [2] ECU External Wiring Diagram              |    |
| [3] ECU Connector Diagram                    | 45 |

# 1. Product Application

# 1.1 Application

| Vehicle Name | Vehicle Model                         | Engine Model | Exhaust Volume | Reference  |
|--------------|---------------------------------------|--------------|----------------|------------|
| Medium Truck | HINO145, HINO165,<br>HINO185          | J05D         | 4.73L          | Sales from |
|              | HINO238, HINO268,<br>HINO308, HINO338 | J08E         | 7.68L          | Early '04  |

# 1.2 System Components Parts Number

| Part Name                   | Vehicle<br>Name                                             | DENSO Part<br>Number | Car Manufacturer<br>Part Number | Reference          |
|-----------------------------|-------------------------------------------------------------|----------------------|---------------------------------|--------------------|
| Supply Pump                 |                                                             | 294050-0011          | 22730-1311A                     |                    |
| Injector                    |                                                             | 095000-5281          | 23910-1360A                     |                    |
| Rail                        |                                                             | 095440-0480          | 22760-1180A                     |                    |
| Engine ECU                  | Medium Truck<br>HINO238,<br>HINO268,<br>HINO308,<br>HINO338 | 102758-3010          | 89560-6540A                     |                    |
| Accelerator Position Sensor |                                                             | 198800-3160          | 78010-1200A                     |                    |
| Coolant Temp. Sensor        |                                                             | 071560-0110          | 83420-1250A                     |                    |
| Crankshaft Position Sensor  |                                                             | 029600-0570          | 89410-1280A                     |                    |
| Cylinder Recognition Sensor |                                                             | 949979-1360          | 89410-1590A                     |                    |
| Intake Air Pressure Sensor  |                                                             | 079800-5890          | 89390-1080A                     |                    |
| EGR Valve                   |                                                             | 135000-7091          | 17350-1220A                     |                    |
| Air Flow Meter              |                                                             | 197400-2000          | 22204-21010B                    | For EGR<br>Control |
| Supply Pump                 |                                                             | 294000-0251          | 22730-1321A                     |                    |
| Injector                    |                                                             | 095000-5391          | 23910-1310A                     |                    |
| Rail                        |                                                             | 095440-0530          | 22760-1220A                     |                    |
| Engine ECU                  |                                                             | 102758-3010          | 89560-6540A                     |                    |
| Accelerator Position Sensor | Medium Truck                                                | 198800-3160          | 78010-1200A                     |                    |
| Coolant Temp. Sensor        | HINO145,                                                    | 071560-0110          | 83420-1250A                     |                    |
| Crankshaft Position Sensor  | HINO165,<br>HINO185                                         | 029600-0570          | 89410-1280A                     |                    |
| Cylinder Recognition Sensor | 11110100                                                    | 949979-1360          | 89410-1590A                     |                    |
| Intake Air Pressure Sensor  |                                                             | 079800-5890          | 89390-1080A                     |                    |
| EGR Valve                   |                                                             | 135000-7071          | 17350-1210A                     |                    |
| Air Flow Meter              |                                                             | 197400-2000          | 22204-21010B                    | For EGR<br>Control |

# 2. Outline

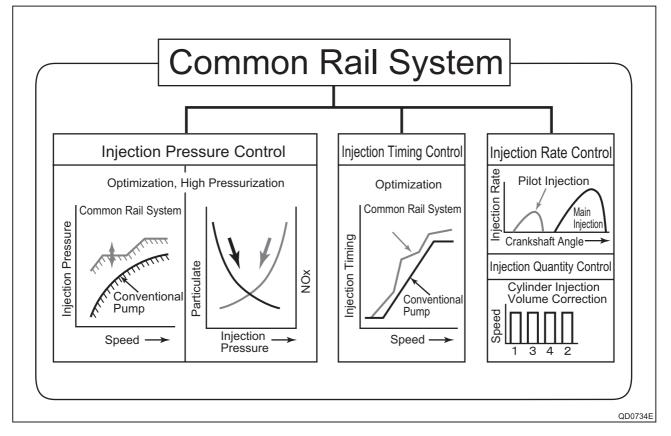
#### 2.1 Features of System

The common rail system was developed primarily to cope with exhaust gas regulations for diesel engines, and aimed for 1. further improved fuel economy; 2. noise reduction; and 3. high power output.

#### [1] System Characteristics

The common rail system uses a type of accumulation chamber called a rail to store pressurized fuel, and injectors that contain electronically controlled solenoid valves to spray the pressurized fuel into the cylinders. Because the engine ECU controls the injection system (including the injection pressure, injection rate, and injection timing), the system is unaffected by the engine speed or load. This ensures a stable injection pressure at all times, particularly in the low engine speed range, and dramatically decreases the amount of black smoke ordinarily emitted by a diesel engine during start-up and acceleration. As a result, exhaust gas emissions are cleaner and reduced, and higher power output is achieved.

#### (1) Injection Pressure Control


- a. Enables high-pressure injection, even in the low engine speed range.
- b. Optimizes control to minimize particulate matter and NOx emissions.

#### (2) Injection Timing Control

a. Optimally controls the timing to suit driving conditions.

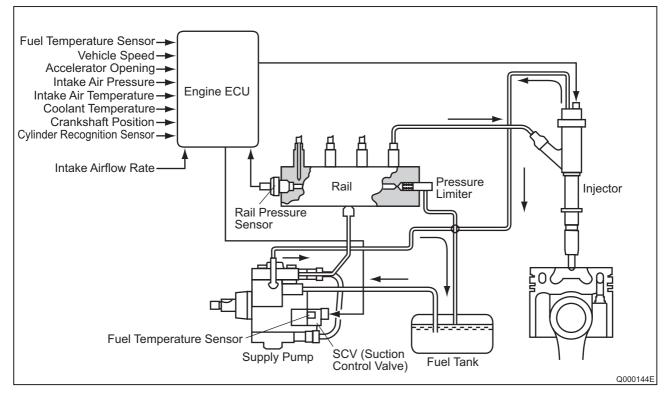
#### (3) Injection Rate Control

a. Pilot injection control sprays a small amount of fuel before the main injection.



#### (4) EGR (Exhaust Gas Recirculation) Control

a. By recirculating the exhaust gas into the intake side of the engine, the combustion temperature is reduced and NOx is decreased.


# [2] Comparison to the Conventional System

|                            | In-line, VE Pump                                                                  | Common Rail System                                                                                      |  |
|----------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| System                     | High-pressure Pipe<br>Momentary High Pressure<br>Timer<br>In-line Pump<br>VE Pump | Rail<br>Supply Pump<br>Usually High Pressure<br>Delivery Valve<br>Feed Pump SCV (Suction Control Valve) |  |
| Injection Quantity Control | Pump (Governor)                                                                   | Engine ECU, Injector (TWV)*1                                                                            |  |
| Injection Timing Control   | Pump (Timer)                                                                      | Engine ECU, Injector (TWV)*1                                                                            |  |
| Rising Pressure            | Pump                                                                              | Engine ECU, Supply Pump                                                                                 |  |
| Distributor                | Pump                                                                              | Engine ECU, Rail                                                                                        |  |
| Injection Pressure Control | Dependent upon Speed and Injection Quantity                                       | Engine ECU, Supply Pump (SCV)*2                                                                         |  |

\*1 TWV: Two Way Valve \*2 SCV: Suction Control Valve QD2341E

#### 2.2 Outline of System [1] Composition

The common rail system consists primarily of a supply pump, rail, injectors, and engine ECU.



#### [2] Operation

#### (1) Supply pump (HP3)

a. The supply pump draws fuel from the fuel tank, and pumps the high pressure fuel to the rail. The quantity of fuel discharged from the supply pump controls the pressure in the rail. The SCV (Suction Control Valve) in the supply pump effects this control in accordance with the command received from the ECU.

#### (2) Rail

a. The rail is mounted between the supply pump and the injector, and stores the highpressure fuel.

#### (3) Injector (G2 type)

a. This injector replaces the conventional injection nozzle, and achieves optimal injection by effecting control in accordance with signals from the ECU. Signals from the ECU determine the length of time and the timing in which current is applied to the injector. This in turn, determines the quantity, rate and timing of the fuel that is injected from the injector.

#### (4) Engine ECU

a. The engine ECU calculates data received from the sensors to comprehensively control the injection quantity, timing and pressure, as well as the EGR (exhaust gas recirculation).

#### 2.3 Fuel System and Control System

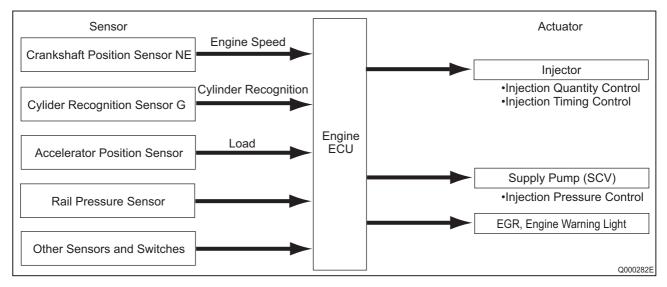
#### [1] Fuel System

This system comprises the route through which diesel fuel flows from the fuel tank to the supply pump, via the rail, and is injected through the injector, as well as the route through which the fuel returns to the tank via the overflow pipe.

#### [2] Control System

In this system, the engine ECU controls the fuel injection system in accordance with the signals received from various sensors. The components of this system can be broadly divided into the following three types: (1) Sensors; (2) ECU; and (3) Actuators.

#### (1) Sensors


a. Detect the engine and driving conditions, and convert them into electrical signals.

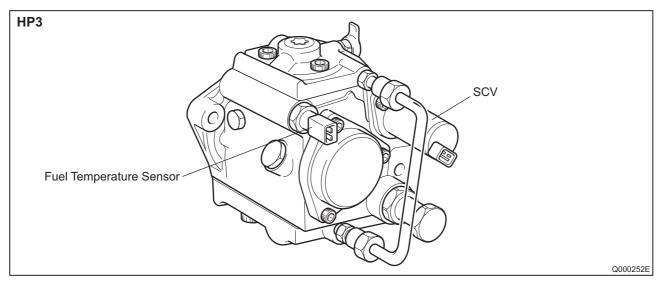
#### (2) Engine ECU

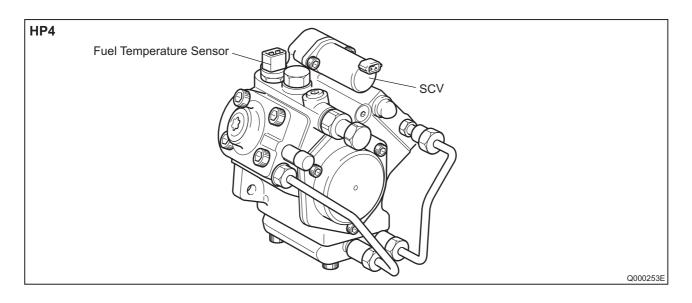
a. Performs calculations based on the electrical signals received from the sensors, and sends them to the actuators in order to achieve optimal conditions.

