SHOP

MANUAL

KOMATSU 108 SERIES DIESEL ENGINE

CONTENTS

01	GENERAL	. 01-1
11	STRUCTURE AND FUNCTION	. 11-1
12	TESTING AND ADJUSTING	. 12-1
13	DISASSEMBLY AND ASSEMBLY	. 13-1
14	MAINTENANCE STANDARD	14-1
15	REPAIR AND REPLACEMENT OF PARTS	15-1

322101

The affected pages are indicated by the use of the following marks. It is requested that necessary actions be taken to these pages according to the table below.

Mark	Indication	Action required
0	Page to be newly added	Add
•	Page to be replaced	Replace
()	Page to be deleted	Discard

Pages having no marks are those previously revised or made additions.

LIST OF REVISED PAGE

Mark	Page	Time of revision	Mark	Page	Time of revision	Mark	Page	Time o	Mark	Page	Time of revision	Mark	Page	Time of revision
•	00- 1	4		01-007	2		11-013	2		11-036	1		12-008	2
	00- 2	3		01-008	2		11-013	1 2		11-037	1		12-010	2
•	00- 2-1	4		01-009	2		11-013-	2 2		11-038	1		12-011	2
•	00- 2-2	2 4		01-010	2		11-014	1		11-039	1		12-012	2
•	00- 3		1	01-011	2		11-015	1	ļ	11-040	2		12-013	3
•	00- 4			01-012	2		11-016	2		11-041	2	•	12-013-	1 4
•	00- 5			01-012-	1 ③		11-017	1		11-042	2		12-014	3
•	00- 6			01-012-	2 ③		11-018	2		11-043	2		12-015	3
•	00- 7			01-014	3		11-019	1		11-044	2	•	12-015	1 4
•	00- 8			01-015	3		11-019	-1 ②		11-044	-1 ②	•	12-015	2 4
•	00- 9						11-019	-2 ②	ŀ	11-045	1	•	12-016	4
•	00-10			11-001	2		11-020	1		11-045	-1 ②		12-016	1 ③
•	00-11			11-002	1		11-021	1	1	11-046	2		12-016	2 ③
•	00-12			11-003	1		11-022	2		11-047	2		12-016	· 3 ③
•	00-13			11-004	2		11-023	1		11-048	2		12-016	4 3
•	00-14			11-005	2		11-024	1		11-049	2		12-016	-5 ③
•	00-15			11-006	2		11-026	2		11-050	2		12-016	-6 ③
•	00-16			11-007	2		11-027	2		11-051	2		12-016	·7 ③
•	00-17			11-007	1 ②		11-028	2		11-052	2		12-016	-8 ③
•	00-18			11-007	2 2		11-029	2		11-053	2		12-016	-9 ③
•	00-19			11-007	3 2		11-029	-1 ②					12-016	-10 ③
				11-007	4 2		11-029	-2 ②		12-001	2	0	12-016	-11 ④
	01-001	3		11-007	5 2		11-029	-3 ②		12-002	2	ľ	12-017	1
	01-002	3		11-008	1		11-030	1		12-003	2		12-018	3
	01-003	3		11-009	2		11-031	1		12-004	2		12-019	3
•	01-004	4		11-010	1		11-032	1		12-005	2		12-020	3
•	01-005	4		11-011	2		11-034	1		12-006	2		12-020	-1 ③
	01-006	2		11-012	2		11-035	1		12-007	2	0	12-020	-2 ④

Mark	Page	Time of revision	Mark	Page	Time of revision	Mark	Page	Time of revision	Mark	Page	Time of revision	Mark	Page	Time of revision
	12-021	2		13-015	3		14-019	2				7		
	12-022	2		13-016	1		14-020	2			•			
	12-023	1		13-017	1		14-021	2						
	12-024	①		13-018	1		14-022	2						
	12-025	1		13-019	1									
	12-026	1		13-020	1		15-001	2						
	12-027	1		13-021	2		15-002	2						
	12-028	1		13-021-	1 ②		15-003	2						
	12-029	1		13-021-	2 ②		15-004	2						
	12-030	1		13-022	1		15-005	2						
	12-031	1		13-023	1		15-006	2						
	12-032	1		13-024	1		15-007	2						
	12-033	1		13-025	1		15-008	2						
	12-034	1		13-026	1		15-009	2						
	12-035	1		13-027	1		15-010	2						
	12-036	1		13-028	2	i	15-011	2						
	12-037	1		13-028-	1 2		15-012	2						
	12-038	1		13-028-	2 ②		15-013	2						
	12-039	1		13-029	1		15-014	2						
	12-040	1		13-030	1		15-015	2						
	12-041	1		13-031	1		15-016	2	:					
	12-042	1		13-032	1		15-017	2						
	12-043	1					15-018	2						
	12-044	1		14-001	2		15-019	2						
	12-045	1		14-002	2		15-020	2						
				14-003	2		15-021	2						
	13-001	1		14-004	2		15-022	2						
	13-002	1		14-006	3									
	13-003	1		14-007	2									
	13-004	1		14-008	2									
	13-005	1		14-009	2									
	13-006	1		14-010	2									
	13-007	1		14-011	2									
	13-008	1		14-012	2									
	13-009	1		14-013	2									
	13-010			14-014	2									
	13-011			14-015	3									
	13-012	1		14-016	2									
	13-013			14-017	2						:			
	13-014			14-018	2									

SAFETYSAFETY NOTICE

IMPORTANT SAFETY NOTICE

Proper service and repair is extremely important for safe machine operation. The service and repair techniques recommended by Komatsu and described in this manual are both effective and safe. Some of these techniques require the use of tools specially designed by Komatsu for the specific purpose.

To prevent injury to workers, the symbol is used to mark safety precautions in this manual. The cautions accompanying these symbols should always be followed carefully. If any dangerous situation arises or may possibly arise, first consider safety, and take the necessary actions to deal with the situation.

GENERAL PRECAUTIONS

Mistakes in operation are extremely dangerous. Read the Operation and Maintenance Manual carefully BEFORE operating the machine.

- Before carrying out any greasing or repairs, read all the precautions given on the decals which are fixed to the machine.
- When carrying out any operation, always wear safety shoes and helmet. Do not wear loose work clothes, or clothes with buttons missing.
 - Always wear safety glasses when hitting parts with a hammer.
 - Always wear safety glasses when grinding parts with a grinder, etc.
- 3. If welding repairs are needed, always have a trained, experienced welder carry out the work. When carrying out welding work, always wear welding gloves, apron, hand shield, cap and other clothes suited for welding work.
- 4. When carrying out any operation with two or more workers, always agree on the operating procedure before starting. Always inform your fellow workers before starting any step of the operation. Before starting work, hang UNDER REPAIR signs on the controls in the operator's compartment.
- Keep all tools in good condition and learn the correct way to use them.

6. Decide a place in the repair workshop to keep tools and removed parts. Always keep the tools and parts in their correct places. Always keep the work area clean and make sure that there is no dirt or oil on the floor. Smoke only in the areas provided for smoking. Never smoke while working.

PREPARATIONS FOR WORK

- Before adding oil or making any repairs, park the machine on hard, level ground, and block the wheels or tracks to prevent the machine from moving.
- 8. Before starting work, lower blade, ripper, bucket or any other work equipment to the ground. If this is not possible, insert the safety pin or use blocks to prevent the work equipment from falling. In addition, be sure to lock all the control levers and hang warning signs on them.
- When disassembling or assembling, support the machine with blocks, jacks or stands before starting work.
- 10. Remove all mud and oil from the steps or other places used to get on and off the machine. Always use the handrails, ladders or steps when getting on or off the machine. Never jump on or off the machine. If it is impossible to use the handrails, ladders or steps, use a stand to provide safe footing.

PRECAUTIONS DURING WORK

- 11. When removing the oil filler cap, drain plug or hydraulic pressure measuring plugs, loosen them slowly to prevent the oil from spurting out.
 - Before disconnecting or removing components of the oil, water or air circuits, first remove the pressure completely from the circuit.
- 12. The water and oil in the circuits are hot when the engine is stopped, so be careful not to get burned.
 - Wait for the oil and water to cool before carrying out any work on the oil or water circuits.
- 13. Before starting work, remove the leads from the battery. Always remove the lead from the negative (-) terminal first.
- 14. When raising heavy components, use a hoist or crane.
 - Check that the wire rope, chains and hooks are free from damage.
 - Always use lifting equipment which has ample capacity.
 - Install the lifting equipment at the correct places. Use a hoist or crane and operate slowly to prevent the component from hitting any other part. Do not work with any part still raised by the hoist or crane.
- 15. When removing covers which are under internal pressure or under pressure from a spring, always leave two bolts in position on opposite sides. Slowly release the pressure, then slowly loosen the bolts to remove.
- 16. When removing components, be careful not to break or damage the wiring. Damaged wiring may cause electrical fires.
- 17. When removing piping, stop the fuel or oil from spilling out. If any fuel or oil drips onto the floor, wipe it up immediately. Fuel or oil on the floor can cause you to slip, or can even start fires.
- 18. As a general rule, do not use gasoline to wash parts. In particular, use only the minimum of gasoline when washing electrical parts.

- 19. Be sure to assemble all parts again in their original places.
 - Replace any damaged parts with new parts.
 - When installing hoses and wires, be sure that they will not be damaged by contact with other parts when the machine is being operated.
- 20. When installing high pressure hoses, make sure that they are not twisted. Damaged tubes are dangerous, so be extremely careful when installing tubes for high pressure circuits. Also, check that connecting parts are correctly installed.
- 21. When assembling or installing parts, always use the specified tightening torques. When installing protective parts such as guards, or parts which vibrate violently or rotate at high speed, be particularly careful to check that they are installed correctly.
- 22. When aligning two holes, never insert your fingers or hand. Be careful not to get your fingers caught in a hole.
- 23. When measuring hydraulic pressure, check that the measuring tool is correctly assembled before taking any measurements.
- 24. Take care when removing or installing the tracks of track-type machines.
 - When removing the track, the track separates suddenly, so never let anyone stand at either end of the track.

FOREWORD

GENERAL

This shop manual has been prepared as an aid to improve the quality of repairs by giving the serviceman an accurate understanding of the product and by showing him the correct way to perform repairs and make judgements. Make sure you understand the contents of this manual and use it to full effect at every opportunity.

This shop manual mainly contains the necessary technical information for operations performed in a service workshop. For ease of understanding, the manual is divided into the following chapters; these chapters are further divided into the each main group of components.

STRUCTURE AND FUNCTION

This section explains the structure and function of each component. It serves not only to give an understanding of the structure, but also serves as reference material for troubleshooting.

TESTING AND ADJUSTING

This section explains checks to be made before and after performing repairs, as well as adjustments to be made at completion of the checks and repairs.

Troubleshooting charts correlating "Problems" to "Causes" are also included in this section.

DISASSEMBLY AND ASSEMBLY

This section explains the order to be followed when removing, installing, disassembling or assembling each component, as well as precautions to be taken for these operations.

MAINTENANCE STANDARD

This section gives the judgement standards when inspecting disassembled parts.

NOTICE

The specifications contained in this shop manual are subject to change at any time and without any advance notice. Use the specifications given in the book with the latest date.

HOW TO READ THE SHOP MANUAL

VOLUMES

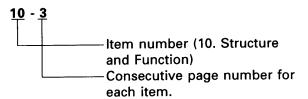
Shop manuals are issued as a guide to carrying out repairs. They are divided as follows:

Chassis volume: Issued for every machine model **Engine volume**: Issued for each engine series

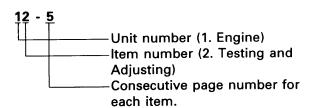
Electrical volume:
Attachments volume:

Each issued as one volume to cover all models

These various volumes are designed to avoid duplicating the same information. Therefore, to deal with all repairs for any model, it is necessary that chassis, engine, electrical and attachment volumes be available.


DISTRIBUTION AND UPDATING

Any additions, amendments or other changes will be sent to KOMATSU distributors. Get the most up-to-date information before you start any work.


FILING METHOD

- 1. See the page number on the bottom of the page. File the pages in correct order.
- 2. Following examples show how to read the page number.

Example 1 (Chassis volume):

Example 2 (Engine volume):

 Additional pages: Additional pages are indicated by a hyphen (-) and number after the page number. File as in the example. Example:

REVISED EDITION MARK

When a manual is revised, an edition mark (1)(2)(3)....) is recorded on the bottom of the pages.

REVISIONS

Revised pages are shown in the LIST OF RE-VISED PAGES next to the CONTENTS page.

SYMBOLS

So that the shop manual can be of ample practical use, important safety and quality portions are marked with the following symbols.

Symbol	ltem	Remarks
	Safety	Special safety precautions are necessary when performing the work.
*	Caution	Special technical precautions or other precautions for preserving standards are necessary when performing the work.
kg	Weight	Weight of parts of systems. Caution necessary when selecting hoisting wire, or when working posture is important, etc.
kgm	Tightening torque	Places that require special attention for the tightening torque during assembly.
	Coat	Places to be coated with adhesives and lubricants, etc.
	Oil, water	Places where oil, water or fuel must be added, and the capacity.
	Drain	Places where oil or water must be drained, and quantity to be drained.

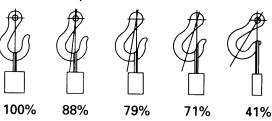
HOISTING INSTRUCTIONS

HOISTING

Heavy parts (25 kg or more) must be lifted with a hoist, etc. In the **DISAS-SEMBLY AND ASSEMBLY** section, every part weighing 25 kg or more is indicated clearly with the symbol

- If a part cannot be smoothly removed from the machine by hoisting, the following checks should be made:
 - 1) Check for removal of all bolts fastening the part to the relative parts.
 - Check for existence of another part causing interference with the part to be removed.

WIRE ROPES

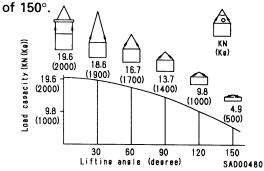

 Use adequate ropes depending on the weight of parts to be hoisted, referring to the table below:

Wire ropes (Standard "Z" or "S" twist ropes without galvanizing)

Rope diameter	Allowa	ble load
mm	kN	tons
10	9.8	1.0
11.2	13.7	1.4
12.5	15.7	1.6
14	21.6	2.2
16	27.5	2.8
18	35.3	3.6
20	43.1	4.4
22.4	54.9	5.6
30	98.1	10.0
40	176.5	18.0
50	274.6	28.0
60	392.2	40.0

- ★ The allowable load value is estimated to be one-sixth or one-seventh of the breaking strength of the rope used.
- Sling wire ropes from the middle portion of the hook.

Slinging near the edge of the hook may cause the rope to slip off the hook during hoisting, and a serious accident can result. Hooks have maximum strength at the middle portion.



3) Do not sling a heavy load with one rope alone, but sling with two or more ropes symmetrically wound onto the load.

Slinging with one rope may cause turning of the load during hoisting, untwisting of the rope, or slipping of the rope from its original winding position on the load, which can result in a dangerous accident.

4) Do not sling a heavy load with ropes forming a wide hanging angle from the hook. When hoisting a load with two or more ropes, the force subjected to each rope will increase with the hanging angles. The table below shows the variation of allowable load kN {kg} when hoisting is made with two ropes, each of which is allowed to sling up to 9.8 kN {1000 kg} vertically, at various hanging angles.