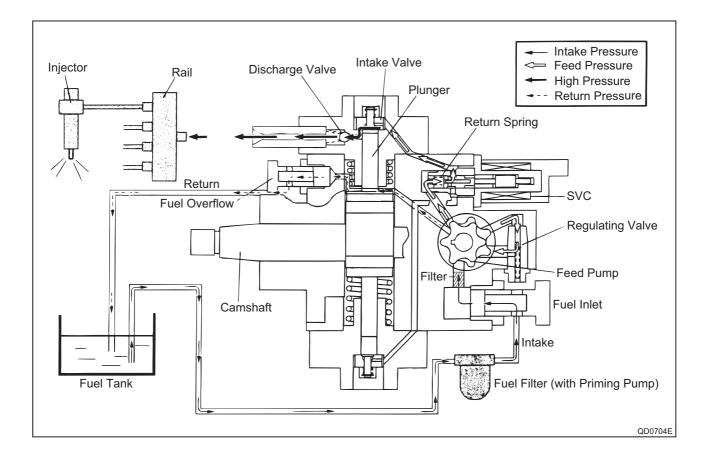
#### (3) Actuators

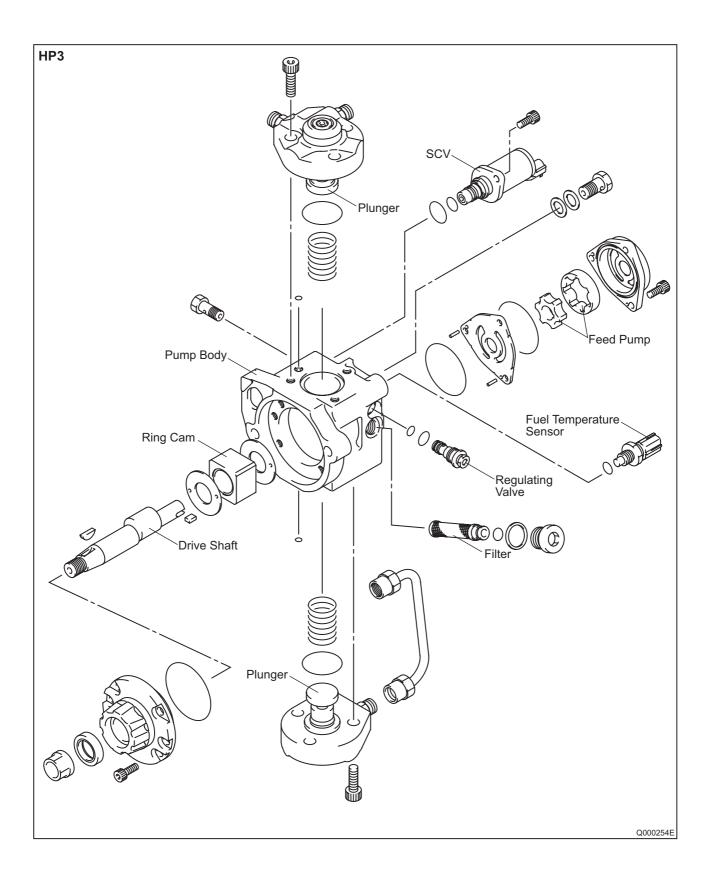
a. Operate in accordance with electrical signals received from the ECU. Injection system control is undertaken by electronically controlling the actuators. The injection quantity and timing are determined by controlling the length of time and the timing in which the current is applied to the TWV (Two-Way Valve) in the injector. The injection pressure is determined by controlling the SCV (Suction Control Valve) in the supply pump.

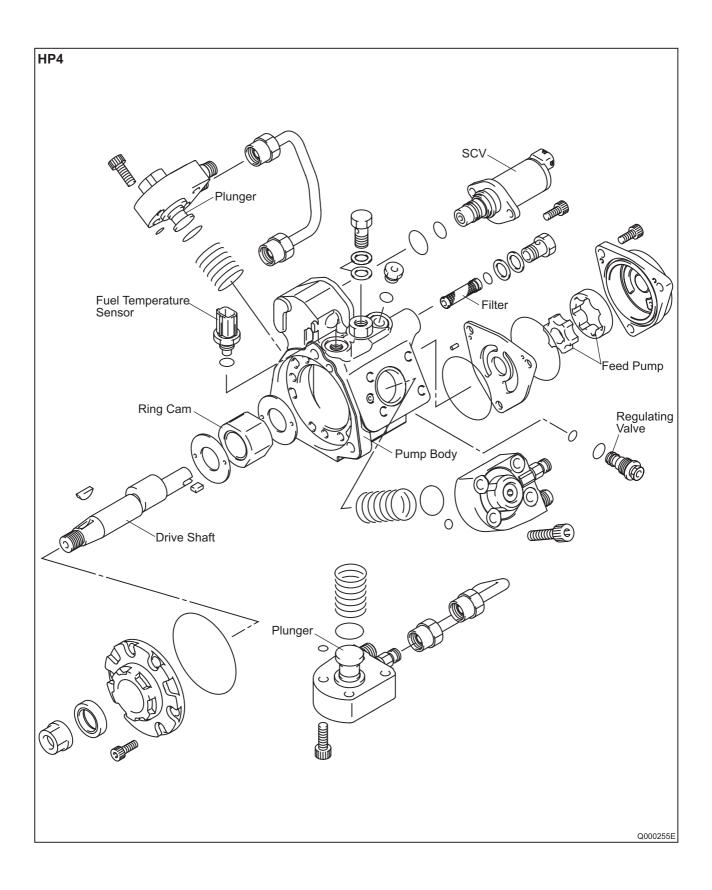



# 3. Construction and Operation


# 3.1 Description of Main Components

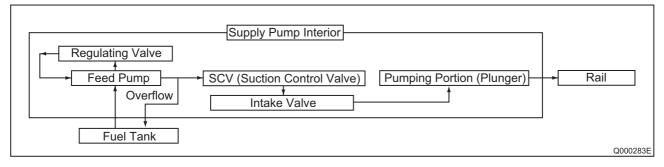

# [1] Supply Pump (HP3, HP4)


#### (1) Outline


- a. The supply pump consists primarily of the pump body (cam shaft, ring cam, and plungers), SCV (Suction Control Valve), fuel temperature sensor, and feed pump.
- b. The two plungers for HP3 or the three plungers for HP4 are positioned vertically on the outer ring cam for compactness.
- c. The engine drives the supply pump at a ratio of 1:1. The supply pump has a built-in feed pump (trochoid type), and draws the fuel from the fuel tank, sending it to the plunger chamber.
- d. The internal camshaft drives the two plungers, and they pressurize the fuel sent to the plunger chamber and send it to the rail. The quantity of fuel supplied to the rail is controlled by the SCV, using signals from the engine ECU. The SCV is a normally opened type (the intake valve opens during de-energization).

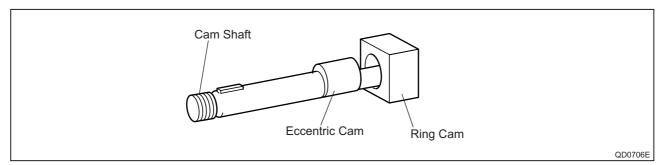




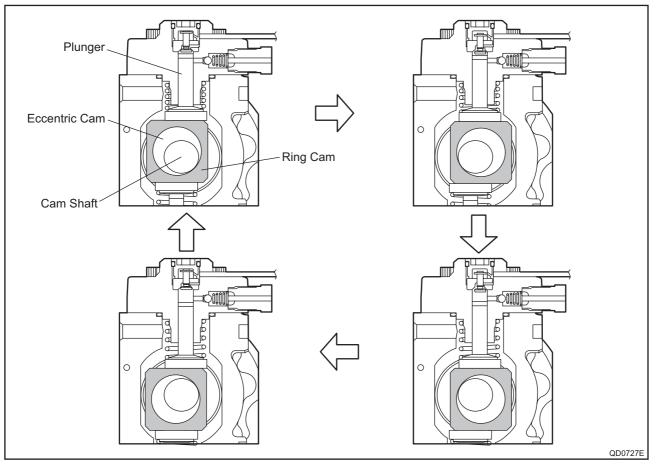




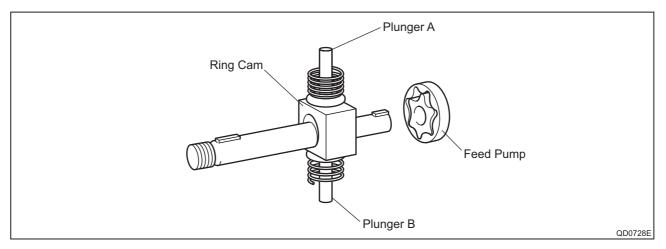




#### (2) Supply Pump Internal Fuel Flow

a. The fuel that is drawn from the fuel tank passes through the route in the supply pump as illustrated, and is fed into the rail.

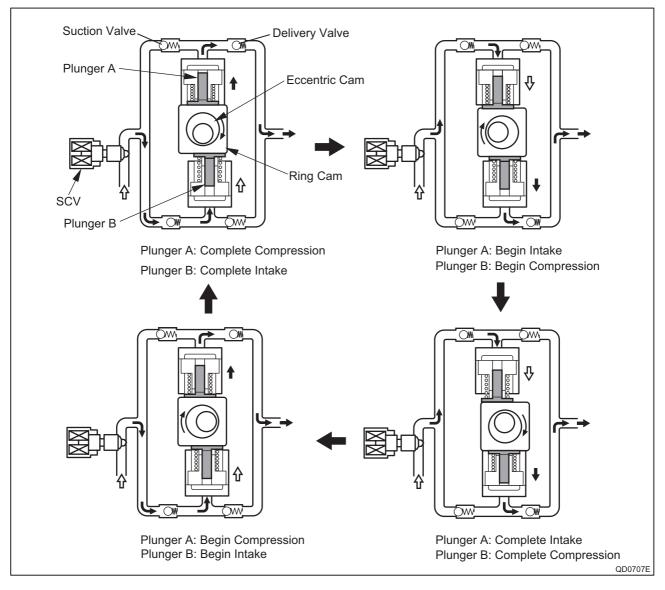



#### (3) Construction of Supply Pump (in case of HP3 pump)


a. The eccentric cam is attached to the cam shaft. The eccentric cam is connected to the ring cam.



b. As the cam shaft rotates, the eccentric cam rotates eccentrically, and the ring cam moves up and down while rotating.



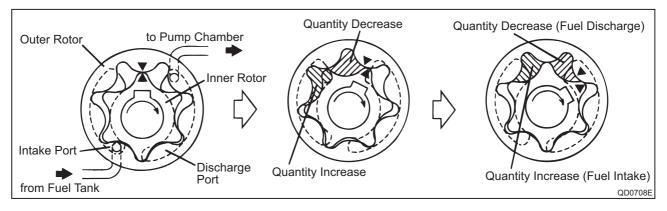

c. The plunger and the suction valve are attached to the ring cam. The feed pump is connected to the rear of the cam shaft.



#### (4) Operation of the Supply Pump

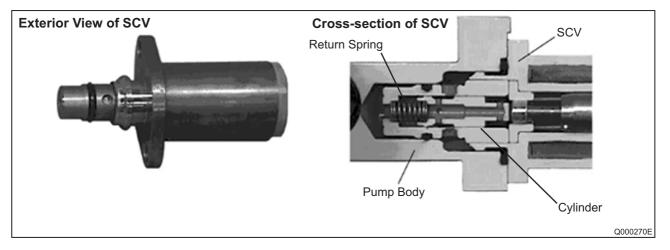
a. As shown in the illustration below (in case of HP3 pump), the rotation of the eccentric cam causes the ring cam to push Plunger A upwards. Due to the spring force, Plunger B is pulled in the opposite direction to Plunger A. As a result, Plunger B draws in fuel, while Plunger A pumps it to the rail. In the case of the 4-cylinder engine used with the HP3 pump, each plunger pumps fuel in a reciprocal movement during the 360° cam rotation. Conversely, in the case of the 6-cylinder engine used with the HP4 pump, 3 plungers pump fuel in a reciprocal movement for each one rotation of the cam.



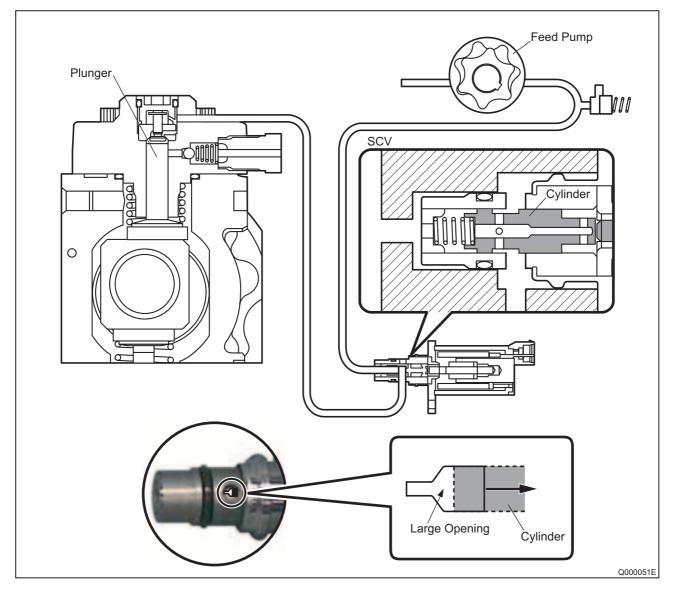

#### NOTE:

There are 3 plungers for the HP4.

#### [2] Description of Supply Pump Components

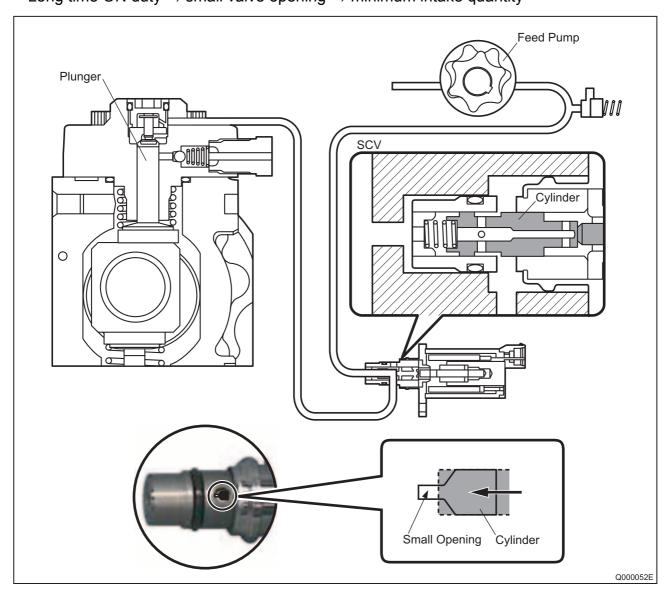

# (1) Feed Pump

a. The trochoid type feed pump, which is integrated in the supply pump, draws fuel from the fuel tank and feeds it to the two plungers via the fuel filter and the SCV (Suction Control Valve). The feed pump is driven by the drive shaft. With the rotation of the inner rotor, the feed pump draws fuel from its suction port and pumps it out through the discharge port. This is done in accordance with the space that increases and decreases with the movement of the outer and inner rotors.




#### (2) SCV: Suction Control Valve (Normally open type)

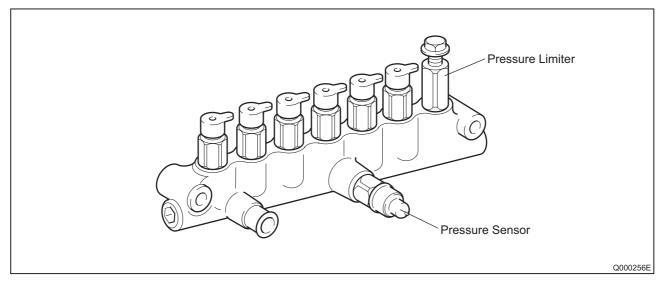
- a. A linear solenoid type valve has been adopted. The ECU controls the duty ratio (the duration in which current is applied to the SCV), in order to control the quantity of fuel that is supplied to the high-pressure plunger.
- b. Because only the quantity of fuel that is required for achieving the target rail pressure is drawn in, the actuating load of the supply pump decreases.
- c. When current flows to the SCV, variable electromotive force is created in accordance with the duty ratio, moving the armature to the left side. The armature moves the cylinder to the left side, changing the opening of the fuel passage and thus regulating the fuel quantity.
- d. With the SCV OFF, the return spring contracts, completely opening the fuel passage and supplying fuel to the plungers. (Full quantity intake and full quantity discharge)
- e. When the SCV is ON, the force of the return spring moves the cylinder to the right, closing the fuel passage (normally opened).
- f. By turning the SCV ON/OFF, fuel is supplied in an amount corresponding to the actuation duty ratio, and fuel is discharged by the plungers.




#### [In case of short time ON duty]

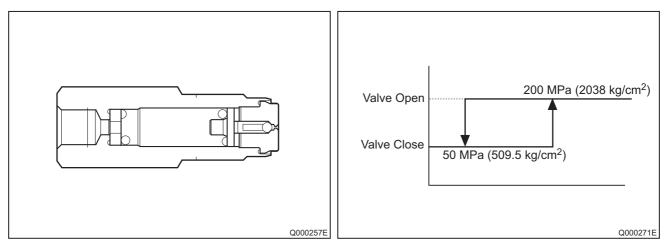


Short time ON duty  $\rightarrow$  large valve opening  $\rightarrow$  maximum intake quantity


#### [In case of long time ON duty] Long time ON duty $\rightarrow$ small valve opening $\rightarrow$ minimum intake quantity

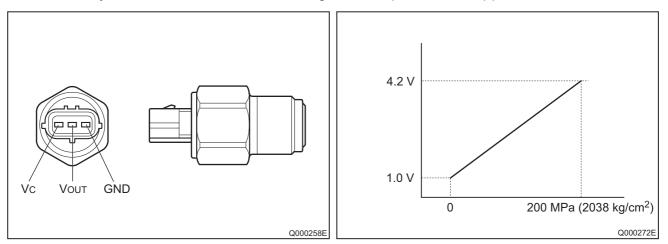


#### [3] Rail


#### (1) Outline

- a. Stores pressurized fuel (0 to 150 MPa {0 to 1528.5 kg/cm<sup>2</sup>}) that has been delivered from the supply pump and distributes the fuel to each cylinder injector. A rail pressure sensor and a pressure limiter are adopted in the rail.
- b. The rail pressure sensor (Pc sensor) detects the fuel pressure in the rail and sends a signal to the engine ECU, the pressure limiter prevents the rail pressure from being abnormally high. This ensures optimum combustion and reduces combustion noise.




#### (2) Pressure Limiter

- a. The pressure limiter opens to release the pressure if an abnormally high pressure is generated.
- b. When the rail pressure reaches approximately 200 MPa (2038 kg/cm<sup>2</sup>), it trips the pressure limiter (the valve opens). When the pressure drops to approximately 50 MPa (509.5 kg/cm<sup>2</sup>), the pressure limiter returns to its normal state (the valve closes) in order to maintain the proper pressure.



#### (3) Pressure Sensor

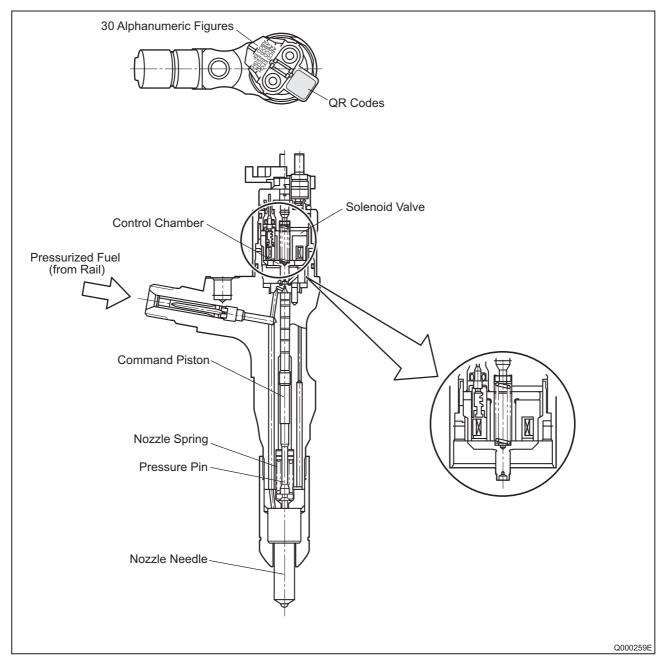
- a. The rail pressure sensor (Pc sensor) is attached to the rail in order to detect the fuel pressure.
- b. It is a semiconductor type pressure sensor that utilizes the characteristics of silicon, whereby the electrical resistance changes when pressure is applied to it.



#### **REFERENCE:**

It is necessary to reset the ECU default value using the Hino diagnosis tool at the time of supply pump service replacement. In addition, the ECU has a function enabling it to learn the performance of the supply pump at the time of ECU service replacement, so ensure sufficient time (several minutes) is available.

# [4] Injector (G2 Type)


#### (1) Outline

a. The injectors inject the high-pressure fuel from the rail into the combustion chambers at the optimum injection timing, rate, and spray condition, in accordance with commands received from the ECU.

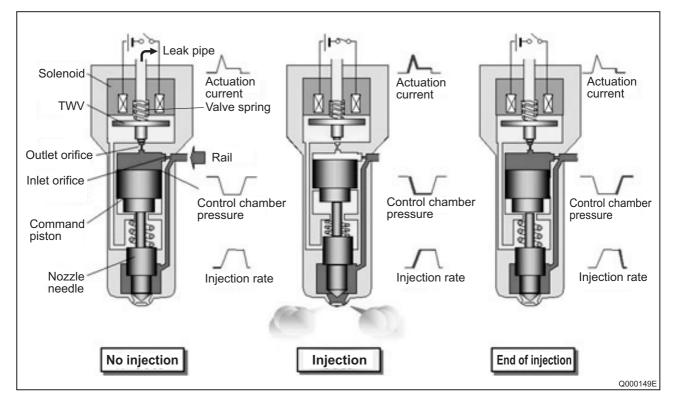
#### (2) Characteristics

- a. A compact, energy-saving solenoid-control type TWV (Two-Way Valve) injector has been adopted.
- b. QR codes displaying various injector characteristics and the ID codes showing these in numeric form (30 alphanumeric figures) are engraved on the injector head. The J05/J08 engine common rail system optimizes injection volume control using this information. When an injector is newly installed in a vehicle, it is necessary to enter the ID codes in the engine ECU using the HINO Diagnostic tool.

#### (3) Construction



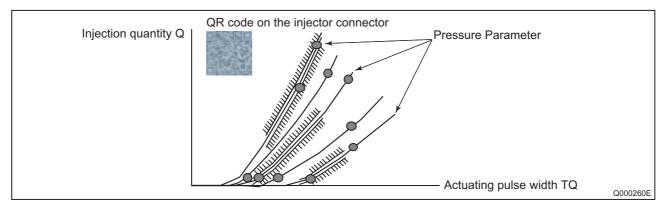
#### (4) Operation


a. The TWV (Two-Way Valve) solenoid valve opens and closes the outlet orifice to control both the pressure in the control chamber, and the start and end of injection.

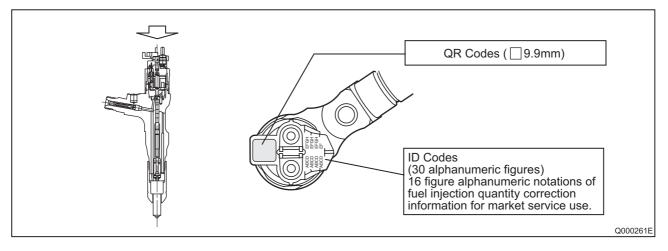
#### [No injection]

• When no current is supplied to the solenoid, the spring force is stronger than the hydraulic pressure in the control chamber. Thus, the solenoid valve is pushed downward, effectively closing the outlet orifice. For this reason, the hydraulic pressure that is applied to the command piston causes the nozzle spring to compress. This closes the nozzle needle, and as a result, fuel is not injected.

#### [Injection]


- When current is initially applied to the solenoid, the attraction force of the solenoid pulls the solenoid valve up, effectively opening the outlet orifice and allowing fuel to flow out of the control chamber. After the fuel flows out, the pressure in the control chamber decreases, pulling the command piston up. This causes the nozzle needle to rise and the injection to start.
- The fuel that flows past the outlet orifice flows to the leak pipe and below the command piston. The fuel that flows below the piston lifts the piston needle upward, which helps improve the nozzle's opening and closing response.
- When current continues to be applied to the solenoid, the nozzle reaches its maximum lift, where the injection rate is also at the maximum level. When current to the solenoid is turned OFF, the solenoid valve falls, causing the nozzle needle to close immediately and the injection to stop.




#### (5) QR Codes

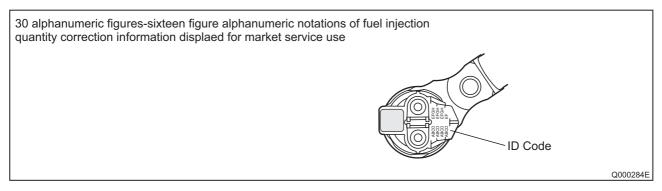
- a. In order to minimize performance tolerance of injectors at replacing them, QR\*1 (Quick Response) codes have been adopted to enhance correction precision.
- b. Using QR codes has resulted in a substantial increase in the number of fuel injection quantity correction points, and thus the injection quantity control precision has improved. The characteristics of the engine cylinders have been further unified, contributing to improvements in combustion efficiency, reductions in exhaust gas emissions and so on.