When two ropes sling a load vertically, up to 19.6 kN {2000 kg} of total weight can be suspended. This weight becomes 9.8 kN {1000 kg} when two ropes make a 120° hanging angle. On the other hand, two ropes are subjected to an excessive force as large as 39.2 kN {4000 kg} if they sling a 19.6 kN {2000 kg} load at a lifting angle

COATING MATERIALS

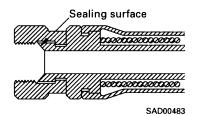
- ★ The recommended coating materials such as adhesives, gasket sealants and greases used for disassembly and assembly are listed below.
- ★ For coating materials not listed below, use the equivalent of products shown in this list.

Category	Komatsu code	Part No.	Q'ty	Container	Main applications, features
	LT-1A	790–129–9030	150 g	Tube	 Used to prevent rubber gaskets, rubber cushions, and cock plug from coming out.
	LT-1B	790–129–9050	20 g (2 pes.)	Polyethylene container	 Used in places requiring an immediately effective, strong adhesive. Used for plas- tics (except polyethylene, polyprophylene, tetrafluoroethlene and vinyl chloride), rub- ber, metal and non-metal.
	LT-2	09940-00030	50 g	Polyethylene container	 Features: Resistance to heat and chemicals Used for anti-loosening and sealant purpose for bolts and plugs.
A 10	LT-3	790-129-9060 (Set of adhesive and hardening agent)	Adhesive: 1 kg Hardening agent: 500 g	Can	 Used as adhesive or sealant for metal, glass and plastic.
Adhesives	LT-4	790–129–9040	250 g	Polyethylene container	Used as sealant for machined holes.
	Holtz MH 705	790–126–9120	75 g	Tube	 Used as heat-resisting sealant for repairing engine.
	Three bond 1735	790–129–9140	50 g	Polyethylene container	 Quick hardening type adhesive Cure time: within 5 sec. to 3 min. Used mainly for adhesion of metals, rubbers, plastics and woods.
	Aron-alpha 201	790–129–9130	2 g	Polyethylene container	 Quick hardening type adhesive Quick cure type (max. strength after 30 minutes) Used mainly for adhesion of rubbers, plastics and metals.
	Loctite 648-50	79A-129-9110	50 cc	Polyethylene container	 Features: Resistance to heat, chemicals Used at joint portions subject to high temperatures.
	LG-1	790–129–9010	200 g	Tube	 Used as adhesive or sealant for gaskets and packing of power train case, etc.
Gasket sealant	LG-3	790–129–9070	1 kg	Can	 Features: Resistance to heat Used as sealant for flange surfaces and bolts at high temperature locations, used to prevent seizure. Used as sealant for heat resistance gasker for high temperature locations such as engine precombustion chamber, exhausipipe, etc.

Category	Komatsu code	Part No.	Q'ty	Container	Main applications, features
	LG-4	790–129–9020	200 g	Tube	 Features: Resistance to water, oil Used as sealant for flange surface, thread. Also possible to use as sealant for flanges with large clearance. Used as sealant for mating surfaces of final drive case, transmission case.
	LG-5	790–129–9080	1 kg	Polyethylene container	 Used as sealant for various threads, pipe joints, flanges. Used as sealant for tapered plugs, elbows, nipples of hydraulic piping.
Gasket sealant	LG-6	09940-00011	250 g	Tube	 Features: Silicon based, resistance to heat, cold Used as sealant for flange surface, tread. Used as sealant for oil pan, final drive case, etc.
	LG-7	09920-00150	150 g	Tube	 Features: Silicon based, quick hardening type Used as sealant for flywheel housing, in- take manifold, oil an, thermostat housing, etc.
	Three bond 1211	790–129–9090	100 g	Tube	 Used as heat-resisting sealant for repairing engine.
Molybde-	LM-G	09940-00051	60 g	Can	 Used as lubricant for sliding portion (to prevent from squeaking).
num disulphide lubricant	LM-P	09940-00040	200 g	Tube	 Used to prevent seizure or scuffling of the thread when press fitting or shrink fitting. Used as lubricant for linkage, bearings, etc.
	G2-LI	SYG2-400LI SYG2-350LI SYG2-400LI-A SYG2-160LI SYGA-160CNLI	Various	Various	General purpose type
Grease	G2-CA	SYG2-400CA SYG2-350CA SYG2-400CA-A SYG2-160CA SYGA-160CNCA	Various	Various	Used for normal temperature, light load bearing at places in contact with water or steam.
	Molybdenum disulphide lubricant	SYG2-400M	400 g (10 per case)	Belows type	Used for places with heavy load

STANDARD TIGHTENING TORQUE

STANDARD TIGHTENING TORQUE TABLE (WHEN USING TORQUE WRENCH)


★ In the case of metric nuts and bolts for which there is no special instruction, tighten to the torque given in the table below.

Thread diameter of bolt	Width across flats		(0.9) COL00372
mm	mm	Nm	kgm
6	10	13.2 ± 1.4	1.35 ± 0.15
8	13	31±3	3.2 ± 0.3
10	17	66 ± 7	6.7 ± 0.7
12	19	113±10	11.5 ± 1
14	22	177 ± 19	18±2
16	24	279 ± 30	28.5±3
18	27	382 ± 39	39 ± 4
20	30	549 ± 59	56 ± 6
22	32	745 ± 83	76±8.5
24	36	927 ± 103	94.5 ± 10.5
27	41	1320 ± 140	135 ± 15
30	46	1720 ± 190	175 ± 20
33	50	2210 ± 240	225 ± 25
36	55	2750 ± 290	280 ± 30
39	60	3290 ± 340	335 ± 35

Thread diameter of bolt	Width across flats	CDL00373				
mm	mm	Nm	kgm			
6	10	7.85 ± 1.95	0.8 ± 0.2			
8	13	18.6 ± 4.9	1.9 ± 0.5			
10	14	40.2 ± 5.9	4.1 ± 0.6			
12	27	82.35 ± 7.85	8.4 ± 0.8			

TABLE OF TIGHTENING TORQUES FOR FLARED NUTS

★ In the case of flared nuts for which there is no special instruction, tighten to the torque given in the table below.

Thread diameter	Width across flat	Tightening torque				
mm	mm	Nm	kgm			
14	19	24.5 ± 4.9	2.5 ± 0.5			
18	24	49 ± 19.6	5 ± 2			
22	27	78.5 ± 19.6	8 ± 2			
24	32	137.3 ± 29.4	14±3			
30	36	176.5 ± 29.4	18±3			
33	41	196.1 ± 49	20 ± 5			
36	46	245.2 ± 49	25 ± 5			
42	55	294.2 ± 49	30 ± 5			

TABLE OF TIGHTENING TORQUES FOR SPLIT FLANGE BOLTS

★ In the case of split flange bolts for which there is no special instruction, tighten to the torque given in the table below.

Thread diameter	Width across flat	Tightening torque			
mm	mm	Nm	kgm		
10	14	65.7 ± 6.8	6.7 ± 0.7		
12	17	112 ± 9.8	11.5 ± 1		
16	22	279 ± 29	28.5 ± 3		

TABLE OF TIGHTENING TORQUES FOR O-RING BOSS PIPING JOINTS

★ Unless there are special instructions, tighten the O-ring boss piping joints to the torque below.

Nominal No.	Thread diameter	Width across flat	Tightenin	g torque
	mm	mm	Nm	kgm
02 03, 04 05, 06 10, 12 14	14 20 24 33 42	Varies depending on type of connector.	34.3± 4.9 93.1± 9.8 142.1± 19.6 421.4± 58.8 877.1± 132.3	3.5 ± 0.5 9.5 ± 1 14.5 ± 2 43 ± 6 89.5 ± 13.5

TABLE OF TIGHTENING TORQUES FOR O-RING BOSS PLUGS

★ Unless there are special instructions, tighten the O-ring boss plugs to the torque below.

Nominal No.	Thread diameter	Width across flat	Tightenir	ng torque	
	mm	mm	Nm	kgm	
08	8	14	7.35 ± 1.47	0.75 ± 0.15	
10	10	17	11.27 ± 1.47	1.15 ± 0.15	
12	12	19	17.64 ± 1.96	1.8 ± 0.2	
14	14	22	22.54 ± 1.96	2.3 ± 0.2	
16	16	24	29.4 ± 4.9	3 ± 0.5	
18	18	27	39.2 ± 4.9	4 ± 0.5	
20	20	30	49 ± 4.9	5±0.5	
24	24	32	68.6 ± 9.8	7±1	
30	30	32	107.8± 14.7	11± 1.5	
33	33	_	127.4 ± 19.6	13±2	
36	36	36	151.9 ± 24.5	15.5 ± 2.5	
42	42	_	210.7 ± 29.4	21.5 ± 3	
52	52		323.4 ± 44.1	33 ± 4.5	

TIGHTENING TORQUE FOR 102 ENGINE SERIIES (BOLT AND NUTS)

Use these torques for bolts and nuts (unit: mm) of Cummins Engine.

Thread diameter	Tighten	ing torque
mm	Nm	kgm
6	10 ± 2	1.02 ± 0.20
8	24 ± 4	2.45 ± 0.41
10	43 ± 6	4.38 ± 0.61
12	77 ± 12	7.85 ± 1.22

TIGHTENING TORQUE FOR 102 ENGINE SERIIES (EYE JOINTS)

Use these torques for eye joints (unit: mm) of Cummins Engine.

Thread diameter	Tightening torque				
mm	Nm	kgm			
6	8 ± 2	0.81 ± 0.20			
8	10 ± 2	1.02 ± 0.20			
10	12 ± 2	1.22 ± 0.20			
12	24 ± 4	2.45 ± 0.41			
14	36 ± 5	3.67 ± 0.51			

TIGHTENING TORQUE FOR 102 ENGINE SERIIES (TAPERED SCREWS)

Use these torques for tapered screws (unit: inch) of Cummins Engine.

Thread diameter	Tightening torque				
inch	Nm	kgm			
1 / 16	3 ± 1	0.31 ± 0.10			
1 / 8	8 ± 2 12 ± 2	0.81 ± 0.20 1.22 ± 0.20			
3 / 8	15 ± 2	1.53 ± 0.41 2.45 ± 0.41			
1 / 2 3 / 4	24 ± 4 36 ± 5	3.67 ± 0.51			
1	60 ± 9	6.12 ± 0.92			

ELECTRIC WIRE CODE

In the wiring diagrams, various colors and symbols are employed to indicate the thickness of wires. This wire code table will help you understand WIRING DIAGRAMS.

Example: 5WB indicates a cable having a nominal number 5 and white coating with black stripe.

CLASSIFICATION BY THICKNESS

Nominal		Copper wire		Coble O.D.	:	
number	Number of strands	Dia. of strands (mm)	Cross section (mm²)	Cable O.D. (mm)	Current rating (A)	Applicable circuit
0.85	11	0.32	0.88	2.4	12	Starting, lighting, signal etc.
2	26	0.32	2.09	3.1	20	Lighting, signal etc.
5	65	0.32	5.23	4.6	37	Charging and signal
15	84	0.45	13.36	7.0	59	Starting (Glow plug)
40	85	0.80	42.73	11.4	135	Starting
60	127	0.80	63.84	13.6	178	Starting
100	217	0.80	109.1	17.6	230	Starting

CLASSIFICATION BY COLOR AND CODE

Prior- ity	Circuits Classi- fication		Charging	Ground	Starting	Lighting	Instrument	Signal	Other
1	Pri-			В	В	R	Υ	G	L
	mary	Color	White	Black	Black	Red	Yellow	Green	Blue
2		Code	WR		BW	RW	YR	GW	LW
			White & Red	_	Black & White	Red & White	Yellow & Red	Green & White	Blue & White
3	Co		WB		BY	RB	YB	GR	LR
		Color	White & Black	_	Black & Yellow	Red & Black	Yellow & Black	Green & Red	Blue & Red
4	Auxi-	Code	WL		BR	RY	YG	GY	LY
4	liary	Color	White & Blue	_	Black & Red	Red & Yellow	Yellow & Green	Green & Yellow	Blue & Yellow
5		Code	WG		_	RG	YL	GB	LB
5		Color	White & Green	_		Red & Green	Yellow & Blue	Green & Black	Blue & Black
6		Code	-		_	RL	YW	GL	_
		Color — –		_	_	Red & Blue	Yellow & White	Green & Blue	_

CONVERSION TABLE

CONVERSION TABLE

METHOD OF USING THE CONVERSION TABLE

The Conversion Table in this section is provided to enable simple conversion of figures. For details of the method of using the Conversion Table, see the example given below.

EXAMPLE

- Method of using the Conversion Table to convert from millimeters to inches
- 1. Convert 55 mm into inches.
 - (1) Locate the number 50 in the vertical column at the left side, take this as (a), then draw a horizontal line from (A).
 - (2) Locate the number 5 in the row across the top, take this as (B), then draw a perpendicular line down from (B).
 - (3) Take the point where the two lines cross as ©. This point © gives the value when converting from millimeters to inches. Therefore, 55 mm = 2.165 inches.
- 2. Convert 550 mm into inches.
 - (1) The number 550 does not appear in the table, so divide by 10 (move the decimal point one place to the left) to convert it to 55 mm.
 - (2) Carry out the same procedure as above to convert 55 mm to 2.165 inches.
 - (3) The original value (550 mm) was divided by 10, so multiply 2.165 inches by 10 (move the decimal point one place to the right) to return to the original value. This gives 550 mm = 21.65 inches.