#### [QR code correction points]

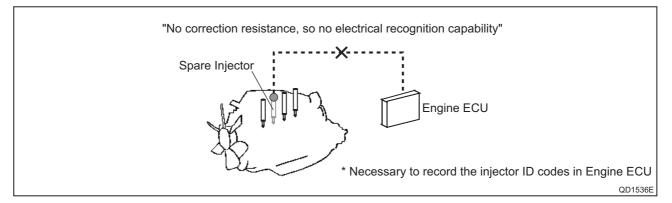


\*1: Location of QR codes

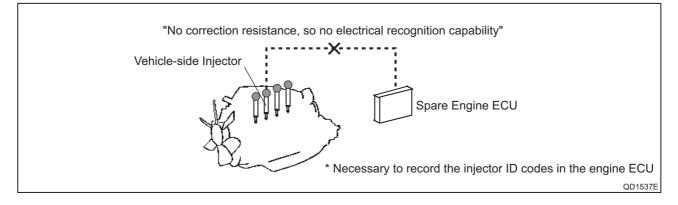



#### (6) Repair Procedure Changes

a. Differences in comparison with the conventional method of replacing injectors assembly are as shown below.


#### NOTE:

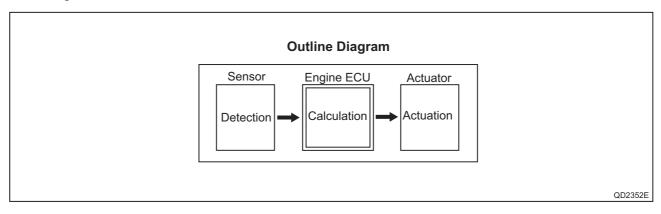
When replacing injectors with QR codes, or the engine ECU, it is necessary to record the ID codes (QR codes) in the ECU. (If the ID codes of the installed injector are not registered correctly, engine failure such as rough idling and noise will result.)


#### New (Injector with QR Codes)

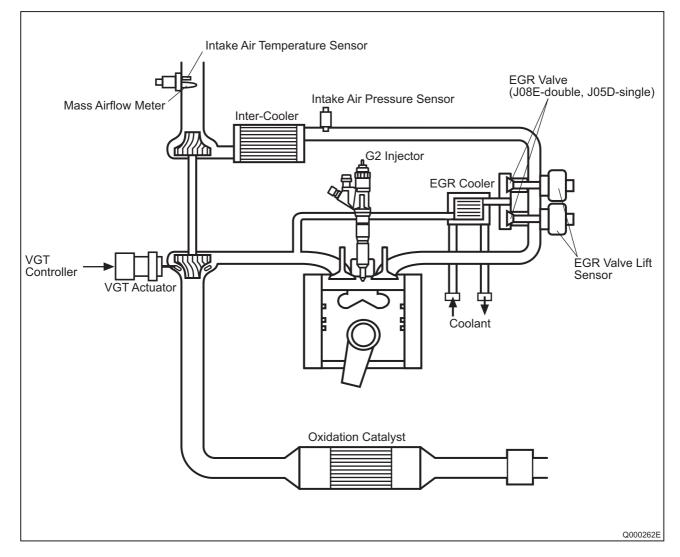


#### **Replacing the Injector**




#### Replacing the Engine ECU

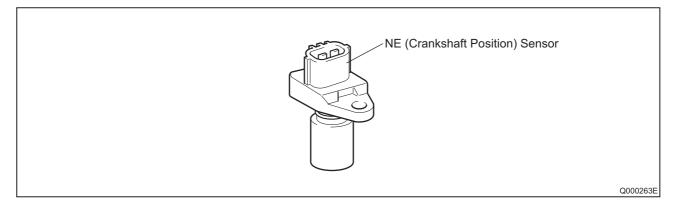



#### [5] Engine ECU (Electronic Control Unit)

#### (1) Outline

a. This is the command center that controls the fuel injection system and engine operation in general.




#### **3.2 Description of Control System Components** [1] Engine Control System Diagram



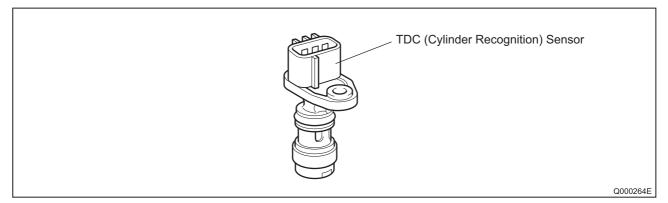
#### [2] Sensor and Relays

# (1) NE Sensor (Crankshaft Position Sensor)

- a. When the signal holes on the flywheel move past the sensor, the magnetic line of force passing through the coil changes, generating alternating voltage.
- b. The signal holes are located on the flywheel at 6.5-degree intervals. There are a total of 56 holes, with holes missing in three places. Therefore, every two revolutions of the engine outputs 112 pulses.
- c. This signal is used to detect the engine speed and the crankshaft position in 7.5-degree intervals.



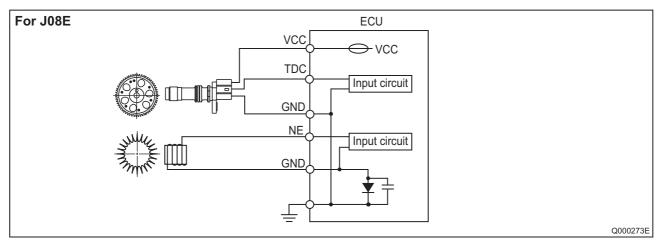
#### (2) TDC Sensor (Cylinder Recognition Sensor)


- a. Unlike the NE sensor, the TDC sensor is an MRE (magnetic resistance element) sensor. As the pulsar near the sensor revolves, the magnetic field changes. This causes variations in the generated current, which are amplified in the internal circuits of the sensor unit before a signal is output to the engine ECU.
- b. The engine camshaft gear (one revolution for every two revolutions of the engine) is used as a pulsar. The J05D and J08E use different types of gear, so the signal outputs differ as follows.

#### For the J05D:

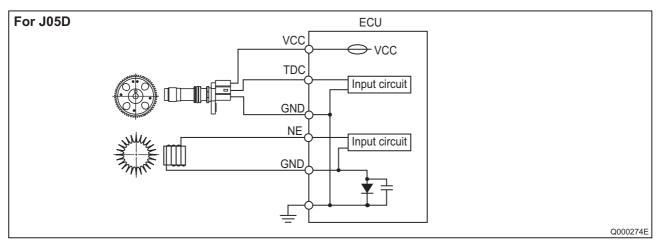
In addition to four knock pins located at 90-degree intervals, there is an extra signal hole on the gear. Therefore every revolution of the gear, i.e. two revolutions of the engine, outputs 4 + 1 = 5 TDC signal pulses.

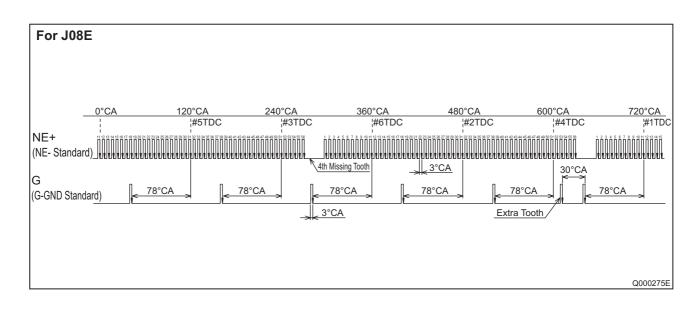
#### For the J08E:

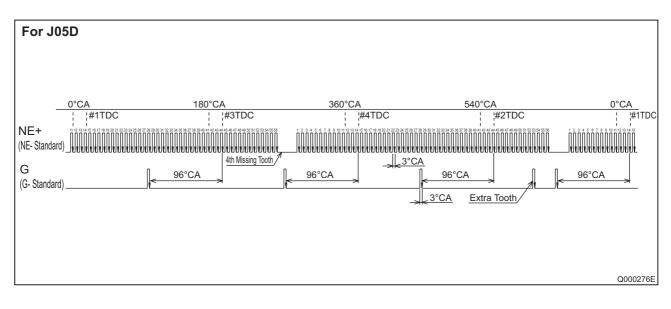

In addition to six knock pins located at 60-degree intervals, there is an extra signal hole on the gear. Therefore every revolution of the gear, i.e. two revolutions of the engine, outputs 6 + 1 = 7 TDC signal pulses.



c. A combination of the NE pulse and the TDC pulses are used for the cylinder reference pulse, and the irregular pulse is used to determine the No. 1 cylinder.

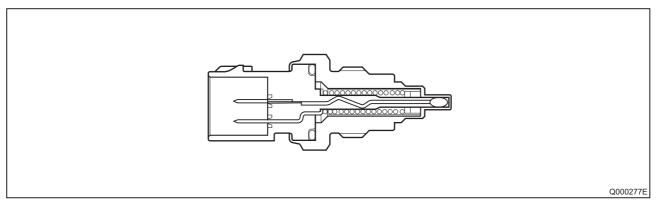

#### For the J08E engine


The cylinder at a rotation of 78° following the No. 1 TDC reference signal after the irregular pulse is the number one cylinder TDC (refer to the chart on the following page).

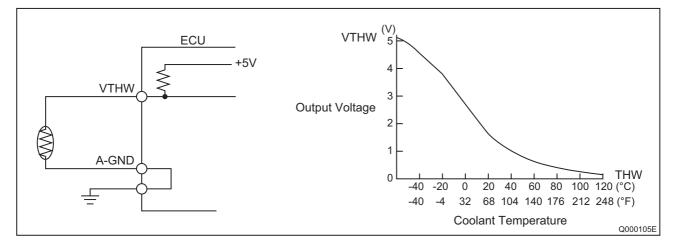



#### For the J05D engine

The cylinder at a rotation of 96° following the No. 1 TDC reference signal after the irregular pulse is the number one cylinder TDC (refer to the chart on the following page).

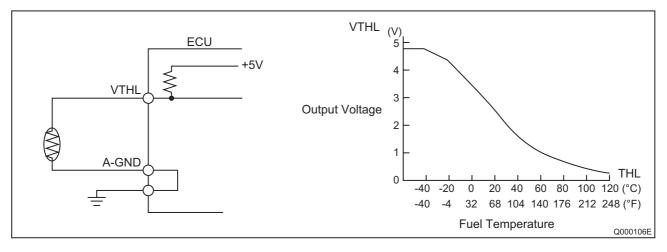




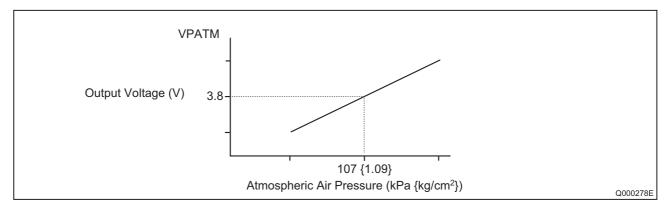

#### (3) Coolant Temperature Sensor

a. The coolant temperature sensor detects the temperature of the engine coolant and outputs it to the ECU.



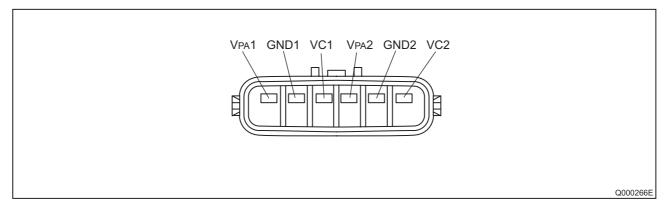

b. The sensor uses a thermistor, which varies resistance according to temperature. As the ECU applies voltage to the thermistor, it uses a voltage resulting from the division of the computer internal resistance and the thermistor resistance to detect the temperature.

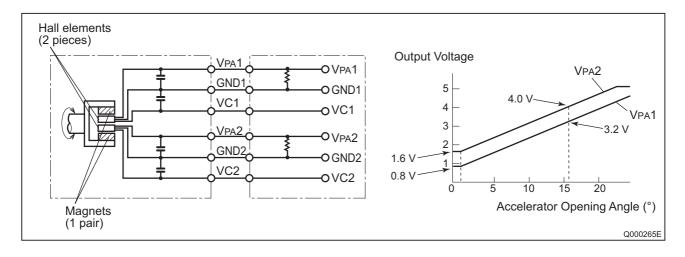



#### (4) Fuel Temperature Sensor (THL)

a. The fuel temperature sensor detects the fuel temperature and outputs it to the ECU. The sensor uses a thermistor, which varies resistance according to temperature. As the ECU applies voltage to the thermistor, it uses a voltage resulting from the division of the computer internal resistance and the thermistor resistance to detect the temperature.

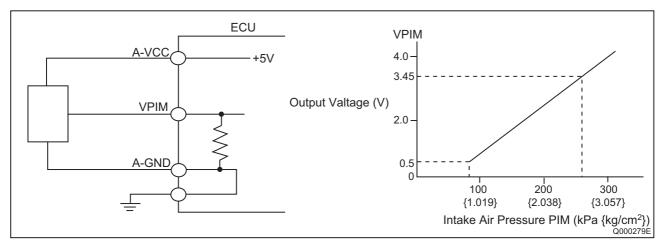



#### (5) Atmospheric Air Pressure Sensor (Built-in ECU)


a. This sensor converts the atmospheric air pressure into an electrical signal to correct fullload injection volume.

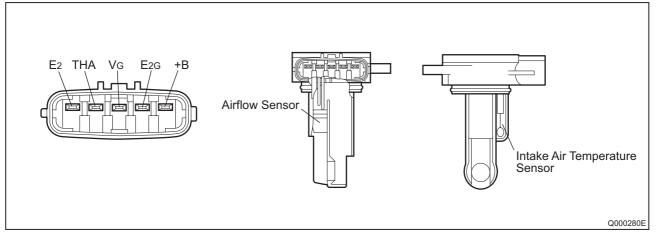


#### (6) Accelerator Position Sensor

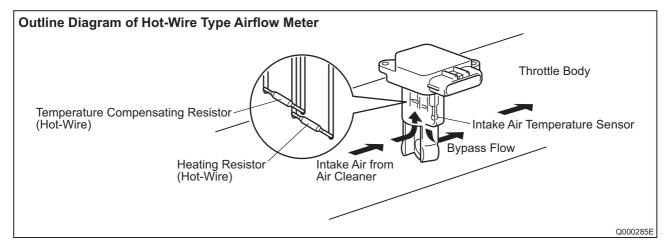

a. This sensor converts the angle of the pedal effort applied to the accelerator pedal into electrical signals and sends them to the ECU. The accelerator sensor uses hall elements. A magnet is mounted on the shaft that moves in unison with the accelerator pedal, and the magnetic field orientation changes with the rotation of the shaft. The changes in the magnetic field orientation generate voltage.






#### (7) Boost Pressure Sensor

a. In order to correct the full-load injection volume, this sensor converts the intake air pressure (absolute pressure) into an electrical signal, then amplifies it into a voltage signal to the computer.




#### (8) Air Flow Sensor

- a. Detects the intake airflow (mass flow rate) in the hot-wire type airflow meter.
- b. The intake airflow is converted to a voltage value and this signal is transmitted to the ECU.



c. The airflow sensor is installed to the rear of the air cleaner, and consists of a heater, thermometer, intake air temperature sensor, and control circuit (base). It diverts a portion of the intake air from the air cleaner and measures the intake airflow at the hot-wire measuring part.



#### 3.3 Various Types of Control

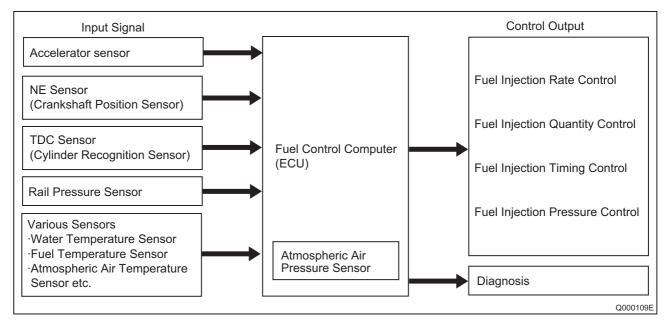
This system controls the fuel injection quantity and injection timing more optimally than the mechanical governor or timer used in conventional injection pumps.

For system control, the ECU makes the necessary calculations based on signals received from sensors located in the engine and on the vehicle in order to control the timing and duration in which current is applied to the injectors, thus realizing optimal injection timing.

#### (1) Fuel Injection Rate Control Function

a. The fuel injection rate control function controls the ratio of the quantity of fuel that is injected through the nozzle hole during a specified period.

#### (2) Fuel Injection Quantity Control Function


a. The fuel injection quantity control function, replaces the conventional governor function, and controls fuel injection to achieve an optimal injection quantity based on the engine speed and the accelerator opening.

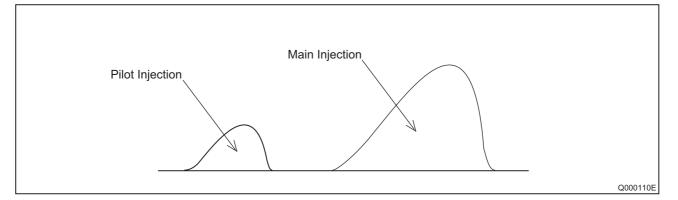
#### (3) Fuel Injection Timing Control Function

a. The fuel injection timing control function, replaces the conventional timer function, and controls the fuel injection to achieve an optimal injection timing according to the engine speed and the injection quantity.

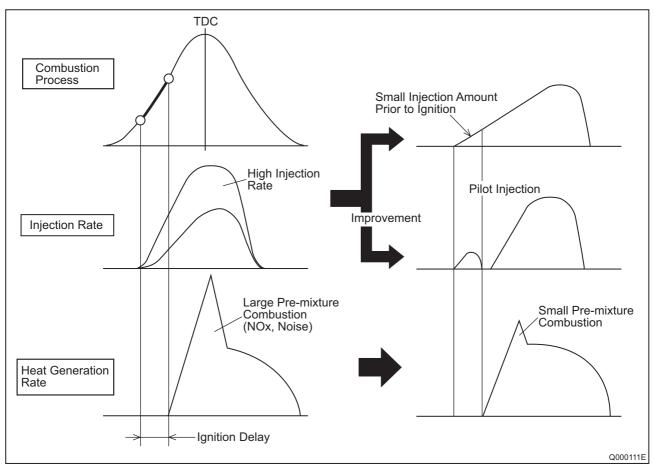
#### (4) Fuel Injection Pressure Control Function (Rail Pressure Control Function)

- a. The fuel injection pressure control function (rail pressure control function) uses a rail pressure sensor to measure fuel pressure, and feeds this data to the ECU to control the pump discharge quantity.
- b. Pressure feedback control is implemented to match the optimal quantity (command quantity) set according to the engine speed and the fuel injection quantity.



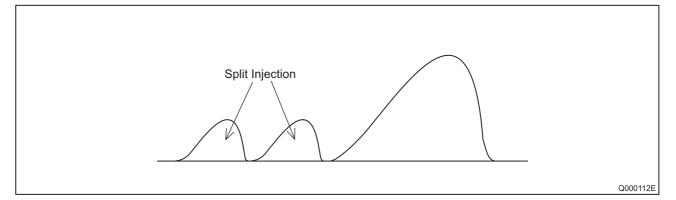

#### [1] Fuel Injection Rate Control

#### (1) Main Injection


a. Same as conventional fuel injection.

#### (2) Pilot Injection

a. Pilot injection is the injection of a small amount of fuel prior to the main injection.




b. While the adoption of higher pressure fuel injection is associated with an increase in the injection rate, the lag (injection lag) that occurs from the time fuel is injected until combustion starts cannot be reduced below a certain value. As a result, the quantity of fuel injected before ignition increases, resulting in explosive combustion together with ignition, and an increase in the amount of NOx and noise. Therefore, by providing a pilot injection, the initial injection rate is kept to the minimum required level dampening, the explosive first-period combustion and reducing NOx emissions.

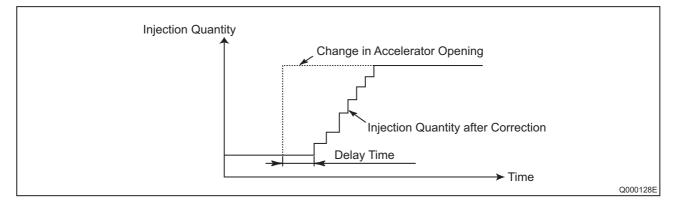


#### (3) Split Injection

a. When the rotation is low at starting time, a small amount of fuel is injected several times prior to main injection.

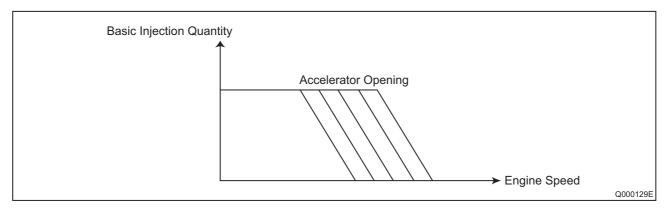


#### [2] Fuel Injection Quantity Control


#### (1) Starting Injection Quantity

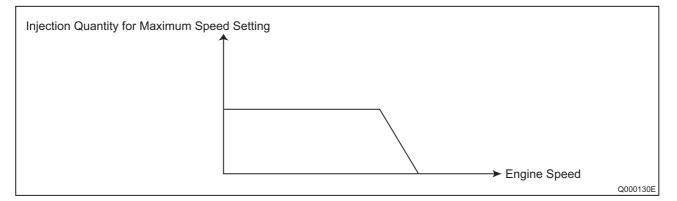
a. The injection quantity is determined based on the engine speed (NE) and water temperature while starting.




#### (2) Transient Injection Quantity Correction

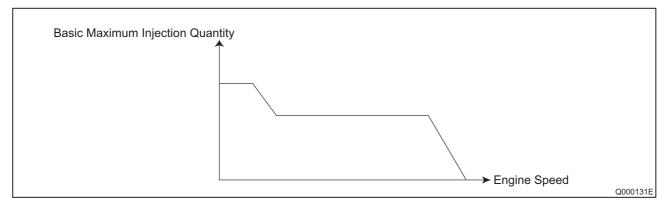
a. When the changes in the accelerator opening are great during acceleration, the increase in fuel volume is delayed to inhibit the discharge of black smoke.




#### (3) Basic Injection Quantity

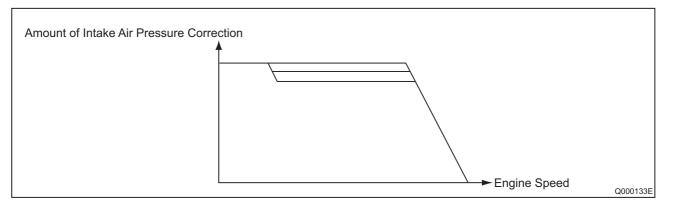
- a. This quantity is determined in accordance with the engine speed (NE) and the accelerator opening.
- b. Increasing the accelerator opening while the engine speed remains constant causes the injection quantity to increase.




#### (4) Injection Quantity for Maximum Speed Setting

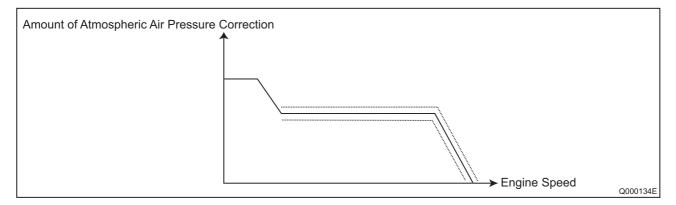
a. The injection quantity is regulated by a value that is determined in accordance with the engine speed.




#### (5) Maximum Injection Quantity

a. Is determined in accordance with the engine speed and corrected by the coolant temperature signal.

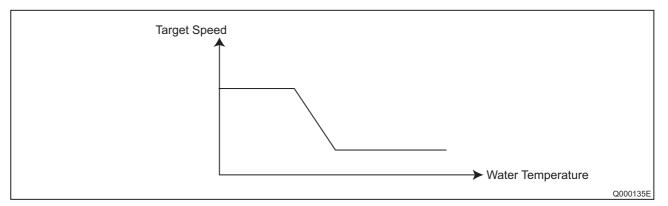



#### (6) Amount of Injection Quantity Intake Pressure Correction

a. Limits the maximum injection quantity in accordance with the intake pressure, in order to minimize the discharge of smoke when the intake air pressure is low.



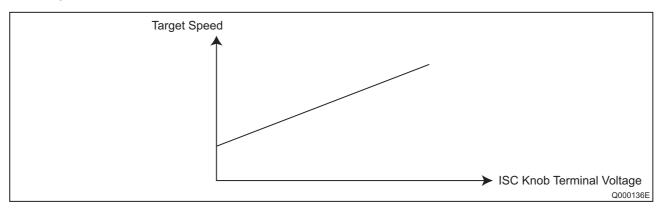
#### (7) Amount of Injection Quantity by Atmospheric Air Pressure Correction


a. With using atmospheric air pressure sensor signal, the maximum injection quantity curve is corrected as shown in the right figure.