eters to	inches				(B) 1 mm = 0.0393					.03937 in
	0	1	2	3	4	5	6	7	8	9
0	0	0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354 0.748
20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
40	1.161	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.536 1.929
50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
60 70	2.362 2.756	2.402 2.795	2.441 2.835	2.480 2.874	2.520 2.913	2.559 2.953	2.598 2.992	2.638 3.032	2.677 3.071	2.717 3.110
80 90	3.150 3.543	3.189 3.583	3.228 3.622	3.268 3.661	3.307 3.701	3.346 3.740	3.386 3.780	3.425 3.819	3.465 3.858	3.504 3.898
	0 10 20 30 40 50 60 70 80	0 0 10 0.394 20 0.787 30 1.181 40 1.575 50 1.969 60 2.362 70 2.756 80 3.150	0 0 1 0 0 0.039 10 0.394 0.433 20 0.787 0.827 30 1.181 1.220 40 1.575 1.614 50 1.969 2.008 60 2.362 2.402 70 2.756 2.795 80 3.150 3.189	0 1 2 0 0 0.039 0.079 10 0.394 0.433 0.472 20 0.787 0.827 0.866 30 1.181 1.220 1.260 40 1.575 1.614 1.654 50 1.969 2.008 2.047 60 2.362 2.402 2.441 70 2.756 2.795 2.835 80 3.150 3.189 3.228	0 1 2 3 0 0 0.039 0.079 0.118 10 0.394 0.433 0.472 0.512 20 0.787 0.827 0.866 0.906 30 1.181 1.220 1.260 1.299 40 1.575 1.614 1.654 1.693 50 1.969 2.008 2.047 2.087 60 2.362 2.402 2.441 2.480 70 2.756 2.795 2.835 2.874 80 3.150 3.189 3.228 3.268	0 1 2 3 4 0 0 0.039 0.079 0.118 0.157 10 0.394 0.433 0.472 0.512 0.551 20 0.787 0.827 0.866 0.906 0.945 30 1.181 1.220 1.260 1.299 1.339 40 1.575 1.614 1.654 1.693 1.732 50 1.969 2.008 2.047 2.087 2.126 60 2.362 2.402 2.441 2.480 2.520 70 2.756 2.795 2.835 2.874 2.913 80 3.150 3.189 3.228 3.268 3.307	0 1 2 3 4 5 0 0 0.039 0.079 0.118 0.157 0.197 10 0.394 0.433 0.472 0.512 0.551 0.591 20 0.787 0.827 0.866 0.906 0.945 0.984 30 1.181 1.220 1.260 1.299 1.339 1.378 40 1.575 1.614 1.654 1.693 1.732 1.772 50 1.969 2.008 2.047 2.087 2.126 2.165 60 2.362 2.402 2.441 2.480 2.520 2.559 70 2.756 2.795 2.835 2.874 2.913 2.953 80 3.150 3.189 3.228 3.268 3.307 3.346	0 1 2 3 4 5 6 0 0 0.039 0.079 0.118 0.157 0.197 0.236 10 0.394 0.433 0.472 0.512 0.551 0.591 0.630 20 0.787 0.827 0.866 0.906 0.945 0.984 1.024 30 1.181 1.220 1.260 1.299 1.339 1.378 1.417 40 1.575 1.614 1.654 1.693 1.732 1.772 1.811 50 1.969 2.008 2.047 2.087 2.126 2.165 2.205 60 2.362 2.402 2.441 2.480 2.520 2.559 2.598 70 2.756 2.795 2.835 2.874 2.913 2.953 2.992 80 3.150 3.189 3.228 3.268 3.307 3.346 3.386	0 1 2 3 4 5 6 7 0 0 0.039 0.079 0.118 0.157 0.197 0.236 0.276 10 0.394 0.433 0.472 0.512 0.551 0.591 0.630 0.669 20 0.787 0.827 0.866 0.906 0.945 0.984 1.024 1.063 30 1.181 1.220 1.260 1.299 1.339 1.378 1.417 1.457 40 1.575 1.614 1.654 1.693 1.732 1.772 1.811 1.850 © 1.969 2.008 2.047 2.087 2.126 2.165 2.205 2.244 60 2.362 2.402 2.441 2.480 2.520 2.559 2.598 2.638 70 2.756 2.795 2.835 2.874 2.913 2.953 2.992 3.032 80 3.150 3.189 3.228 <th>o 1 2 3 4 5 6 7 8 0 0 0.039 0.079 0.118 0.157 0.197 0.236 0.276 0.315 10 0.394 0.433 0.472 0.512 0.551 0.591 0.630 0.669 0.709 20 0.787 0.827 0.866 0.906 0.945 0.984 1.024 1.063 1.102 30 1.181 1.220 1.260 1.299 1.339 1.378 1.417 1.457 1.496 40 1.575 1.614 1.654 1.693 1.732 1.772 1.811 1.850 1.890 50 1.969 2.008 2.047 2.087 2.126 2.165 2.205 2.244 2.283 60 2.362 2.402 2.441 2.480 2.520 2.559 2.598 2.638 2.677 70 2.756 2.795 2.835 2.874 2.91</th>	o 1 2 3 4 5 6 7 8 0 0 0.039 0.079 0.118 0.157 0.197 0.236 0.276 0.315 10 0.394 0.433 0.472 0.512 0.551 0.591 0.630 0.669 0.709 20 0.787 0.827 0.866 0.906 0.945 0.984 1.024 1.063 1.102 30 1.181 1.220 1.260 1.299 1.339 1.378 1.417 1.457 1.496 40 1.575 1.614 1.654 1.693 1.732 1.772 1.811 1.850 1.890 50 1.969 2.008 2.047 2.087 2.126 2.165 2.205 2.244 2.283 60 2.362 2.402 2.441 2.480 2.520 2.559 2.598 2.638 2.677 70 2.756 2.795 2.835 2.874 2.91

FOREWORD

Millimeters to Inches

1 mm = 0.03937 in

	0	1	2	3	4	5	6	7	8	9
0	0	0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Kilogram to Pound

1 kg = 2.2046 lb

	0	1	2	3	4	5	6	7	8	9
0	0	2.20	4.41	6.61	8.82	11.02	13.23	15.43	17.64	19.84
10	22.05	24.25	26.46	28.66	30.86	33.07	35.27	37.48	39.68	41.89
20	44.09	46.30	48.50	50.71	51.91	55.12	57.32	59.53	61.73	63.93
30	66.14	68.34	70.55	72.75	74.96	77.16	79.37	81.57	83.78	85.98
40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.03
50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.07
60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.12
70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.17
80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.21
90	198.42	200.62	202.83	205.03	207.24	209.44	211.64	213.85	216.05	218.26

Liter to U.S. Gallon

 1ℓ = 0.2642 U.S. Gal

	0	1	2	3	4	5	6	7	8	9
0	0	0.264	0.528	0.793	1.057	1.321	1.585	1.849	2.113	2.378
10	2.642	2.906	3.170	3.434	3.698	3.963	4.227	4.491	4.755	5.019
20	5.283	5.548	5.812	6.076	6.340	6.604	6.869	7.133	7.397	7.661
30	7.925	8.189	8.454	8.718	8.982	9.246	9.510	9.774	10.039	10.303
40	10.567	10.831	11.095	11.359	11.624	11.888	12.152	12.416	12.680	12.944
50	13.209	13.473	13.737	14.001	14.265	14.529	14.795	15.058	15.322	15.586
60	15.850	16.115	16.379	16.643	16.907	17.171	17.435	17.700	17.964	18.228
70	18.492	18.756	19.020	19.285	19.549	19.813	20.077	20.341	20.605	20.870
80	21.134	21.398	21.662	21.926	22.190	22.455	22.719	22.983	23.247	23.511
90	23.775	24.040	24.304	24.568	24.832	25.096	25.361	25.625	25.889	26.153

Liter to U.K. Gallon

 1ℓ = 0.21997 U.K. Gal

	0	1	2	3	4	5	6	7	8	9
0	0	0.220	0.440	0.660	0.880	1.100	1.320	1.540	1.760	1.980
10	2.200	2.420	2.640	2.860	3.080	3.300	3.520	3.740	3.950	4.179
20	4.399	4.619	4.839	5.059	5.279	5.499	5.719	5.939	6.159	6.379
30	6.599	6.819	7.039	7.259	7.479	7.969	7.919	8.139	8.359	8.579
40	8.799	9.019	9.239	9.459	9.679	9.899	10.119	10.339	10.559	10.778
50	10.998	11.281	11.438	11.658	11.878	12.098	12.318	12.528	12.758	12.978
60	13.198	13.418	13.638	13.858	14.078	14.298	14.518	14.738	14.958	15.178
70	15.398	15.618	15.838	16.058	16.278	16.498	16.718	16.938	17.158	17.378
80	17.598	17.818	18.037	18.257	18.477	18.697	18.917	19.137	19.357	19.577
90	19.797	20.017	20.237	20.457	20.677	20.897	21.117	21.337	21.557	21.777

kgm to ft. lb

1 kgm = 7.233 ft. lb

Γ								,		
	0	1	2	3	4	5	6	7	8	9
0	o	7.2	14.5	21.7	28.9	36.2	43.4	50.6	57.9	65.1
10	72.3	79.6	86.8	94.0	101.3	108.5	115.7	123.0	130.2	137.4
20	144.7	151.9	159.1	166.4	173.6	180.8	188.1	195.3	202.5	209.8
30	217.0	224.2	231.5	238.7	245.9	253.2	260.4	267.6	274.9	282.1
40	289.3	296.6	303.8	311.0	318.3	325.5	332.7	340.0	347.2	354.4
50	361.7	368.9	376.1	383.4	390.6	397.8	405.1	412.3	419.5	426.8
60	434.0	441.2	448.5	455.7	462.9	470.2	477.4	484.6	491.8	499.1
70	506.3	513.5	520.8	528.0	535.2	542.5	549.7	556.9	564.2	571.4
80	578.6	585.9	593.1	600.3	607.6	614.8	622.0	629.3	636.5	643.7
90	651.0	658.2	665.4	672.7	679.9	687.1	694.4	701.6	708.8	716.1
100	723.3	730.5	737.8	745.0	752.2	759.5	766.7	773.9	781.2	788.4
110	795.6	802.9	810.1	817.3	824.6	831.8	839.0	846.3	853.5	860.7
120	868.0	875.2	882.4	889.7	896.9	904.1	911.4	918.6	925.8	933.1
130	940.3	947.5	954.8	962.0	969.2	976.5	983.7	990.9	998.2	1005.4
140 1	1012.6	1019.9	1027.1	1034.3	1041.5	1048.8	1056.0	1063.2	1070.5	1077.7
150 1	084.9	1092.2	1099.4	1106.6	1113.9	1121.1	1128.3	1135.6	1142.8	1150.0
160 1	157.3	1164.5	1171.7	1179.0	1186.2	1193.4	1200.7	1207.9	1215.1	1222.4
170 1	129.6	1236.8	1244.1	1251.3	1258.5	1265.8	1273.0	1280.1	1287.5	1294.7
180 1	301.9	1309.2	1316.4	1323.6	1330.9	1338.1	1345.3	1352.6	1359.8	1367.0
190 1	374.3	1381.5	1388.7	1396.0	1403.2	1410.4	1417.7	1424.9	1432.1	1439.4

kg/cm² to lb/in²

 $1 \text{kg/cm}^2 = 14.2233 \text{ lb/in}^2$

	0	1	2	3	4	5	6	7	8	9
0	0	14.2	28.4	42.7	56.9	71.1	85.3	99.6	113.8	128.0
10	142.2	156.5	170.7	184.9	199.1	213.4	227.6	241.8	256.0	270.2
20	284.5	298.7	312.9	327.1	341.4	355.6	369.8	384.0	398.3	412.5
30	426.7	440.9	455.1	469.4	483.6	497.8	512.0	526.3	540.5	554.7
40	568.9	583.2	597.4	611.6	625.8	640.1	654.3	668.5	682.7	696.9
50	711.2	725.4	739.6	753.8	768.1	782.3	796.5	810.7	825.0	839.2
60	853.4	867.6	881.8	896.1	910.3	924.5	938.7	953.0	967.2	981.4
70	995.6	1010	1024	1038	1053	1067	1081	1095	1109	1124
80	1138	1152	1166	1181	1195	1209	1223	1237	1252	1266
90	1280	1294	1309	1323	1337	1351	1365	1380	1394	1408
										;
100	1422	1437	1451	1465	1479	1493	1508	1522	1536	1550
110	1565	1579	1593	1607	1621	1636	1650	1664	1678	1693
120	1707	1721	1735	1749	1764	1778	1792	1806	1821	1835
130	1849	1863	1877	1892	1906	1920	1934	1949	1963	1977
140	1991	2005	2020	2034	2048	2062	2077	2091	2105	2119
									İ	
150	2134	2148	2162	2176	2190	2205	2219	2233	2247	2262
160	2276	2290	2304	2318	2333	2347	2361	2375	2389	2404
170	2418	2432	2446	2460	2475	2489	2503	2518	2532	2546
180	2560	2574	2589	2603	2617	2631	2646	2660	2674	2688
190	2702	2717	2731	2745	2759	2773	2788	2802	2816	2830
	i							:		
200	2845	2859	2873	2887	2901	2916	2930	2944	2958	2973
210	2987	3001	3015	3030	3044	3058	3072	3086	3101	3115
220	3129	3143	3158	3172	3186	3200	3214	3229	3243	3257
230	3271	3286	3300	3314	3328	3343	3357	3371	3385	3399
240	3414	3428	3442	3456	3470	3485	3499	3513	3527	3542

Temperature

Fahrenheit-Centigrade Conversion; a simple way to convert a Fahrenheit temperature reading into a Centigrade temperature reading or vice versa is to enter the accompanying table in the center or boldface column of figures.

These figures refer to the temperature in either Fahrenheit or Centigrade degrees.

If it is desired to convert from Fahrenheit to Centigrade degrees, consider the center column as a table of Fahrenheit temperatures and read the corresponding Centigrade temperature in the column at the left.

If it is desired to convert from Centigrade to Fahrenheit degrees, consider the center column as a table of Centigrade values, and read the corresponding Fahrenheit temperature on the right.

1°C = 33.8°F

										•	C = 33.0°F
°C		°F	°C		۰F	°C		°F	°C		°F
-40.4	-40	-40.0	-11.7	11	51.8	7.8	46	114.8	27.2	81	117.8
-37.2	-35	-31.0	-11.1	12	53.6	8.3	47	116.6	27.8	82	179.6
-34.4	-30	-22.0	-10.6	13	55.4	8.9	48	118.4	28.3	83	181.4
-31.7	-25	-13.0	-10.0	14	57.2	9.4	49	120.2	28.9	84	183.2
-28.9	-20	-4.0	-9.4	15	59.0	10.0	50	122.0	29.4	85	185.0
-28.3	-19	-2.2	-8.9	16	60.8	10.6	51	123.8	30.0	86	186.8
-27.8	-18	-0.4	-8.3	17	62.6	11.1	52	125.6	30.6	87	188.6
-27.2	-17	1.4	-7.8	18	64.4	11.7	53	127.4	31.1	88	190.4
-26.7	-16	3.2	-7.2	19	66.2	12.2	54	129.2	31.7	89	192.2
-26.1	-15	5.0	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-25.6	-14	6.8	-6.1	21	69.8	13.3	56	132.8	32.8	91	195.8
-25.0	-13	8.6	-5.6	22	71.6	13.9	57	134.6	33.3	92	197.6
-24.4	-12	10.4	-5.0	23	73.4	14.4	58	136.4	33.9	93	199.4
-23.9	-11	12.2	-4.4	24	75.2	15.0	59	138.2	34.4	94	201.2
-23.3	-10	14.0	-3.9	25	77.0	15.6	60	140.0	35.0	95	203.0
-22.8	-9	15.8	-3.3	26	78.8	16.1	61	141.8	35.6	96	204.8
-22.2	-8	17.6	-2.8	27	80.6	16.7	62	143.6	36.1	97	206.6
-21.7	-7	19.4	-2.2	28	82.4	17.2	63	145.4	36.7	98	208.4
-21.1	-6	21.2	-1.7	29	84.2	17.8	64	147.2	37.2	99	210.2
-20.6	-5	23.0	-1.1	30	86.0	18.3	65	149.0	37.8	100	212.0
-20.0	-4	24.8	-0.6	31	87.8	18.9	66	150.8	40.6	105	221.0
-19.4	-3	26.6	0	32	89.6	19.4	67	152.6	43.3	110	230.0
-18.9	-2	28.4	0.6	33	91.4	20.0	68	154.4	46.1	115	239.0
-18.3	–1	30.2	1.1	34	93.2	20.6	69	156.2	48.9	120	248.0
-17.8	0	32.0	1.7	35	95.0	21.1	70	158.0	51.7	125	257.0
-17.2	1	33.8	2.2	36	96.8	21.7	71	159.8	54.4	130	266.0
-16.7	2	35.6	2.8	37	98.6	22.2	72	161.6	57.2	135	275.0
-16.1	3	37.4	3.3	38	100.4	22.8	73	163.4	60.0	140	284.0
-15.6	4	39.2	3.9	39	102.2	23.3	74	165.2	62.7	145	293.0
-15.0	5	41.0	4.4	40	104.0	23.9	75	167.0	65.6	150	302.0
-14.4	6	42.8	5.0	41	105.8	24.4	76	168.8	68.3	155	311.0
-13.9	7	44.6	5.6	42	107.6	25.0	77	170.6	71.1	160	320.0
-13.3	8	46.4	6.1	43	109.4	25.6	78	172.4	73.9	165	329.0
-12.8	9	48.2	6.7	44	111.2	26.1	79	174.2	76.7	170	338.0
-12.2	10	50.0	7.2	45	113.0	26.7	80	176.0	79.4	175	347.0