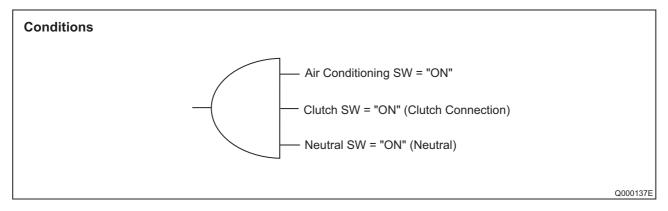
#### (8) Idle Speed Control System (ISC)

- a. Controls the idle speed by regulating the injection quantity in order to match the target speed, which has been calculated by the computer, with the actual speed. The functions of the ISC can be broadly divided into the following two items:
- Auto ISC


Controls the idle speed in accordance with the water temperature.



Manual ISC


Controls the idle speed in accordance with the idle speed indicated on the manual idle setting

#### knob provided at the driver's seat.

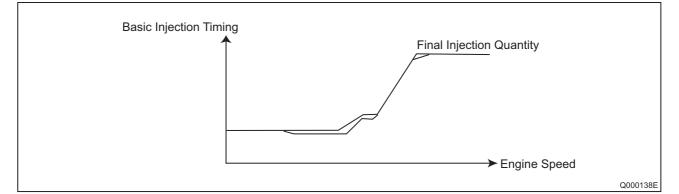


#### Air Conditioner Idle-up Control

When the conditions shown in the chart on the right are realized, bring the idle-up speed to constant rpm.

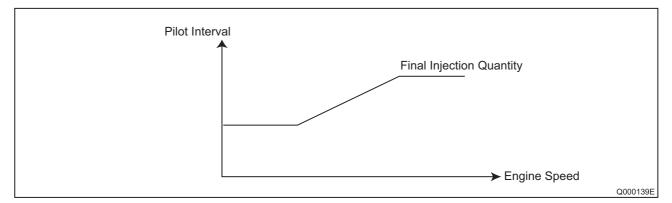


#### (9) Auto Cruise Control


- a. Controls the actual vehicle speed by regulating the injection quantity in order to match the target speed that has been calculated by the computer with the actual speed.
- b. The CRS ECU controls the injection quantity in accordance with signals from the cruise control computer.

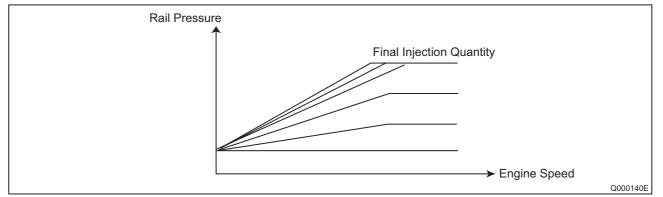
## [3] Fuel Injection Timing Control

The characteristics of the fuel injection timing vary depending on whether it is the main injection or the pilot injection. Although either the NE sensor or the auxiliary NE sensor is the reference for controlling the injection timing, the NE sensor is ordinarily used for this purpose.


#### (1) Main Injection Timing

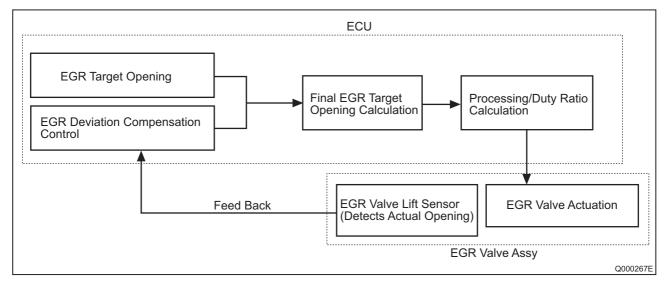
- a. The basic injection timing is calculated in accordance with the final injection quantity, the engine speed, and the water temperature (with map correction).
- b. While starting, it is calculated in accordance with the water temperature and the engine speed.




#### (2) Pilot Injection timing (Pilot Interval)

- a. The pilot injection timing is controlled by adding the pilot interval to the main injection timing.
- b. The pilot interval is calculated in accordance with the final injection quantity, the engine speed, and the water temperature (with map correction).
- c. While starting, it is calculated in accordance with the water temperature and the engine speed.




#### (3) Fuel Injection Pressure

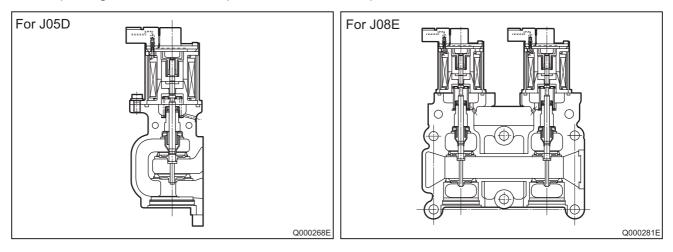
- a. A value is calculated as determined in accordance with the final injection quantity and the engine speed.
- b. While starting, it is calculated in accordance with the water temperature and the engine speed.



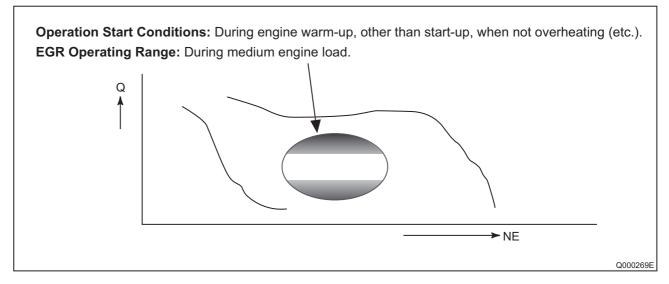
# 3.4 Other Relevant Engine Control [1] EGR Control

# (1) Control System




## (2) Related Sensors

The related sensors are as follows:


- Air volume sensor: Detects the volume of air flowing into the engine.
- Coolant temperature sensor: Detects the engine coolant temperature.
- Atmospheric pressure sensor: Detects the atmospheric pressure around the engine (built into the ECU).

## (3) EGR Valve

a. An EGR valve is utilized as the system actuator for the electric exhaust gas recirculation (E-EGR) system. It is constructed of an upper section and a lower section. The upper section receives output signals from the engine ECU, and contains a solenoid that generates electromagnetic force. The lower section is constructed of a nozzle that moves up and down in response to the electromagnetic force, and a valve with an opening that alters in response to the nozzle position.



## (4) Control Operation

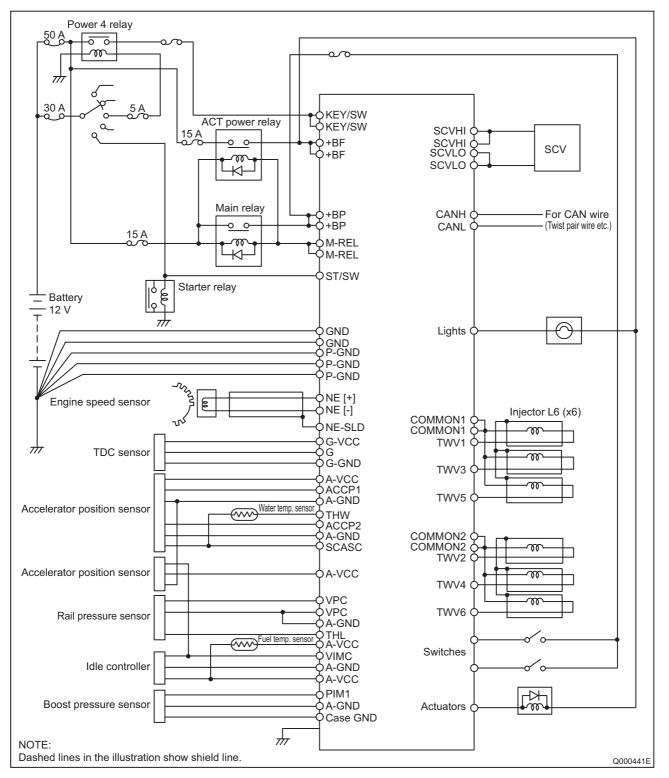


#### 3.5 Engine ECU [1] Diagnosis Codes

| P-Code | DST-1 Display                                            | Remarks                                            | Description                                                                                                                                             |
|--------|----------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0045  | VNT Malfunction                                          | For the VNT.                                       | The VNT actuator has a malfunction.                                                                                                                     |
| P0049  | Turbo Charger Turbine<br>Over speed                      | The turbine rotation sensor has been detected.     | Over speed of the turbo has been detected.                                                                                                              |
| P0088  | Common Rail<br>Pressure -Too high                        |                                                    | High fuel pressure has been detected.                                                                                                                   |
| P0093  | Fuel System Leak<br>Detected                             | The pump does not<br>work properly. (Fuel<br>leak) | There is a possibility of the fuel leakage.<br>Perform the fuel leakage check.                                                                          |
| P0102  | Mass Air Flow Sensor<br>Malfunction (LO)                 |                                                    | "The mass air flow sensor has a malfunction.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to ground in the harness." |
| P0103  | Mass Air Flow Sensor<br>Malfunction (HI)                 |                                                    | The mass air flow sensor has a malfunction.<br>There are possibilities of the sensor malfunction and<br>short circuit to +B in the harness.             |
| P0108  | Boost Pressure Sensor<br>Malfunction (HI)                |                                                    | The boost pressure cannot be detected properly.<br>There are possibilities of the sensor malfunction and<br>short circuit in the harness.               |
| P0112  | Intake Air Temperature<br>Sensor Malfunction (LO)        | Integrated in the mass air flow sensor.            | "The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>short circuit to ground in the harness."         |
| P0113  | Intake Air Temperature<br>Sensor Malfunction (HI)        | Integrated in the mass air flow sensor.            | "The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to +B in the harness."    |
| P0117  | Engine Coolant<br>Temperature Sensor<br>Malfunction (LO) |                                                    | The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction and<br>short circuit to ground in the harness.        |
| P0118  | Engine Coolant<br>Temperature Sensor<br>Malfunction (HI) |                                                    | "The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to +B in the harness."    |

| P-Code | DST-1 Display                               | Remarks                         | Description                                                                                                                                                 |
|--------|---------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0182  | Fuel Temperature<br>Sensor Malfunction (LO) | Integrated in the supply pump.  | "The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>short circuit to ground in the harness."             |
| P0183  | Fuel Temperature<br>Sensor Malfunction (HI) | Integrated in the supply pump.  | "The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to +B in the harness."        |
| P0191  | Rail Pressure Sensor<br>Malfunction         | Characteristic malfunc-<br>tion | The rail pressure cannot be detected properly.<br>There is a possibility of the sensor malfunction.                                                         |
| P0192  | Rail Pressure Sensor<br>Malfunction (LO)    |                                 | The rail pressure cannot be detected properly.<br>There are possibilities of the sensor malfunction and<br>short circuit to ground in the harness.          |
| P0193  | Rail Pressure Sensor<br>Malfunction (HI)    |                                 | "The rail pressure cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to +B in the harness."      |
| P0200  | ECU Charge Circuit<br>Malfunction (HI)      |                                 | The voltage for the injector activation is too high.<br>Replace the ECU.                                                                                    |
| P0201  | Injector 1 Open Circuit                     |                                 | There is a possibility of the Injector 1 malfunction or open circuit in the harness.                                                                        |
| P0202  | Injector 2 Open Circuit                     |                                 | There is a possibility of the Injector 2 malfunction or open circuit in the harness.                                                                        |
| P0203  | Injector 3 Open Circuit                     |                                 | There is a possibility of the Injector 3 malfunction or open circuit in the harness.                                                                        |
| P0204  | Injector 4 Open Circuit                     |                                 | There is a possibility of the Injector 4 malfunction or open circuit in the harness.                                                                        |
| P0205  | Injector 5 Open Circuit                     |                                 | There is a possibility of the Injector 5 malfunction or open circuit in the harness.                                                                        |
| P0206  | Injector 6 Open Circuit                     |                                 | There is a possibility of the Injector 6 malfunction or open circuit in the harness.                                                                        |
| P0217  | Over Temperature<br>Condition               |                                 | The over temperature condition has been detected.<br>Check the cooling system.                                                                              |
| P0219  | Engine Over speed<br>Condition              |                                 | The engine speed exceeded the rated value.                                                                                                                  |
| P0234  | Turbo Charger<br>Overboost Condition        |                                 | The boost pressure is too higher than the specified value.                                                                                                  |
| P0237  | Boost Pressure Sensor<br>Malfunction (LO)   |                                 | "The intake air pressure cannot be detected prop-<br>erly.<br>There are possibilities of the sensor malfunction,<br>open and short circuit in the harness." |
| P0263  | Correction Error<br>Between Cylinders #1    |                                 | The rotation fluctuation in the cylinder 1 became big-<br>ger than other cylinders.<br>There is a possibility that the flow damper is operat-<br>ing.       |
| P0266  | Correction Error<br>Between Cylinders #2    |                                 | The rotation fluctuation in the cylinder 2 became big-<br>ger than other cylinders.<br>There is a possibility that the flow damper is operat-<br>ing.       |