ENGINE 01 GENERAL

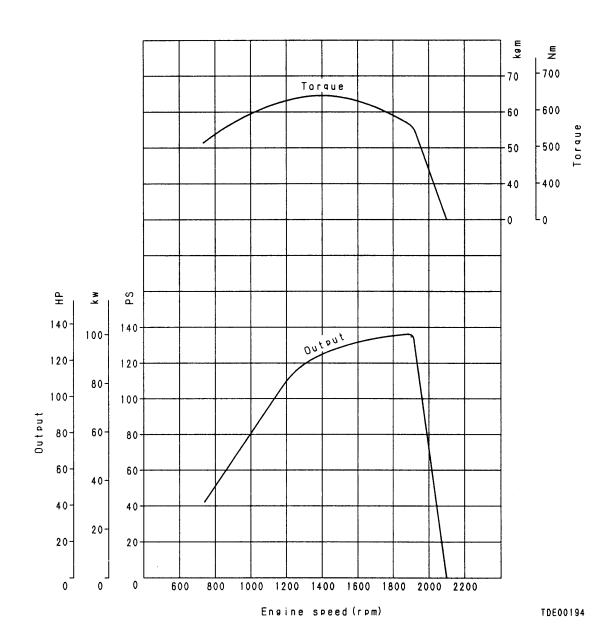
Specifications	01-002
Engine performance curve	01-006
Weight table	01-014

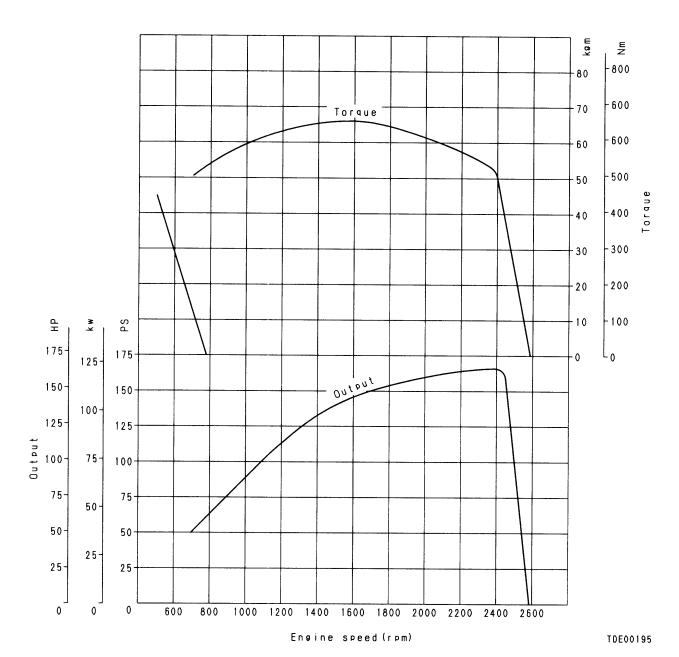
SPECIFICATIONS

	Engine model		S6D108-1				
-	Applicable machine		D57S-1	WA320-3	WA380-3		
Nu	mber of cylinder – Bore x Stroke	mm	6 – 108 × 130				
Tot	al piston displacement	ℓ {cc}		7.15 {7,150}			
Firi	ng order	-		1 - 5 - 3 - 6 - 2 - 4			
	Overall length	mm	1,273	1,312	1,312		
suc	Overall width	mm	700 (excluding fan)	846	824		
Dimensions	Overall height (excluding exhaust pipe)	mm	1,493 (excluding fan)	1,420	1,420		
۵	Overall height (including exhaust pipe)	mm	_	-	-		
	Flywheel horsepower	kW/rpm {HP/rpm}	99.3/1,900 {133/1,900} (Net)	121/2,380 {163/2,380} (Net)	140/2,200 {187/2,200} (Net)		
Performance	Maximum torque	Nm/rpm {kgm/rpm}	618/1,400 {63.0/1,400} (Net)	647/1,600 {66.0/1,600} (Net)	804/1,500 {82.0/1,500} (Net)		
	High idling speed	rpm	2,050 – 2,150	2,560 – 2,610	2,450 – 2,550		
	Low idling speed	rpm	800 – 850	780 – 830	800 – 850		
	Minimum fuel consumption ratio	g/kW•h {g/HP•h}	218 {163}	212 {158}	212 {158}		
Dry	/ weight	kg	820	730	730		
Fu	el injection pump		BOSCH PES-AD type				
Go ——	vernor	T	BOSCH RSV centrifugal, all speed type				
	oricating oil amount fill capacity)	l	26 (22)	31 (28)	31 (28)		
Со	olant amount	l	58 (engine only: 13)	33 (engine only: 13)	53 (engine only: 13)		
Alt	ernator		24 V, 13 A *1: 24 V, 35 A	24 V, 50 A	24 V, 50 A		
Sta	orting motor		24 V, 7.5 kW	24 V, 7.5 kW	24 V, 7.5 kW		
Ba	ttery		12 V 150 Ah x 2 *1: 12 V 200 Ah x 2	12 V 140 Ah x 2	12 V 150 Ah x 2		
Tu	rbocharger			SCHWITZER S2B type	SCHWITZER S2B type		
Air	compressor		_	-	_		
	ners						

^{*1:} cold terrain spec.

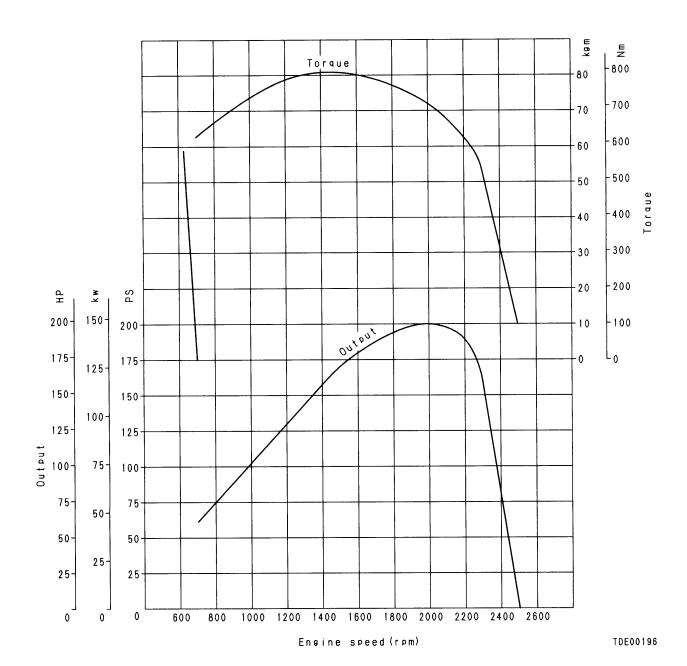
•	S6D108-1		
	6 - 108 - 130		
	7.15 {7,150}		
	1 - 5 - 3 - 6 - 2 - 4		
	BOSCH PES-AD type		
BOSCH	RSV centrifugal, all sp	eed type	
		6 - 108 - 130 7.15 (7,150) 1 - 5 - 3 - 6 - 2 - 4	6 - 108 - 130 7.15 (7,150) 1 - 5 - 3 - 6 - 2 - 4


	Engine model			SA6D108-1			
	Applicable machine		PC300-5 PC300HD-5 PC360LC-5	WA420-3	Sugar cane harvester AUSTOFT in AUSTRALIA (Engine No. 10001 - 10926)		
Nu	mber of cylinder – Bore x Stroke	mm	6 – 108 × 130				
Tot	al piston displacement	ℓ (cc)	7.15 {7,150}				
Firi	ng order	_	•	1 - 5 - 3 - 6 - 2 - 4			
	Overall length	mm	1,523	1,346	1,216		
us	Overall width	mm	921	921 839			
Dimensions	Overall height (excluding exhaust pipe)	mm	1,127	1,423	1,070		
Ö	Overall height (including exhaust pipe)	mm	-	-	-		
	Flywheel horsepower	kW/rpm {HP/rpm}	154/1,950 {207/2,950} (Net)	162/2,200 {217/2,200} (Net)	179/2,400 {240/2,400} (Gross)		
Performance	Maximum torque	Nm/rpm {kgm/rpm}	814/1,500 {83.0/1,500} (Net)	847/1,500 {86.4/1,500} (Net)	785/1,600 {80.0/1,600} (Gross)		
ш.	High idling speed	rpm	2,115 – 2,235	2,425 - 2,525	2,560 - 2,640		
	Low idling speed	rpm	700 – 750	700 – 750	950 – 1,050		
	Minimum fuel consumption ratio	g/kW•h {g/HP•h}	197 {147}	204 {152}	206 {151}		
Dr	y weight	kg	700	790	610		
Fu	el injection pump		DENSO NB (EP-9) type				
G	overnor		DENSO RSV centrifugal, all speed type				
	bricating oil amount fill capacity)	l	28 (25)	31 (28)	28 (25)		
Co	polant amount	l	30	53 (engine only: 14)	(engine only: 13)		
Al	ternator	<u> </u>	24 V, 25 A	24 V, 25 A	24 V, 50 A		
St	arting motor		24 V, 7.5 kW	24 V, 7.5 kW	24 V, 7.5 kW		
Ва	attery		12 V 150 Ah x 2	12 V 150 Ah x 2	12 V 120 Ah x 2		
Tu	ırbocharger		GARRET TO4E type	GARRET TO4E type (with waist gate valve)	GARRET TO4E type		
Ai	r compressor		_	_	_		
O	thers		Aftercooler	Aftercooler	Aftercooler		


		SA6D108-1		***************************************						
Sugar cane harvester AUSTOFT in AUSTRALIA (Engine No. 10927 and up)	Generator EG185B-L-1 (for ALGERIA)	Generator DENYO DCA180	SA6D108-M-1							
2	6 - 108 - 130									
7.15 {7,150}										
		1 - 5 - 3 - 6 - 2 - 4								
1,216	1,507	1,507	1,173.8							
786	828	827	640							
1,070	1,267	1,210	944.6							
-	-	-	-							
180/2,500 {241/2,500} (Gross)	Long time rated flywheel horsepower 136/1,500 {182/1,500} (Net) Normal flywheel horsepower	Rated flywheel horsepower 136 {182}/1,500 (50 Hz) 162 {217}/1,800 (60 Hz) (Net) Maximum flywheel horsepower	{420/2,700} (Gross)							
824/1,600 {84.0/1,600} (Gross)	150/1,500 {201/1,500} (Net)	150 {201}/1,500 (50 Hz) 178 {239}/1,800 (60 Hz) (Net)	-							
2,700 – 2,750	max. 1,575	max. 1,560 (Rated, 50 Hz) max. 1,870 (Rated, 60 Hz)	2,920 – 3,020							
950 – 1,050	700 – 800	750	700 – 750							
206 {151}	215 {160}	210 {155} (50 Hz) 212 {158} (60 Hz)	- (Supplied by A.D.E.)							
610	835	835	777							
		DENSO NB (EP-9) type	•							
	DENSO	RSV centrifugal, all sp	eed type							
28 (25)	25 (23)	24 (22)	22							
(engine only: 13)	28 (engine only: 13)	53 (engine only: 14)	-							
24 V, 50 A	24 V, 13 A	24 V, 13 A)							
24 V, 7.5 kW	24 V, 7.5 kW	24 V, 7.5 kW	Supplied by A.D.E.							
12 V 120 Ah x 2	12 V 120 Ah x 2	12 V 120 Ah x 2	J							
GARRET TO4E type	GARRET TO4E type	GARRET TO4E type	_							
-	_	_	-							
Aftercooler	Aftercooler	Aftercooler	Aftercooler							

ENGINE PERFORMANCE CURVE

S6D108-1 (D57S-1B)

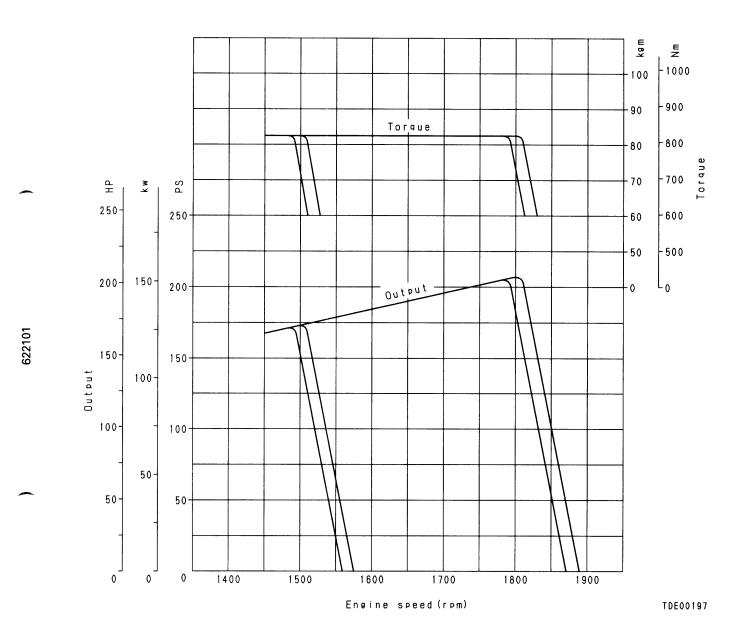

Flywheel horsepower: 99 kW (133 HP)/1,900 rpm Max. torque: 618 Nm (63 kgm)/1,400 rpm

S6D108-1 (WA380-3)

Flywheel horsepower : 140 kW (187 HP)/2,200 rpm Max. torque : 840 Nm (82 kgm)/1,500 rpm

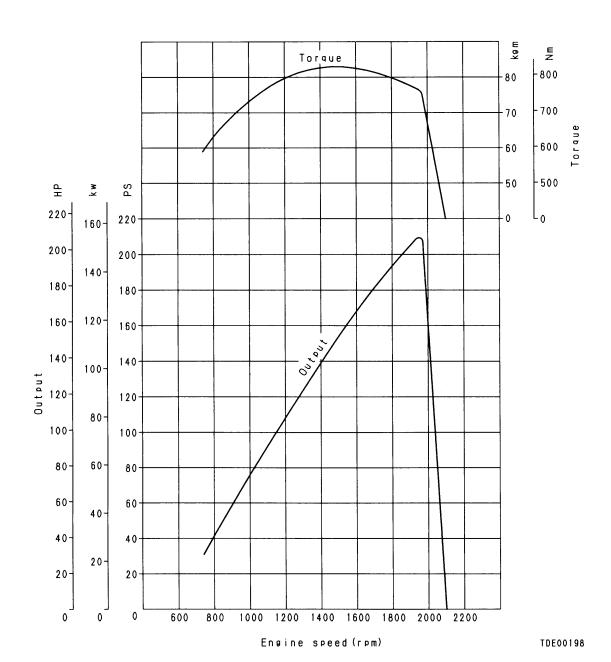
S6D108-1 (EG150BS-5)

Emergency


Flywheel horsepower : 152 kW (204 HP)/1,800 rpm (60 Hz)

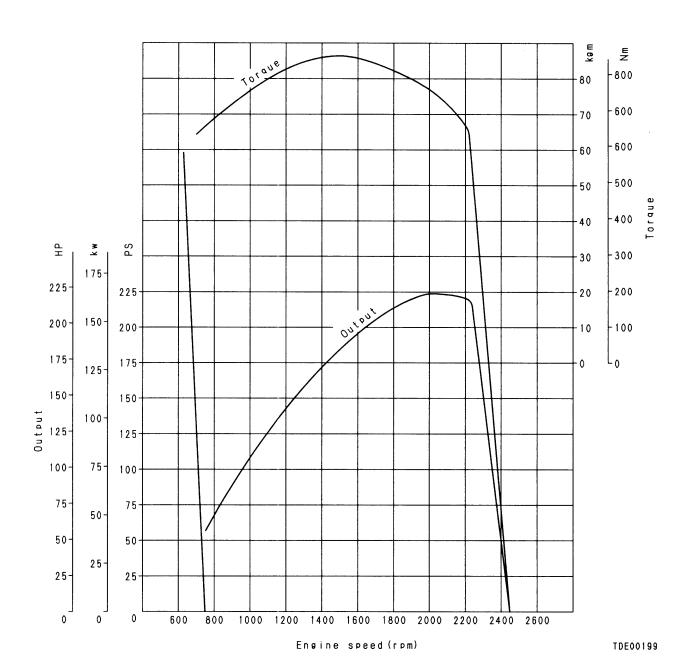
128 kW (171 HP)/1,500 rpm (50 Hz)

Normal

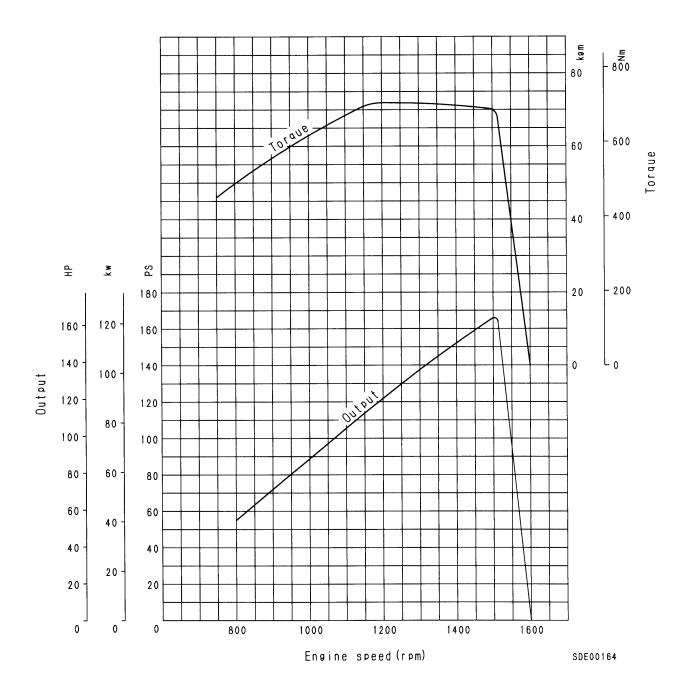

134 kW (180 HP)/1,800 rpm (60 Hz)

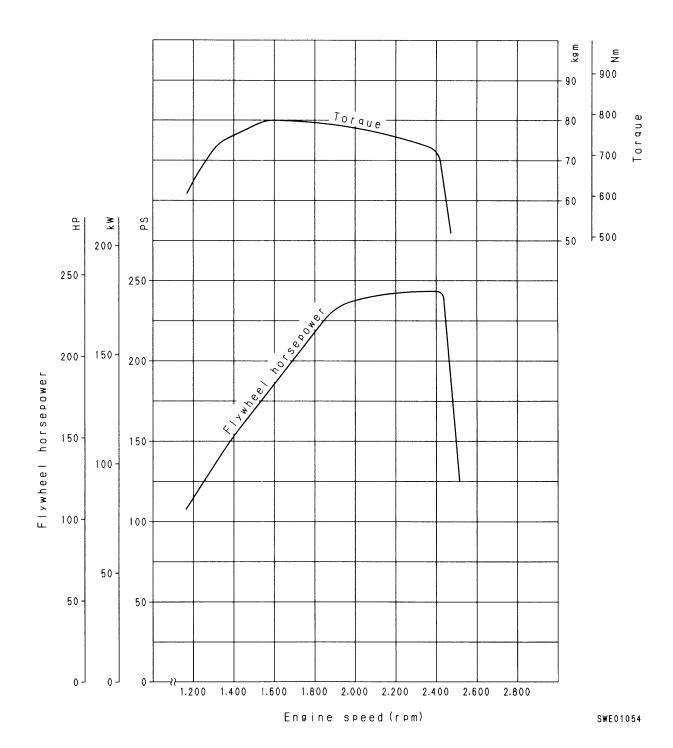
113 kW (151 HP)/1,500 rpm (50 Hz)

SA6D108-1 (PC300-5)

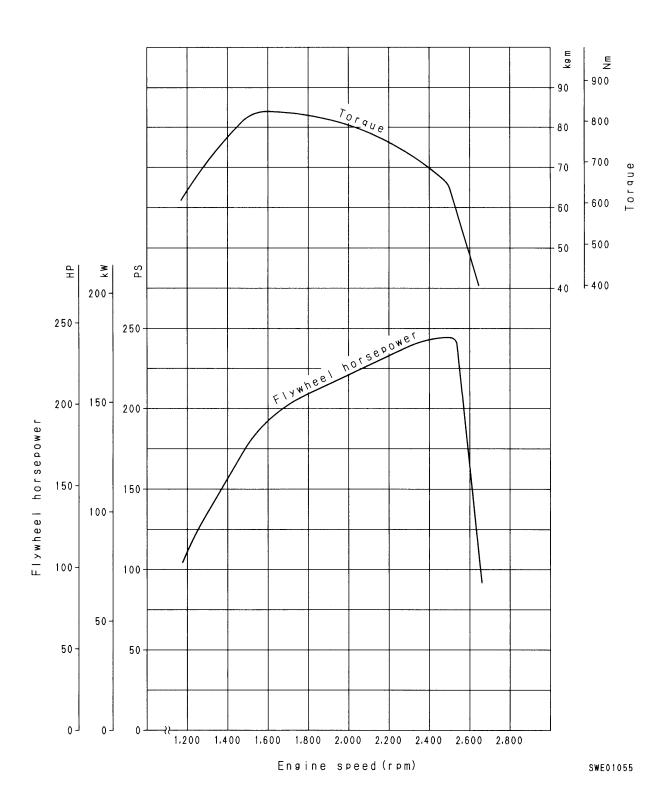

Flywheel horsepower: 154 kW (207 HP)/1,950 rpm Max. torque: 814 Nm (83 kgm)/1,500 rpm

SA6D108-1 (WA420-3)


622101


Flywheel horsepower : 162 kW (217 HP)/2,200 rpm Max. torque : 847 Nm (86.4 kgm)/1,500 rpm

SA6D108-1 (For Egypt EIM: Power unit)


Flywheel horsepower: 119 kW (160 HP)/1,500 rpm Max. torque: 706 Nm (72 kgm)/1,200 rpm

SA6D108-1 [Sugar cane harvester AUSTOFT in AUSTRALIA (Engine No. 10297 and up)]

Flywheel horsepower: 180 kW {241 HP}/2,400 rpm Maximum. torque: 824 Nm {84.0 kgm}/1,600 rpm

WEIGHT TABLE

⚠ This weight table is a guide for use when transporting or handling components.

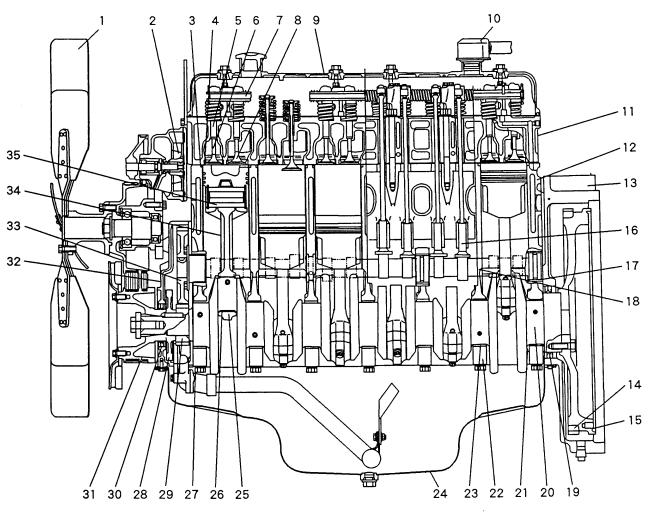
			Unit: kg
ltem	Components	S6D108-1	
	GARRET TO4E type	9.9	
Turbocharger	SCHWITZER S2B type	7.0	
Aftercooler assembly		_	
Intake manifold		14.2	
Cylinder head assembly	Cylinder head, valve, rocker arm	63.0	
Cylinder block assembly	Cylinder block, bearing cap, valve spring	187	
Crankshaft assembly	Crankshaft, crankshaft gear	75.3	
Camshaft assembly	Camshaft, camshaft gear, thrust bearing	8.0	
Timing gear case assembly		19.5	
Oil pan		11.0	
Piston and connecting rod assembly	Piston, piston ring, piston pin, connecting rod	27.0	
		D57S-1	62.5
lywheel assembly		WA320-3, WA380-3	32.3
		EG150BS-5	113.0
		D57S-1	59.5
Flywheel housing		WA320-3, WA380-3	33.1
		EG150BS-5	46.5
Fool window		D57S-1, EG150BS-5	16.0
Fuel injection pump		WA320-3, WA380-3	15.0
Walter		D57S-1	10.4
vvater pump		WA320-3, WA380-3	24.0
		24 V, 13 A	8.5
Alternator		24 V, 25 A	8.5
		24 V, 50 A	10.0
Starting motor		14.5	
	Turbocharger Aftercooler assembly Intake manifold Cylinder head assembly Cylinder block assembly Crankshaft assembly Camshaft assembly Timing gear case assembly Oil pan Piston and connecting rod assembly Flywheel assembly Flywheel housing Fuel injection pump Water pump Alternator	Turbocharger GARRET TO4E type SCHWITZER S2B type Aftercooler assembly Intake manifold Cylinder head assembly Cylinder block assembly Cylinder block assembly Crankshaft assembly Crankshaft assembly Crankshaft assembly Camshaft, crankshaft gear Camshaft assembly Timing gear case assembly Oil pan Piston and connecting rod assembly Flywheel assembly Flywheel housing Fuel injection pump Alternator	Turbocharger GARRET TO4E type 9.9 SCHWITZER S2B type 7.0 Aftercooler assembly - Intake manifold 14.2 Cylinder head assembly Cylinder head, valve, rocker arm 63.0 Cylinder block assembly Cylinder block, bearing cap, valve spring 187 Crankshaft assembly Crankshaft, crankshaft gear 75.3 Camshaft assembly Crankshaft, crankshaft gear, thrust bearing 8.0 Timing gear case assembly 19.5 Oil pan 11.0 Piston, piston ring, piston pin, connecting rod 27.0 assembly D57S-1 Flywheel assembly WA320-3, WA380-3 EG150BS-5 D57S-1 Flywheel housing D57S-1 Flywheel housing D57S-1, EG150BS-5 WA320-3, WA380-3 EG150BS-5 Wa320-3, WA380-3 D57S-1 Water pump WA320-3, WA380-3 Alternator 24 V, 13 A Alternator 24 V, 25 A 24 V, 50 A

_
C
_
?
?

	***	Unit: kg
SA6D	108-1	
9.0		
10.0 (with waist gate valve)		
23	3.8	
	-	
63	3.0	
18	37	
75	5.3	
8.	0	
19	1.5	
11	.0	
27	.0	
PC300-5	31.3	
WA420-3	29.8	
Sugar cane harvester AUSTOFT in AUSTRALIA	27.0	
PC300-5	46.5	
WA420-3	59.5	
Sugar cane harvester AUSTOFT in AUSTRALIA	29.5	
PC300-5	16.0	
WA420-3	16.5	
PC300-5	10.4	
WA420-3	16.5	
24 V, 13 A	8.5	
24 V, 25 A	8.5	
24 V, 50 A	10.0	
14	.5	

ENGINE 11 STRUCTURE AND FUNCTION

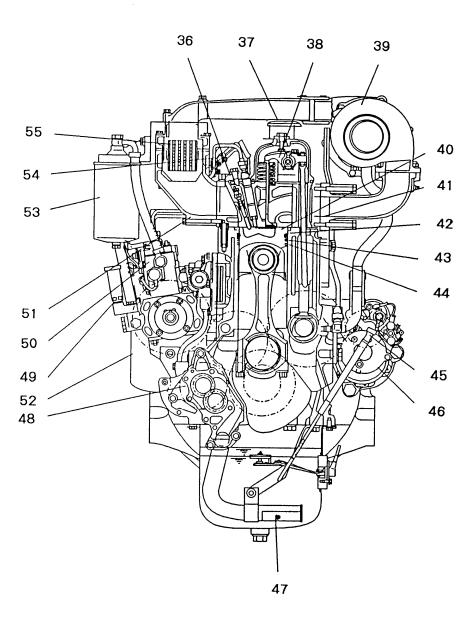
ENGINE BODY
Cylinder head
Cylinder block
Main revolving sys
Timing gear
Valve system


INTAKE AND EXHAUST SYSTEM	
After-cooler	11-004
Air cleaner	11-009
Electronic dust indicator	11-006
Turbocharger	
ENGINE BODY	
Cylinder head	11-008
Cylinder block	11-010
Main revolving system	11-012
Timing gear	11-014
Valve system	11-016
Flywheel and flywheel housing	11-018
LUBRICATION SYSTEM	
Lubrication system chart	
Oil pump	
Oil filter (built-in safety valve)	
Oil cooler	11-023
FUEL SYSTEM	
Fuel system chart	11 024
Fuel injection pump	
Fuel injection nozzle	
Fuel filter	
	11-031
Fuel injection pump drive case	11-032
Engine stop motor	
Fuel cut solenoid	11-039
COOLING SYSTEM	
Cooling system chart	11-040
Thermostat	11-043
Water pump	11-044
ELECTRICAL SYSTEM	
Wiring diagram	11-045
Alternator	11-045
Starting motor	11-040
Oil pressure switch	11-050
Relay switch	11-052
Glow plug	11-052
Glow plug	11-053

GENERAL STRUCTURE 11-002

62210

GENERAL STRUCTURE

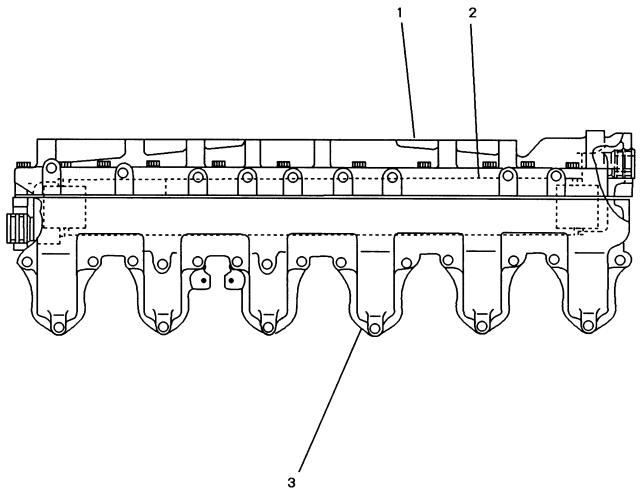

Note: This figure is of SA6D108-1

- 1. Fan
- 2. Water pump
- 3. Cylinder liner
- 4. Valve seat insert
- 5. Valve guide
- 6. Valve (exhaust)
- 7. Rocker arm shaft
- 8. Valve (intake)
- 9. Cylinder head cover
- 10. Breather

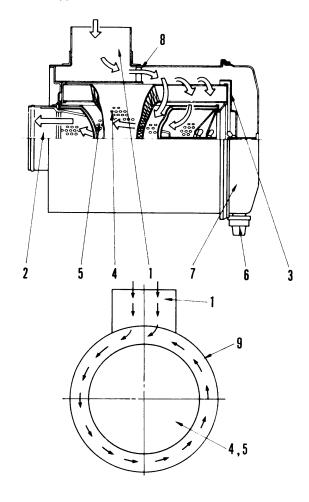
- 11. Cylinder head
- 12. Cylinder block
- 13. Flywheel housing
- 14. Ring gear
- 15. Flywheel
- 16. Tappet
- 17. Cam bushing
- 18. Camshaft
- 19. Rear seal
- 20. Crankshaft