| P-Code | DST-1 Display                             | Remarks                                                                                    | Description                                                                                                                                                            |
|--------|-------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0269  | Correction Error<br>Between Cylinders #3  |                                                                                            | The rotation fluctuation in the cylinder 3 became big-<br>ger than other cylinders.<br>There is a possibility that the flow damper is operat-<br>ing.                  |
| P0272  | Correction Error<br>Between Cylinders #4  |                                                                                            | The rotation fluctuation in the cylinder 4 became big-<br>ger than other cylinders.<br>There is a possibility that the flow damper is operat-<br>ing.                  |
| P0275  | Correction Error<br>Between Cylinders #5  |                                                                                            | The rotation fluctuation in the cylinder 5 became big-<br>ger than other cylinders.<br>There is a possibility that the flow damper is operat-<br>ing.                  |
| P0278  | Correction Error<br>Between Cylinders #6  |                                                                                            | The rotation fluctuation in the cylinder 6 became big-<br>ger than other cylinders.<br>There is a possibility that the flow damper is operat-<br>ing.                  |
| P0335  | Crankshaft Position<br>Sensor Malfunction | "In case that the NE<br>and G sensor have<br>malfunctions, this P<br>code will be output." | The pulse from the crankshaft position sensor can-<br>not be detected.<br>There are possibilities of the sensor and harness<br>malfunctions.                           |
| P0340  | Engine Speed Sensor<br>Malfunction        |                                                                                            | The pulse from the engine speed sensor cannot be detected.<br>There are possibilities of the sensor and harness malfunctions.                                          |
| P0404  | EGR Valve 1 Clogged                       | Clogging has been<br>detected by the lift sen-<br>sor.                                     | The EGR valve 1 is clogged in the open state.                                                                                                                          |
| P0405  | EGR Lift Sensor 1<br>Malfunction (LO)     |                                                                                            | "The EGR lift sensor 1 has a malfunction.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to ground in the harness."                   |
| P0406  | EGR Lift Sensor 1<br>Malfunction (HI)     |                                                                                            | The EGR lift sensor 1 has a malfunction.<br>There are possibilities of the sensor malfunction and<br>short circuit to +B in the harness.                               |
| P0407  | EGR Lift Sensor 2<br>Malfunction (LO)     |                                                                                            | "The EGR lift sensor 2 has a malfunction.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to ground in the harness."                   |
| P0408  | EGR Lift Sensor 2<br>Malfunction (HI)     |                                                                                            | The EGR lift sensor 2 has a malfunction.<br>There are possibilities of the sensor malfunction and<br>short circuit to +B in the harness.                               |
| P0489  | EGR Solenoid Valve 1<br>Malfunction       |                                                                                            | "The EGR solenoid valve 1 has a malfunction.<br>There are possibilities of the solenoid valve malfunc-<br>tion, open and short circuit to ground in the har-<br>ness." |
| P0490  | EGR Solenoid Valve 1<br>Malfunction       |                                                                                            | The EGR solenoid valve 1 has a malfunction.<br>There are possibilities of the solenoid valve malfunc-<br>tion and short circuit to +B in the harness.                  |
| P0500  | Vehicle Speed Sensor<br>Malfunction (LO)  | Open circuit                                                                               | The pulse from the vehicle speed sensor cannot be detected .<br>There are possibilities of the sensor and harness malfunctions.                                        |


| P-Code | DST-1 Display                                             | Remarks                                              | Description                                                                                                                                                                   |  |
|--------|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| P0501  | Vehicle Speed Sensor<br>Malfunction (HI)                  | Noise                                                | The pulse from the vehicle speed sensor has an error.<br>There are possibilities of the sensor and harness malfunctions.                                                      |  |
| P0510  | Idle Switch Malfunction                                   |                                                      | The idle switch does not function properly.<br>Monitor the state and check the ON/OFF judgment.                                                                               |  |
| P0524  | Engine Oil Pressure Too<br>Low                            |                                                      | The engine oil pressure became too low.                                                                                                                                       |  |
| P1401  | EGR Valve Clogged                                         | Clogging has been<br>detected by the lift<br>sensor. | The EGR valve 2 system is clogged in the open state.                                                                                                                          |  |
| P0540  | Preheating System<br>Malfunction                          |                                                      | The intake heater relay has a malfunction.<br>There are possibilities of the relay and harness mal-<br>functions.                                                             |  |
| P0545  | Exhaust Gas Tempera-<br>ture Sensor 1<br>Malfunction (LO) |                                                      | The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction and<br>short circuit to ground in the harness.                              |  |
| P0546  | Exhaust Gas Tempera-<br>ture Sensor 1<br>Malfunction (HI) |                                                      | "The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to +B in the harness."                          |  |
| P0605  | Flash ROM Malfunction                                     |                                                      | There is an internal malfunction in the ECU.<br>Replace the ECU.                                                                                                              |  |
| P0606  | CPU Malfunction (Hard-<br>ware Detected)                  |                                                      | There is an internal malfunction in the ECU.<br>Replace the ECU.                                                                                                              |  |
| P0607  | CPU Monitoring ID<br>Malfunction                          |                                                      | There is an internal malfunction in the ECU.<br>Replace the ECU.                                                                                                              |  |
| P0611  | ECU Charge Circuit<br>Malfunction                         |                                                      | The voltage for the injector activation is too low.<br>Replace the ECU.                                                                                                       |  |
| P0617  | Starter Switch<br>Malfunction                             |                                                      | There is a short in the starter switch circuit.<br>Monitor the state and check the ON/OFF judgment.                                                                           |  |
| P0686  | Main Relay Malfunction                                    |                                                      | The main relay cannot be turned OFF.<br>Check the relay.                                                                                                                      |  |
| P0704  | Clutch Switch<br>Malfunction                              |                                                      | The clutch switch cannot be detected properly.<br>Monitor the state and check the ON/OFF judgment.                                                                            |  |
| P0850  | Neutral Switch<br>Malfunction                             |                                                      | The neutral switch cannot be detected properly.<br>Monitor the state and check the ON/OFF judgment.                                                                           |  |
| P1132  | Accelerator Position<br>Sensor for Operation<br>(LO)      |                                                      | The accelerator position sensor for operation cannot<br>be detected properly.<br>Check the sensor voltage.<br>There are possibilities of open and short circuit to<br>ground. |  |
| P1133  | Accelerator Position<br>Sensor for Operation<br>(HI)      |                                                      | The accelerator position sensor for operation cannot<br>be detected properly.<br>Check the sensor voltage.<br>There is a possibility of short circuit to +B.                  |  |

| P-Code | DST-1 Display                                | Remarks                                                                                                               | Description                                                                                                                                                     |
|--------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1142  | Idle Volume (LO)                             |                                                                                                                       | The idle volume cannot be detected properly. Check<br>the sensor voltage.<br>There are possibilities of open and short circuit to<br>ground.                    |
| P1143  | Idle Volume (HI)                             |                                                                                                                       | The idle volume cannot be detected properly. Check<br>the sensor voltage.<br>There is a possibility of short circuit to +B.                                     |
| P1211  | Injector Common 1<br>Malfunction             |                                                                                                                       | There is a possibility of short circuit to ground.<br>Check the injector and wiring.                                                                            |
| P1212  | Injector Common 1<br>Malfunction             |                                                                                                                       | There is a possibility of open or short circuit to +B.<br>Check the injector and wiring.                                                                        |
| P1214  | Injector Common 2<br>Malfunction             |                                                                                                                       | There is a possibility of short circuit to ground.<br>Check the injector and wiring.                                                                            |
| P1215  | Injector Common 2<br>Malfunction             |                                                                                                                       | There is a possibility of open or short circuit to +B.<br>Check the injector and wiring.                                                                        |
| P1427  | Exhaust Pressure<br>Sensor Malfunction (LO)  |                                                                                                                       | "The exhaust pressure cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to ground in the harness."   |
| P1428  | Exhaust Pressure<br>Sensor Malfunction (HI)  |                                                                                                                       | The exhaust pressure cannot be detected properly.<br>There are possibilities of the sensor malfunction and<br>short circuit to +B in the harness.               |
| P1472  | Transmission Retarder<br>Relay Malfunction   | Transmission retarder<br>relay linked with the<br>cruise control system<br>for the large- and<br>medium-size vehicles | "The transmission retarder relay has a malfunction.<br>There are possibilities of the relay malfunction, open<br>and short circuit to ground in the harness."   |
| P1473  | Transmission Retarder<br>Relay Malfunction   | Transmission retarder<br>relay linked with the<br>cruise control system<br>for the large- and<br>medium-size vehicles | The transmission retarder relay has a malfunction.<br>There are possibilities of the relay malfunction and<br>short circuit to +B in the harness.               |
| P1477  | Cruise Control Retarder<br>Relay Malfunction | Transmission retarder<br>relay linked with the<br>cruise control system<br>for the medium-size<br>vehicle             | "The cruise control retarder relay has a malfunction.<br>There are possibilities of the relay malfunction, open<br>and short circuit to ground in the harness." |
| P1478  | Cruise Control Retarder<br>Relay Malfunction | Transmission retarder<br>relay linked with the<br>cruise control system<br>for the medium-size<br>vehicle             | The cruise control retarder relay has a malfunction.<br>There are possibilities of the relay malfunction and<br>short circuit to +B in the harness.             |
| P1530  | Engine Stop Switch<br>Close Malfunction      |                                                                                                                       | The engine stop switch has a malfunction or there is<br>short circuit in the wiring.<br>Monitor the state and check the ON/OFF judgment.                        |
| P1565  | Cruise Control Switch<br>Malfunction         |                                                                                                                       | The cruise control switch has a malfunction and remains ON.<br>Monitor the state and check the ON/OFF judgment.                                                 |
| P1601  | QR Code Error                                |                                                                                                                       | The QR code has an error. Check the QR code.                                                                                                                    |

| P-Code | DST-1 Display                                             | Remarks                                                | Description                                                                                                                                                                  |
|--------|-----------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1681  | Exhaust Brake Solenoid<br>Valve Malfunction               |                                                        | "The exhaust brake solenoid valve has a malfunc-<br>tion. There are possibilities of the solenoid valve<br>malfunction, open and short circuit to ground in the<br>harness." |
| P1682  | Exhaust Brake Solenoid<br>Valve Malfunction               |                                                        | The exhaust brake solenoid valve has a malfunction.<br>There are possibilities of the solenoid valve malfunc-<br>tion and short circuit to +B in the harness.                |
| P2002  | DPR System<br>Malfunction                                 |                                                        | The DPR system has a malfunction.<br>There are possibilities of the melt down and clog-<br>ging. Perform the DPR system check.                                               |
| P2032  | Exhaust Gas Tempera-<br>ture Sensor 2<br>Malfunction (LO) |                                                        | The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction and<br>short circuit to ground in the harness.                             |
| P2033  | Exhaust Gas Tempera-<br>ture Sensor 2<br>Malfunction (HI) |                                                        | "The temperature cannot be detected properly.<br>There are possibilities of the sensor malfunction,<br>open and short circuit to +B in the harness."                         |
| P2120  | Accelerator Position<br>Sensor 1&2 Malfunction            |                                                        | Both the accelerator sensor 1 and 2 have malfunc-<br>tions. There are possibilities of the sensor and har-<br>ness malfunctions.                                             |
| P2121  | Accelerator Position<br>Sensor 1 Malfunction              |                                                        | The accelerator position sensor 1 cannot be detected properly. Check the sensor voltage.                                                                                     |
| P2122  | Accelerator Position<br>Sensor 1 Malfunction<br>(LO)      |                                                        | The accelerator position sensor 1 cannot be detected properly. Check the sensor voltage.                                                                                     |
| P2123  | Accelerator Position<br>Sensor 1 Malfunction<br>(HI)      |                                                        | The accelerator position sensor 1 cannot be detected properly. Check the sensor voltage. There is a possibility of short circuit to +B.                                      |
| P2126  | Accelerator Position<br>Sensor 2 Malfunction              |                                                        | The accelerator position sensor 2 cannot be detected properly. Check the sensor voltage.                                                                                     |
| P2127  | Accelerator Position<br>Sensor 2 Malfunction<br>(LO)      |                                                        | The accelerator position sensor 2 cannot be detected properly. Check the sensor voltage. There are possibilities of open and short circuit to ground.                        |
| P2128  | Accelerator Position<br>Sensor 2 Malfunction<br>(HI)      |                                                        | The accelerator position sensor 2 cannot be detected properly. Check the sensor voltage. There is possibility of short circuit to +B.                                        |
| P2228  | Atmospheric Air Pres-<br>sure Sensor<br>Malfunction (LO)  |                                                        | "The atmosphere pressure sensor (in ECU) has a malfunction. If the malfunction occurs frequently, it is necessary to repair or replace the ECU."                             |
| P2229  | Atmospheric Air Pres-<br>sure Sensor<br>Malfunction (HI)  |                                                        | "The atmosphere pressure sensor (in ECU) has a malfunction. If the malfunction occurs frequently, it is necessary to repair or replace the ECU."                             |
| U0073  | CAN Communication<br>Malfunction (Engine)                 | For middle-sized VNT                                   | There is a malfunction of communication with the VNT.                                                                                                                        |
| U0101  | Lost Communication<br>(Transmission)                      | Communication error<br>between pro-shift and<br>AT-ECU | Communication with the transmission ECU is lost.                                                                                                                             |
| U0104  | Lost Communication<br>(Cruise control)                    |                                                        | Communication with the auto cruise ECU is lost.                                                                                                                              |