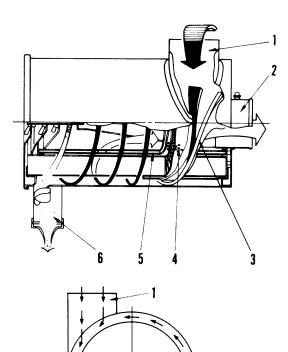
- 21. Thrust bearing
- 22. Main bearing cap
- 23. Main bearing
- 24. Oil pan
- 25. Connecting rod cap
- 26. Connecting rod bearing
- 27. Front plate
- 28. Crankshaft gear
- 29. Oil pump drive gear
- 30. Front seal

- 31. Crankshaft pulley
- 32. Front cover
- 33. Cam gear
- 34. Connecting rod
- 35. Piston pin
- 36. Nozzle holder
- 37. Oil filler
- 38. Rocker arm
- 39. Turbocharger
- 40. Piston


- 41. Exhaust manifold
- 42. Top ring
- 43. Second ring
- 44. Oil ring
- 45. Oil level gauge
- 46. Starting motor
- 47. Oil strainer
- 48. Oil pump
- 49. Feed pump
- 50. Fuel injection pump

- 51. Intake manifold
- 52. Oil filter
- 53. Fuel filter
- 54. Fuel injection pipe
- 55. After-cooler


622101


INTAKE AND EXHAUST SYSTEM

AFTER-COOLER (SA6D108-1)

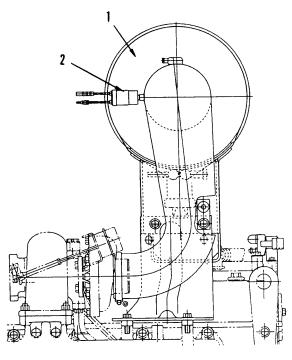
- 1. After -cooler cover
- 2. After -cooler core
- 3. Intake manifold

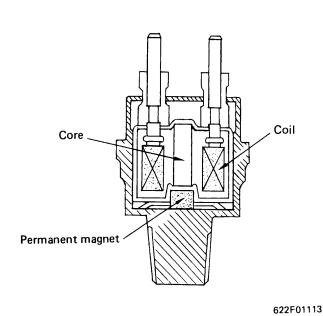
6137F009-10

- 1. Inlet
- 2. Outlet
- 3. Guide vane
- 4. Primary element
- 5. Safety element
- 6. Vacuator
- 7. Dust pan
- 8. Diffusion vane (sleeve)
- 9. Body

ADVANTAGES

- The diameter of the element is the same but the outside diameter of the body is smaller.
 The inlet is placed in the direction of connection, so ample centrifugal force can be obtained from a simple spiral guide vane, without using a diffusion vane.
- There is no dust pan of diffusion vane, so the structure is simple.

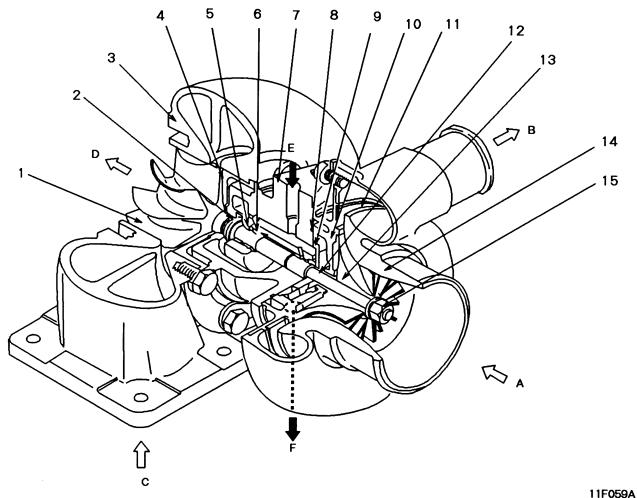

STRUCTURE


Air containing dust is sucked in from inlet

 (1) at a tangent, and the dust is separated by the centrifugal force of guide vane (3).
 More than 99.9% of the remaining dust is removed by primary element (4), and the cleaned air then passes through safety element (5) and outlet (2), and is sucked into the engine.

The dust and moisture that is separated by the guide vane (3) rotates around the inside wall of body (9), and goes inside vacuator (6), where is discharged automatically to the outside.

ELECTRONIC DUST INDICATOR


622F01112

- If air cleaner (1) becomes clogged, the negative pressure inside the intake passage (intake pipe) increases, pushes the spring inside dust indicator sensor (2), and actuates the shaft.
- This is changed into an electromagnetic induction current, which lights up the monitor lamp.

Actuation pressure: 762 \pm 58mm H₂O Power source voltage: DC24 $^{+6}_{-1}$ (V)

TURBOCHARGER

(For D57S-1B, EG150BS-5, PC300-5, DCA180)

2. Piston ring

3. Turbine housing

4. Shroud

5. Journal bearing

6. Retaining ring

7. Center housing

8. Seal ring

9. Thrust bearing

10. Back plate

11. Spring

12. Thrust collar

13. Blower impeller

14. Blower housing

15. Lock nut

A. Intake

B. Air supply

C. Exhaust (inlet port)

D. Exhaust (outlet port) Compression ratio:

E. Oil (inlet port)

F. Oil (outlet port)

Specifications of turbocharger

Type:

GARRET CO. TO4E

Overall length:

Overall width:

Overall height:

Weight:

Max. air supply:

Continuous speed:

Direction of rotation:

180mm 6.5 kg

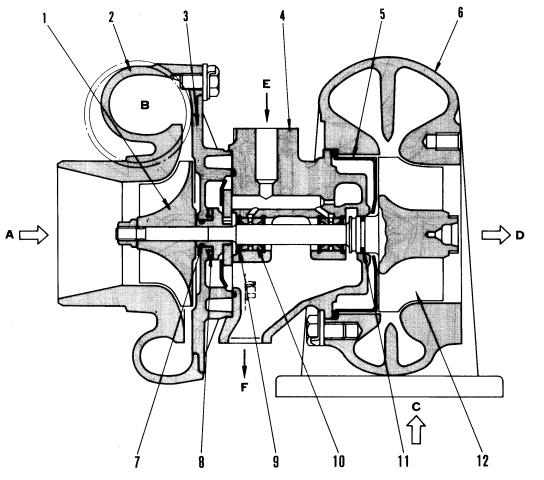
225mm

210mm

125,000 rpm (max.)

22 kg/min.

3 (max.)


Applicable exhaust temp.: Max.675°C(at inlet)

Clockwise (as seen

from blower side)

522101

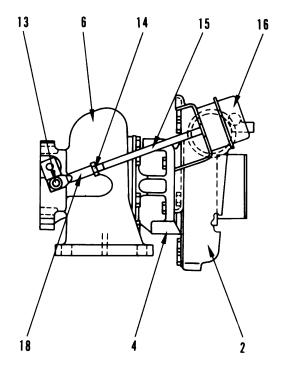
TO4E (WITH WESTGATE VALVE) (WA420-3)

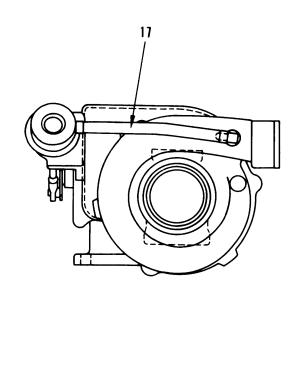
6150F106-1

- 1. Blower impeller
- 2. Blower housing
- 3. Back plate
- 4. Center housing
- 5. Heat shroud
- 6. Turbine housing
- 7. Seal ring
- 8. Thrust bearing
- 9. Snap ring
- 10. Journal bearing
- 11. Seal ring
- 12. Shaft & turbine impeller
- A. Air inlet port
- B. Air outlet port
- C. Exhaust inlet port
- D. Exhaust outlet port
- E. Oil inlet port
- F. Oil outlet port

Turbocharger specifications

Type: GARRETT TO4E

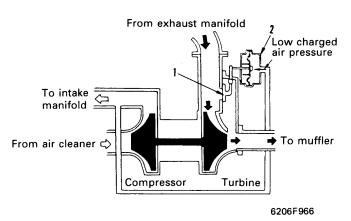

Overall length: 229 mm
Overall width: 222 mm
Overall height: 185 mm
Weight: TO4B: 7 kg

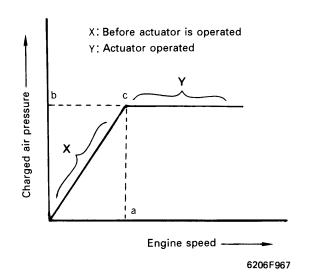

TO4E: 10 kg

Max. speed: 120,000 rpm

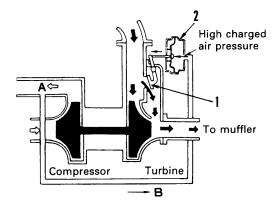
Applicable exhaust temperature: Max. 700°C

Direction of rotation: Clockwise (as seen from blower)

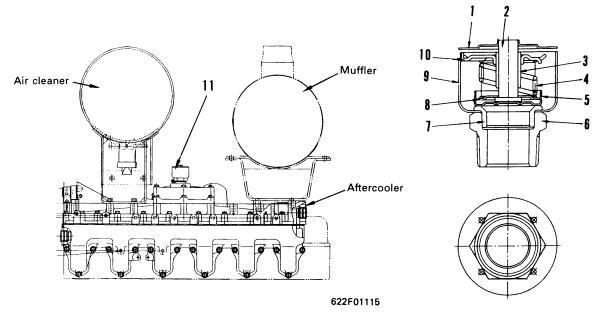

- 13. Retaining ring
- 14. Nut, rod end
- 15. Rod
- 16. Actuator assembly (swing valve controller)
- 17. Hose
- 18. Rod end


Set pressure of actuator

 1035 ± 25 mmHg (at 0.38 mm lift)


Outline of Westgate valve

- This valve acts to suppress any unnecessary charged air pressure in order to ensure a suitable charged air pressure (set charged air pressure) and thereby prevent overload on the engine.
- In order to do this, Westgate valve (1) is installed in the exhaust passage before the turbine. When charged air pressure (A) near the outlet port of the compressor rises and exceeds the set pressure of actuator (swing valve control) (2), Westgate valve (swing valve) (1) opens.
- Point c where engine speed a and charged air pressure b intersect, is the point where the Westgate valve starts to open.

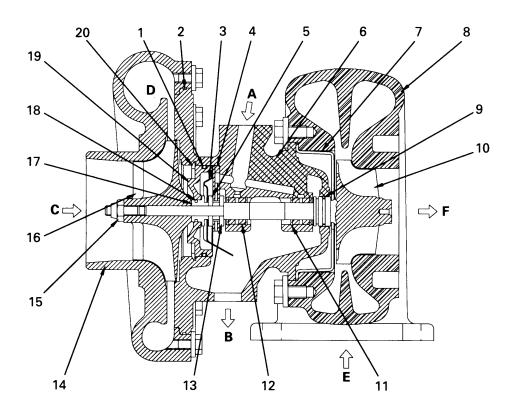


 Charged air pressure (A) near the outlet port of the compressor passes through (B) and actuates actuator (2). Westgate valve (1) opens and part of the exhaust gas bypasses the turbine, so the output of the turbine drops and the set charged air pressure is maintained.

TURBOCHARGER SAFETY VALVE WA420-3

6206F970

- 1. Cover
- 2. Shaft
- 3. Guide bushing
- 4. Spring
- 5. Valve
- 6. Nut
- 7. Valve seat
- 8. Spring seat
- 9. Casing
- 10. Retainer
- 11. Turbocharger safety valve (with Westgate valve)


Outline

 In the same way as with the Westgate valve, safety valve (11) is installed to the intake manifold to release any excess charged air pressure (excess boost pressure) coming from the compressor.

Actuating pressure

 $147 \pm 11 \text{ kPa } (1100 \pm 80 \text{ mmHg})$

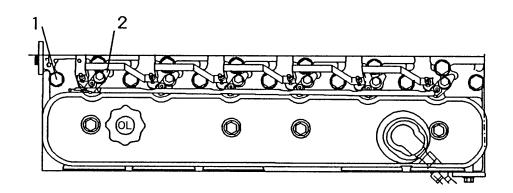
S2B (SCHWITZER) (For WA320, 380-3)

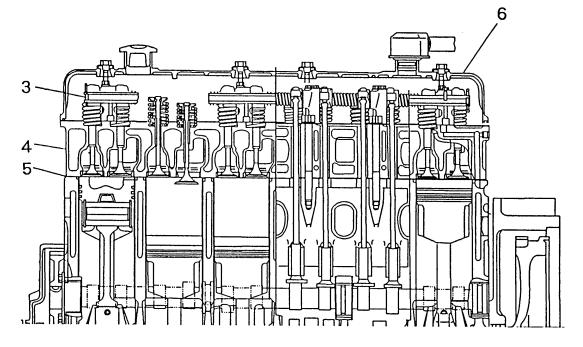
SKE00087

- 1. O-ring
- 2. O-ring
- 3. Oil deflector
- 4. Thrust bearing
- 5. Thrust collar (spacer sleeve)
- 6. Center housing
- 7. Shroud (back plate)
- 8. Turbine housing
- 9. Piston ring
- 10. Turbine impeller (wheel shaft)
- 11.Clip
- 12. Journal bearing
- 13.Thrust ring

- 14.Blower housing
- 15.Locknut
- 16.Blower impeller
- 17.Slinger sleeve
- 18.Piston ring
- 19.Insert
- 20.Snap ring
- A. Oil inlet from engine main gallery
- B. Oil outlet (to oil pan)
- C. Intake inlet
- D. Intake outlet
- E. Exhaust inlet
- F. Exhaust outlet

Turbocharger

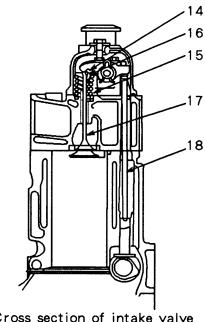

Type: Schwitzer S2B Overall length: 212 mm Overall width: 170 mm Overall height: 168 mm


Weight: 7 kg

Direction of rotation:

Clockwise (as seen from blower end)


ENGINE BODY CYLINDER HEAD


- 1. Cylinder head mounting bolt
- 2. Nozzle holder
- 3. Rocker arm assembly
- 4. Cylinder head
- 5. Cylinder head gasket
- 6. Head cover
- 7. Valve guide
- 8. Exhaust valve
- 9. Valve seat insert
- 10. Nozzle holder packing

- 12. Fuel injection nozzle
- 13. Oil filler cap
- 14. Valve cotter
- 15. Valve spring
- 16. Valve spring seat
- 17. Intake valve
- 18. Push rod

Cross section of exhaust valve (No. 1 cylinder)

KS100008

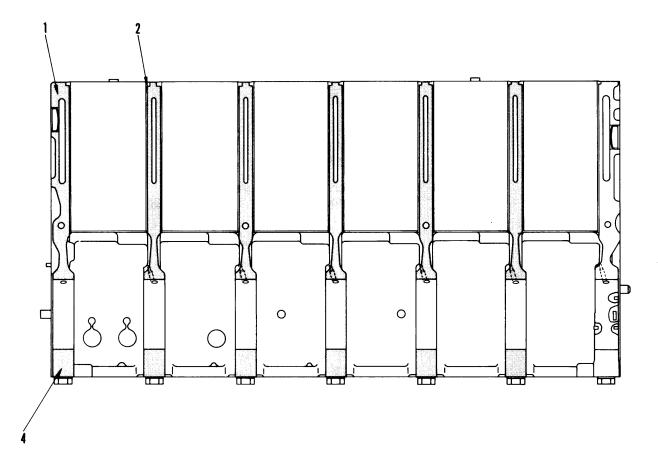
Cross section of intake valve (No. 1 cylinder)

KS100009

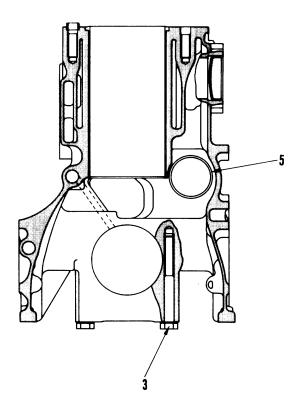
Cylinder head

Direct injection type, 2 valve, injection nozzle assembled, integrated type

Valve seat


Valve seat insert press fitted for both intake and exhaust valves

Fuel injection nozzle


- Type : Diesel Kiki, Multiple hole nozzle
 : Nippon Denso, Multiple hole nozzle
- Injection pressure (Cracking pressure):
 Differs according to machine model

 See values in STANDARD VALUE TABLE.
- Pressure adjustment: Shim adjustment type

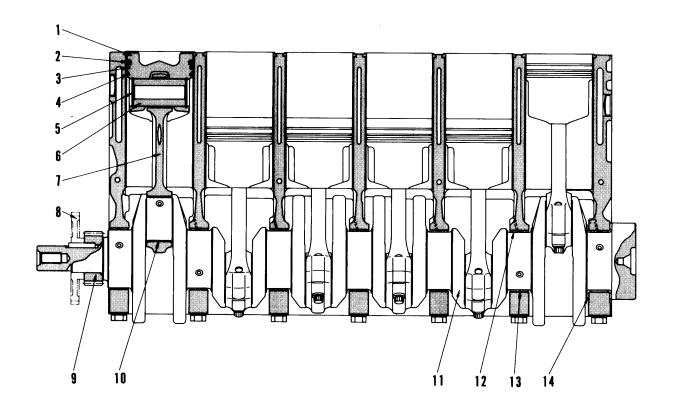
CYLINDER BLOCK

- 1. Cylinder block
- 2. Cylinder liner
- 3. Main bearing cap bolt
- 4. Main bearing cap
- 5. Cam bushing

Cylinder block

Crankshaft: 7 bearingsCamshaft: 4 bearings

Front seal

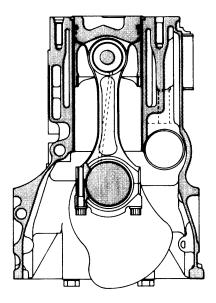

With dust seal, double lip

Cylinder liner

• Dry type

MAIN REVOLVING SYSTEM

TOROIDAL COMBUSTION CHAMBER



622F01063

- 1. Piston
- 2. Top ring
- 3. Second ring
- 4. Oil ring
- 5. Snap ring
- 6. Piston pin
- 7. Connecting rod
- 8. Oil pump drive gear (58 teeth)
- 9. Crankshaft gear (34 teeth)
- 10. Connecting rod bearing

- 11. Crankshaft
- 12. Main bearing (upper)
- 13. Main bearing (lower)
- 14. Thrust bearing

322101

Piston

- Aluminum alloy
- · Elliptical taper profile, thermal flow type
- · Toroidal combustion chamber

Front seal

Single lip with dust seal

Rear seal

- Double lip (PC300-5) (D57S-1B) (WA320, 380-3) (WA420-3)
- · Single lip type
- · Lay-down lip type

Connection rod bolt

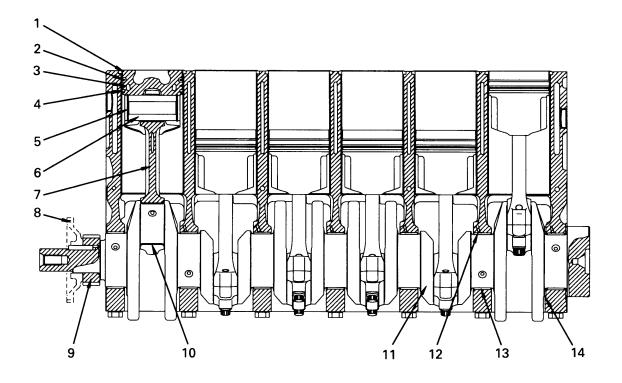
Screw-in type

Piston cooling: Yes

Crankshaft

- Stamp forging
- Induction hardening on journal portion and filet portion.

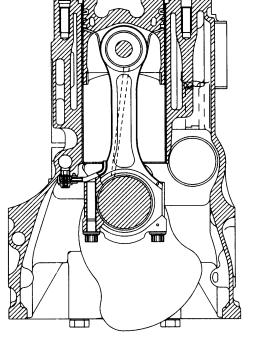
Piston ring


Top ring	Second ring	Oil ring
Both faces: Keystone barrel face Hard chrome plating	Both faces: Keystone teper face Hard chrome plating	With coil expander
		1

Seals

Single lip	Lay-down seal lip
afandamin. SLE00090	SLE00091

522101


(RE-ENTRANT COMBUSTION CHAMBER)

SKE00088

- 1. Piston
- 2. Top ring
- 3. Second ring
- 4. Oil ring
- 5. Snap ring
- 6. Piston pin
- 7. Connecting rod

- 8. Oil pump drive gear (No. of teeth: 58)
- 9. Crankshaft gear (No. of teeth: 34)
- 10. Connecting rod bearing
- 11. Crankshaft
- 12. Main bearing (upper)
- 13. Main bearing (lower)
- 14. Thrust bearing

SKE00089

PISTON

- Aluminium alloy (shaker cooling galley)
- Conical taper profile, thermal flow type
- Re-entrant combustion chamber
- Pin offset (1.1 mm)

Front seal

Single lip type with dust seal

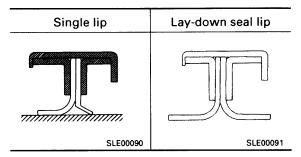
Rear seal

- Single lip type
- · Lay-down seal lip type

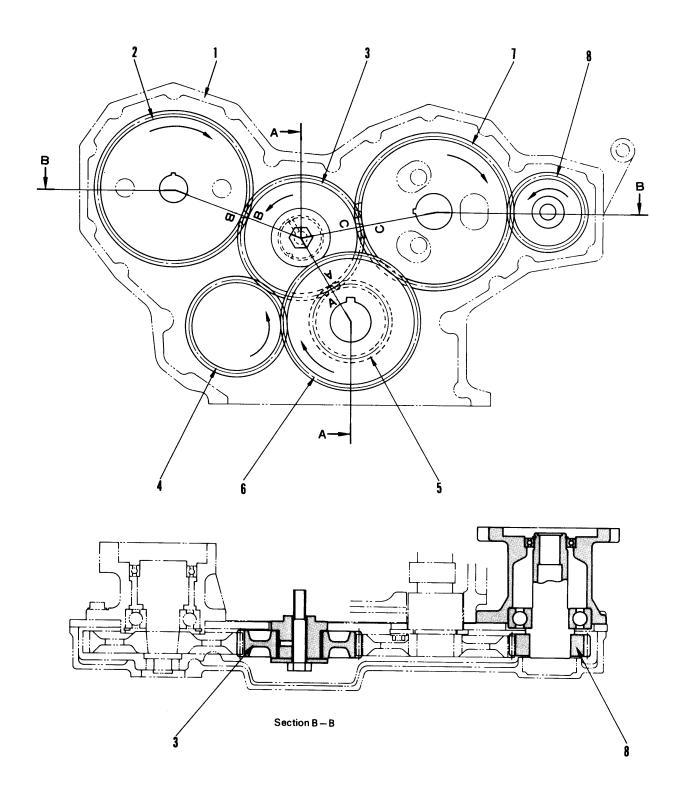
Connecting rod bolt

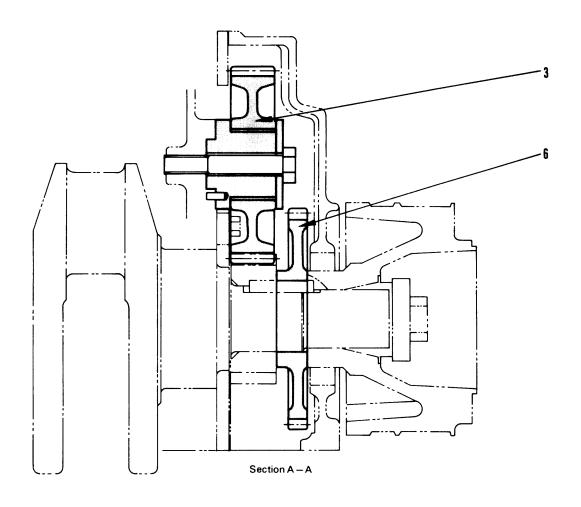
Screw-in type

Piston cooling: Provided


Crankshaft

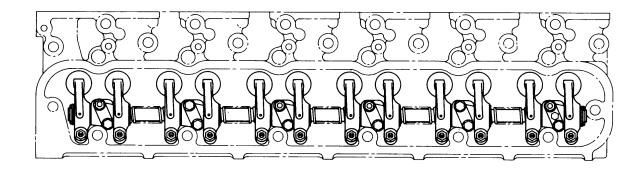
- · Closed die forging
- High induction hardening of journal and fillet

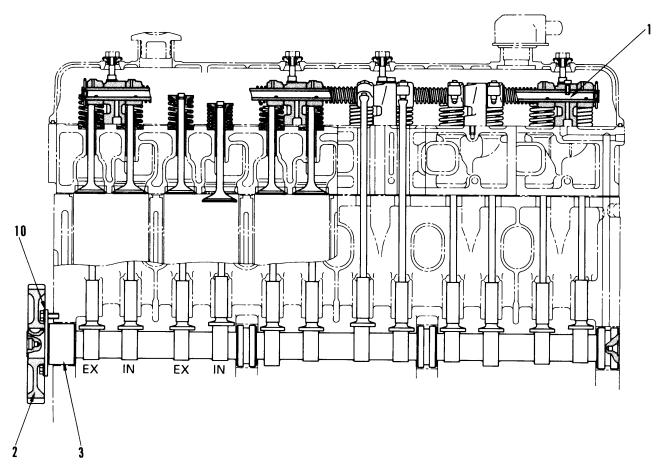

Piston ring


Second ring	Oil ring
Keystone	With coil
taper face for	expander
both faces,	
hard chrome	
plating, inner	
cut	
四	16
	Keystone taper face for both faces, hard chrome plating, inner

Seals

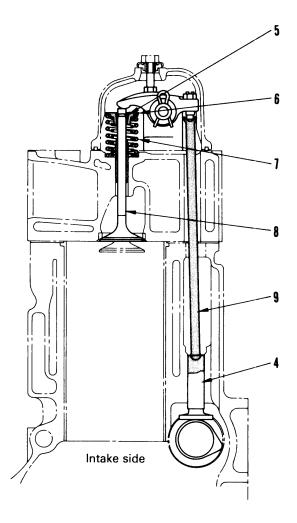
TIMING GEAR

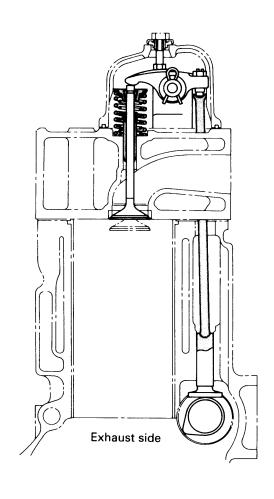




- 1. Timing gear case
- 2. Fuel injection pump gear (68 teeth)
- 3. Idler gear (51 teeth)
- 4. Oil pump gear (41 teeth)
- 5. Crankshaft gear (34 teeth)
- 6. Oil pump drive gear (58 teeth)
- 7. Camshaft gear (68 teeth)
- 8. PTO gear (34 teeth)

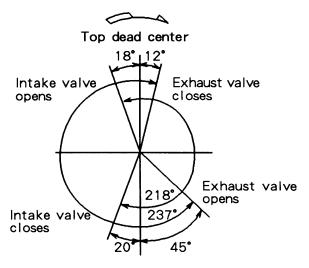
A,B,C: Match marks for timing gears


VALVE SYSTEM



- 1. Rocker arm shaft
- 2. Cam gear (68 teeth)
- 3. Cam shaft
- 4. Cam roller
- 5. Valve cotter

- 6. Valve spring seat
- 7. Valve spring
- 8. Valve
- 9. Push rod
- 10. Thrust plate

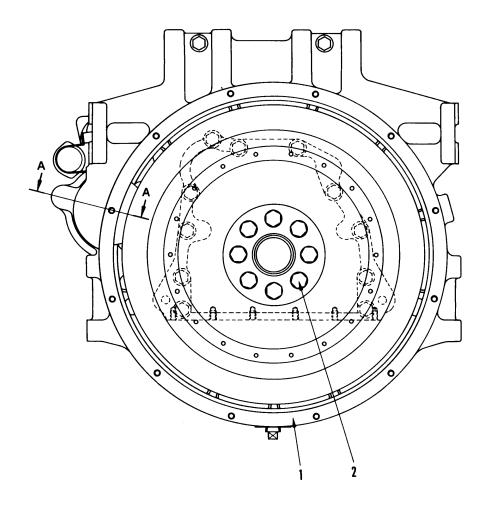


622F01068

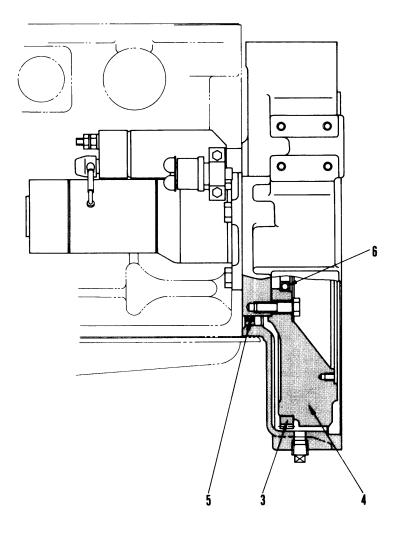
CAMSHAFT

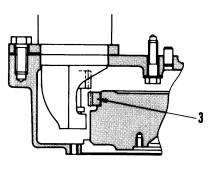
- · Stamp forging
- Journal portion, cam portion: Induction hardening

Valve timing

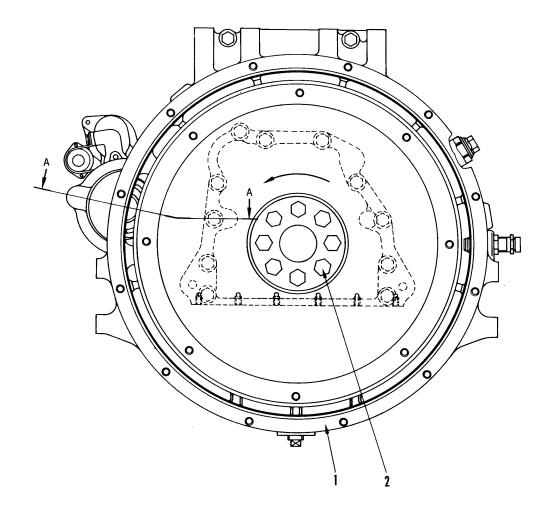


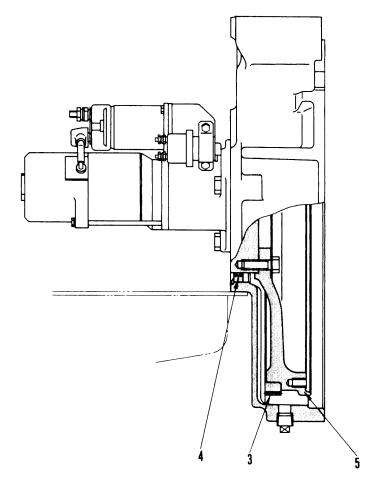
Bottom dead center

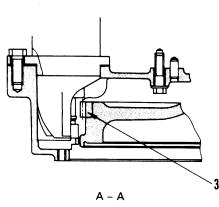

FLYWHEEL AND FLYWHEEL HOUSING


S6D108-1 (For D57S-1B, WA320, 380-3) SA6D108-1 (WA420-3)

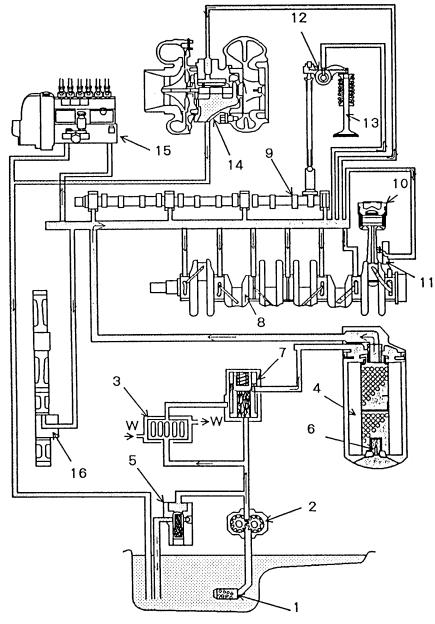
Note: This figure is for S6D108-1.