| P-Code | DST-1 Display                          | Remarks                                                | Description                                                                                                                                           |
|--------|----------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| U0121  | Lost Communication<br>(ABS)            |                                                        | Communication with the ABS ECU is lost.                                                                                                               |
| U0132  | Lost Communication<br>(Air suspension) |                                                        | Communication with the air suspension ECU is lost.                                                                                                    |
| U0155  | Lost Communication<br>(Meter)          |                                                        | Communication with the meter ECU is lost.                                                                                                             |
| U1001  | CAN Communication<br>error (Vehicle)   | CAN communication bus OFF judgment                     | There is a malfunction of communication with other computers equipped in vehicle.                                                                     |
| TBD    | EGR Solenoid 1<br>Malfunction          | When linear solenoid<br>specific P code is<br>obtained | "The EGR solenoid 1 has a malfunction.<br>There are possibilities of solenoid valve malfunction,<br>open and short circuit to ground in the harness." |
| TBD    | EGR Solenoid 1<br>Malfunction          | When linear solenoid<br>specific P code is<br>obtained | The EGR solenoid 1 has a malfunction.<br>There are possibilities of solenoid valve malfunction<br>and short circuit to +B in the harness.             |
| TBD    | EGR Solenoid 2<br>Malfunction          | When linear solenoid<br>specific P code is<br>obtained | "The EGR solenoid 2 has a malfunction.<br>There are possibilities of solenoid valve malfunction,<br>open and short circuit to ground in the harness." |
| TBD    | EGR Solenoid 2<br>Malfunction          | When linear solenoid<br>specific P code is<br>obtained | The EGR solenoid 2 has a malfunction.<br>There are possibilities of solenoid valve malfunction<br>and short circuit to +B in the harness.             |

#### [2] ECU External Wiring Diagram



# [3] ECU Connector Diagram

# (1) ECU Connector Terminal Layout

| 34 P                                                                         | 35 P                                                                                               | 32 P                                                                                                     | 35 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1234567<br>8910111121314151617<br>1819202122324232627<br>2829 30(31(32(33)34 | 35 36 37 38 39 40 41   4243444546471484950515253 5455 5657 53636061   5455 5657 53636061 566776869 | 70 71 72 73 74 75 76   777787980818283848586 876848590191626336465566 877636590191626336465566 99 600101 | [102] [103] [104] [105] [106] [107]   [108] [101] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [111] [11 | [137] [138] [139] [140] [141] [142] [143]   [144] 146[146]146[147] [140]149 [150]151[152]153 [156]157/158 [156]157/158 [156]157/158 [156]157 [156]157/158 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 [156]157 |

Q000442E

# (2) Terminal Connections

| No. | Pin Symbol | Connections                  | No. | Pin Symbol | Connections                                      |
|-----|------------|------------------------------|-----|------------|--------------------------------------------------|
| 1   | (GND)      | ECU ground (spare)           | 18  | (CASE GND) | Case ground (spare)                              |
| 2   | (GND)      | ECU ground (spare)           | 19  | KWP2000    | ISO9141-K                                        |
| 3   | IN3        | spare                        | 20  | IN1        |                                                  |
| 4   | IN3-       | spare                        | 21  | AD1        | Accelerator position sensor 1                    |
| 5   | +B         | Power                        | 22  | AD2        | Accelerator position sensor 2                    |
| 6   | +B         | Power                        | 23  | AD10       | Accelerator position sensor for operation        |
| 7   | +B         | Power                        | 24  | AD12       | spare                                            |
| 8   | TAC1       | spare                        | 25  | AD19       | spare                                            |
| 9   | TAC2       | Tachometer signal (SINK)     | 26  | AD20       | spare                                            |
| 10  | POUT1      | spare                        | 27  | VS1        | Vehicle speed sensor                             |
| 11  | POUT2      | spare                        | 28  | CASE GND   | Case ground                                      |
| 12  | POUT3      | spare                        | 29  | IN2        |                                                  |
| 13  | POUT4      | spare                        | 30  | AD14       | IMC volume                                       |
| 14  | PIN1       | spare                        | 31  | AD15       | spare                                            |
| 15  | PIN2       | spare                        | 32  | AD16       | Intake air temp. sensor (Build-in Airflow meter) |
| 16  | —          |                              | 33  | AD17       | spare                                            |
| 17  | (BATT)     |                              | 34  | AD18       | spare                                            |
| 35  | +BF        | +BF                          | 53  | SW7        | Brake switch                                     |
| 36  | OUT5       | Exhaust brake solenoid valve | 54  | A-GND4     | Sensor ground 4                                  |
| 37  | OUT6       | spare                        | 55  | A-GND5     | Sensor ground 5                                  |
| 38  | OUT7       | spare                        | 56  | SW1        | Key switch                                       |
| 39  | NE-SLD     | Engine RPM shield ground     | 57  | A-VCC4     | Sensor (Power supply) 4                          |
| 40  | NE+        | Engine RPM +                 | 58  | SW8        | Accelerator pedal switch                         |
| 41  | NE-        | Engine RPM -                 | 59  | SW10       | spare                                            |
| 42  | OUT1       | spare                        | 60  | SW12       | Constant-speed switch                            |
| 43  | OUT2       | spare                        | 61  | SW17       | Stop lamp switch                                 |
| 44  | OUT3       | Exhaust brake light          | 62  | AD21       | spare                                            |
| 45  | OUT4       | Glow indicator light         | 63  | AD22       | EGR valve lift sensor 2                          |
| 46  | SW1        | Key switch                   | 64  |            | —                                                |
| 47  | OUT8       | spare                        | 65  | A-VCC5     | Sensor (Power supply) 5                          |
| 48  | SW2        | Starter switch               | 66  | SW9        | Neutral switch                                   |
| 49  | SW3        | Exhaust brake switch         | 67  | SW11       | spare                                            |
| 50  | SW4        | spare                        | 68  | SW16       | Diag. switch                                     |
| 51  | SW5        | spare                        | 69  | SW18       | spare                                            |
| 52  | SW6        | spare                        |     |            |                                                  |

| No. | Pin Symbol | Connections                 | No. | Pin Symbol | Connections               |
|-----|------------|-----------------------------|-----|------------|---------------------------|
| 70  | OUT19      | Glow relay                  | 86  |            | —                         |
| 71  | OUT20      | Glow relay                  | 87  | SW31       | AT identification signal  |
| 72  | GND        | ECU ground                  | 88  | SW20       | PTO2 switch               |
| 73  | GND        | ECU ground                  | 89  | SW21       | PTO switch                |
| 74  | OUT17      | ECU main relay              | 90  | SW25       | spare                     |
| 75  | OUT18      | ECU main relay              | 91  | SW26       | spare                     |
| 76  | +BF        | +BF                         | 92  | SW13       | Cruise switch 1           |
| 77  | SW27       | Clutch switch               | 93  | SW28       | Clutch stroke switch      |
| 78  | SW         | spare                       | 94  | SW29       | spare                     |
| 79  | SW         | Cruise switch 2             | 95  | CANH       | CAN2 HI                   |
| 80  | SW         | Stop lamp switch 2          | 96  | CANL       | CAN2 LOW                  |
| 81  | SW         | spare                       | 97  | SW32       | Hydraulic pressure switch |
| 82  | S-OUT1     | Check engine light 1        | 98  | SW22       | Warm-up switch            |
| 83  | S-OUT2     | spare                       | 99  | SW23       | spare                     |
| 84  | S-OUT3     | spare                       | 100 | SW30       | spare                     |
| 85  | S-OUT4     | spare                       | 101 | CAN-SLD    | CAN2 Shield ground        |
| 102 | P-GND      | Power ground                | 120 | G          | Cam angle                 |
| 103 | TWV1       | Injector drive signal 1     | 121 | AD4        | Rail pressure sensor 1    |
| 104 | TWV3       | Injector drive signal 3     | 122 | AD11       | Airflow meter             |
| 105 | TWV5       | Injector drive signal 5     | 123 | A-VCC3     | Sensor (Power supply) 3   |
| 106 | COMMON1    | Injector drive power 1      | 124 | NE-VCC     | spare                     |
| 107 | COMMON1    | Injector drive power 1      | 125 | A-VCC2     | Sensor (Power supply) 2   |
| 108 | OUT9       | EGR linear solenoid drive 1 | 126 | A-VCC1     | Sensor (Power supply) 1   |
| 109 | OUT10      | EGR linear solenoid drive 2 | 127 | AD13       | EGR valve lift sensor 1   |
| 110 | OUT11      | spare                       | 128 | AD3        | Boost pressure sensor     |
| 111 | OUT12      | spare                       | 129 | (GND)      | ECU ground (spare)        |
| 112 | OUT13      | Cruise lamp                 | 130 | (GND)      | ECU ground (spare)        |
| 113 | OUT14      | Constant-speed lamp         | 131 | G-GND      | CAM angle ground          |
| 114 | OUT15      | spare                       | 132 | AD5        | Rail pressure sensor 2    |
| 115 | OUT16      | spare                       | 133 | G-VCC      | Cam angle VCC (5V)        |
| 116 | _          | _                           | 134 | A-GND1     | Sensor ground 1           |
| 117 | _          |                             | 135 | A-GND2     | Sensor ground 2           |
| 118 | A-GND6     | Airflow ground              | 136 | A-GND3     | Sensor ground 3           |
| 119 | NE (MRE)   |                             |     |            |                           |

| No.      | Pin Symbol | Connections                               | No. | Pin Symbol | Connections         |
|----------|------------|-------------------------------------------|-----|------------|---------------------|
| 137      | TWV2       | Injector drive signal 2                   | 153 | PCV1       | spare               |
| 138      | TWV4       | Injector drive signal 4                   | 154 | AD6        | spare               |
| 139      | TWV6       | Injector drive signal 6                   | 155 | AD7        | Water temp. sensor  |
| 140      | P-GND      | Power ground                              | 156 | —          | —                   |
| 141      | P-GND      | Power ground                              | 157 | CAN1H      | CAN1 HI             |
| 142      | COMMON2    | Injector drive power 2                    | 158 | CAN1L      | CAN1 LOW            |
| 143      | COMMON2    | Injector drive power 2                    | 159 | —          | —                   |
| 144      | SCVLO      | HP 3 or 4 pump control valve drive signal | 160 | —          | —                   |
| 145      | SCVLO      | HP 3 or 4 pump control valve drive signal | 161 | (CASE GND) | Case ground (spare) |
| 146      | SCVHI      | HP 3 or 4 pump control valve power        | 162 | AD8        | spare               |
| 147      | SCVHI      | HP 3 or 4 pump control valve power        | 163 | AD9        | Fuel temp. sensor 2 |
| 148      | _          | _                                         | 164 | —          | —                   |
| 149      |            |                                           | 165 | CAN1-SLD   | spare               |
| 150      | PCV2       | spare                                     | 166 | —          | —                   |
| 151      | PCV2       | spare                                     | 167 | (CASE GND) | Case ground (spare) |
| 152      | PCV1       | spare                                     |     |            |                     |
| Built-in | PATM       | Atmospheric air pressure sensor           |     | •          |                     |