- 1. Flywheel housing
- 2. Flywheel mounting bolt
- 3. Ring gear (134 teeth: For D57S-1B, WA420-3) (122 teeth: For WA320, 380-3)
- 4. Flywheel
- 5. Crankshaft rear seal
- 6. Ball bearing (For D57S-1B)



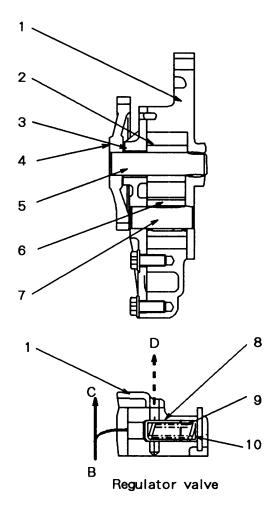

Section A - A

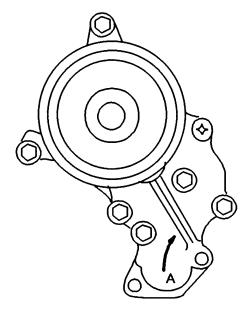
SA6D108-1 (For PC300-5)


- 1. Flywheel housing
- 2. Flywheel mounting bolt
- 3. Ring gear (148 teeth)
- 4. Rear seal
- 5. Flywheel

LUBRICATION SYSTEM

LUBRICATION SYSTEM CHART




- 1. Oil strainer
- 2. Oil pump
- 3. Oil cooler
- 4. Oil filter
- 5. Regulator valve
- 6. Safety valve
- 7. Oil cooler safety valve
- 8. Crankshaft
- 9. Camshaft
- 10. Piston
- 11. Piston cooling nozzle
- 12. Rocker arm
- 13. Intake/exhaust valve
- 14. Turbocharger
- 15. Fuel injection pump
- 16. Timing gear
- W. Cooling water

LUBRICATION SYSTEM

- 1. Structure of Lubricating system
- The lubricating system consists mainly of the oil strainer, oil pump, oil pump regulator, oil cooler oil filter and safety valve to lubricate various engine parts.
- 2. Circulation of lubricating oil
- The lube oil flows from the oil pan to the oil pump through the oil strainer where relatively large particles of dust, dirt, or, foreign matter is removed from the oil.
 The oil pump is driven by the gear in the crankshaft cluster to suck in and charge out the oil under pressure.
- The oil discharged from the pump is cleaned fully through the oil filter(full-flow type).
 Thus, the oil is distributed to various lubrication points in the engine.
- The oil is cooled, through heat exchanger with the engine cooling water at pipes in the oil bracket or in the oil cooler.

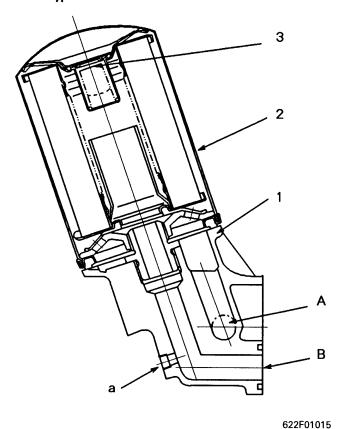
OIL PUMP

622F01014

- 1. Oil pump body
- 2. Drive gear (9teeth)
- 3. Pump cover
- 4. Pump drive gear (41 teeth)
- 5. Drive shaft
- 6. Driven gear (9teeth)
- 7. Driven shaft
- 8. Regulator valve
- 9. Valve spring
- 10. Valve retainer
- From oil strainer A.
- From oil pump
- C. To engine
- D. To oil pan

Oil pump

Type: Gear pump


Speed: Engine speed×1.415

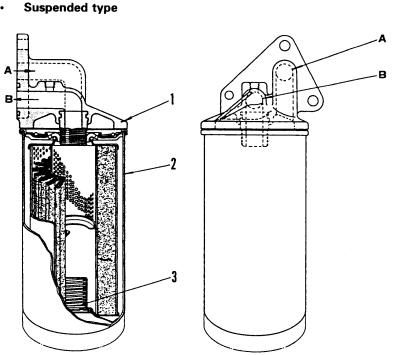
Regulator valve

• Cracking pressure: 8.5±0.5kg/cm²

OIL FILTER (Built-in safety valve)

Handstand type

- 1. Filter bracket
- 2. Cartridge
- 3. Safety valve
- A. From oil pump
- B. To engine
- a. Oil pressure tap


Safety valve

Actuating pressure:

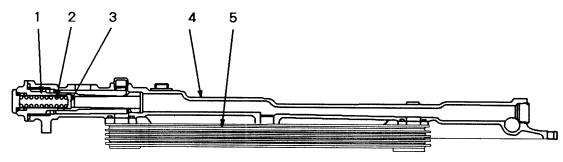
 0.2 ± 0.02 MPa $(2 \pm 0.2 \text{ kg/cm}^2)$

Oil filter

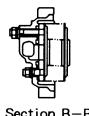
Filtration area: 0.53m²

- Filter bracket
- 2. Cartridge
- Safety valve
- A. From oil pump
- B. To engine
- Oil pressure pickup port Oil pressure switch device

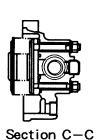
Safety valve


Actuation pressure:

 $0.2 \pm 0.02 \text{ MPa } (2 \pm 0.2 \text{ kg/cm}^2)$


Oil filter

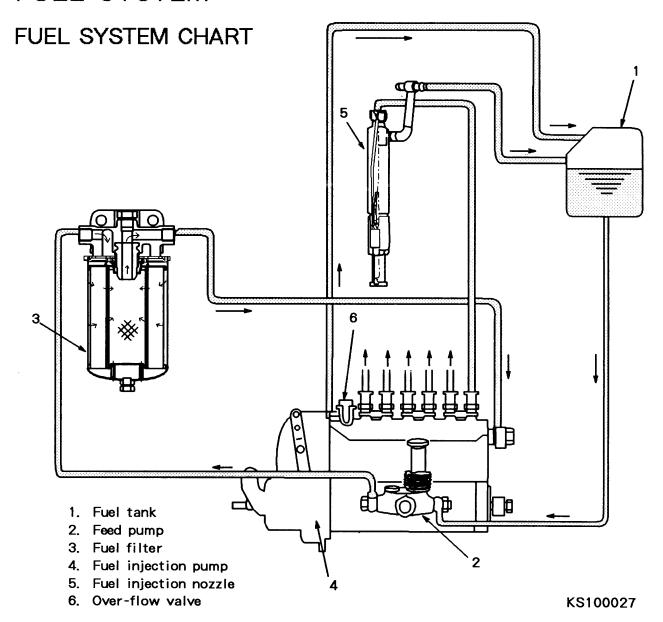
Filtering area: 0.53 m²


6136F017C

Section A-A

Section B-B

622F01016


- 1. Valve case
- 2. valve spring
- 3. By-pass valve
- 4. Cooler cover
- 5. Cooler element
- D. From oil pump
- a. Water drain port

Oil cooler by-pass valve

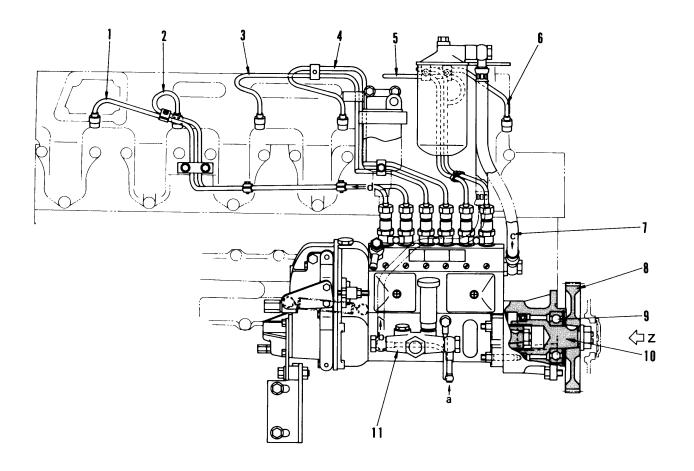
Actuating pressure: 4±0.2kg/cm²

· The oil cooler consists of element and cover. The oil flowing through the cooler element with the cooling fin is cooled properly by the engine cooling water flowing outside the element.

FUEL SYSTEM

GENERAL DESCRIPTION

1. Structure of fuel system

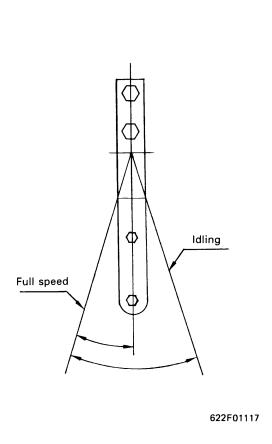

 The fuel system consists mainly of the fuel tank, feed pump, fuel filter, fuel injection pump, fuel injection nozzles and governor (built as one unit with the fuel injection pump).

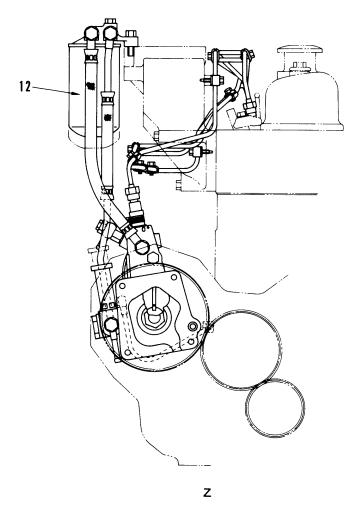
2. Circulation of fuel

 Fuel is delivered from the fuel tank to the injection pump through the fuel filter by the feed pump driven by the fuel injection pump cam. During the course from the tank to the injection pump, the fuel is cleaned of rough dirt through the gauge filter at the inlet to the feed pump. Then, complete dust removal and water separation from the oil are accomplished through the filter. 2) Fuel entering the injection pump is pressurized by the pump plunger to that required for injection and injected into each cylinder through the injection nozzle in the quantity required, meeting the injection timing for the cylinder.

FUEL INJECTION PUMP (WITH MECHANICAL GOVERNOR)

S6D108-1 (For D57S-1B, WA320, 380-3)


622F01074


- 1. Fuel injection pipe (No. 6)
- 2. Fuel injection pipe (No. 5)
- 3. Fuel injection pipe (No. 4)
- 4. Fuel injection pipe (No. 3)
- 5. Fuel injection pipe (No. 2)
- 6. Fuel injection pipe (No. 1)
- 7. Fuel hose
- 8. Injection pump gear
- 9. Ball bearing

- 10. Drive shaft
- 11. Fuel injection pump
- 12. Fuel filter
- a. From fuel tank
- b. To fuel filter
- c. To fuel injection pump
- d. To injection nozzle

322101

SPEED CONTROL LEVER ANGLE

622F01075

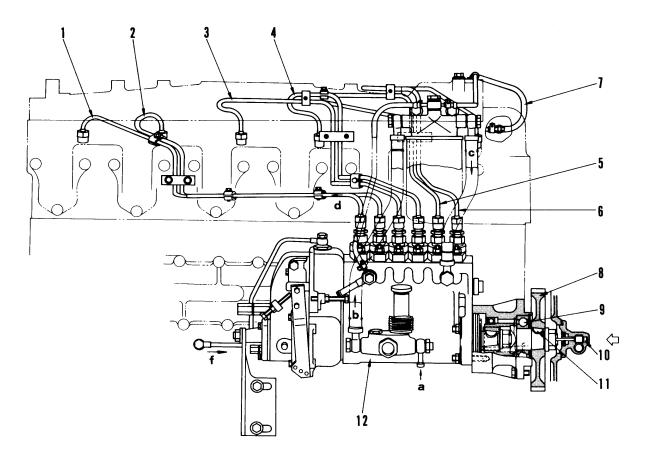
Fuel injection pump

Type: Bosch PES-AD Lubrication method:

Forced lubrication using engine oil

Governor

Type: Bosch RSV centrifugal type All-speed governor

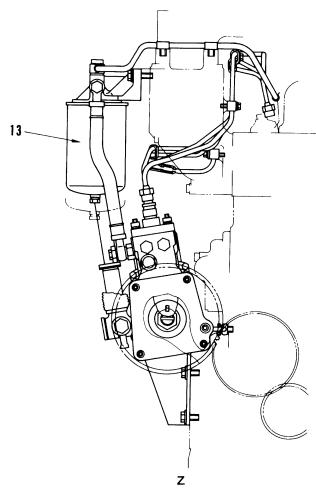

Fuel injection timing:

Differs according to machine model

See values in STANDARD VALUE TABLE.

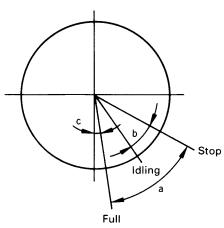
11-027

SA6D108-1 (For PC300-5, WA420-3)


- 1. Fuel injection pipe (No.6)
- 2. Fuel injection pipe (No.5)
- 3. Fuel injection pipe (No.4)
- 4. Fuel injection pipe (No.3)
- 5. Fuel injection pipe (No.2)
- 6. Fuel injection pipe (No.1)
- 7. Fuel hose
- 8. Injection pump gear
- 9. Ball bearing

- 10. Rotation pick-up shaft
- 11. Drive shaft
- 12. Fuel injection pump
- 13. Fuel filter

- a: From fuel tank (fuel)
- b: To fuel filter (fuel)
- c: To fuel injection pump (fuel)
- d: To injection nozzle(fuel)
- f: From cylinder block(oil)


SPEED CONTROL LEVER ANGLE

INJECTION PUMP GOVERNOR LEVER ANGLE

622F01078

622F01079

a : 53°

b: 26.5°

c: 8.5°

Fuel injection pump

Type: Nippon Denso NB (EP-9)

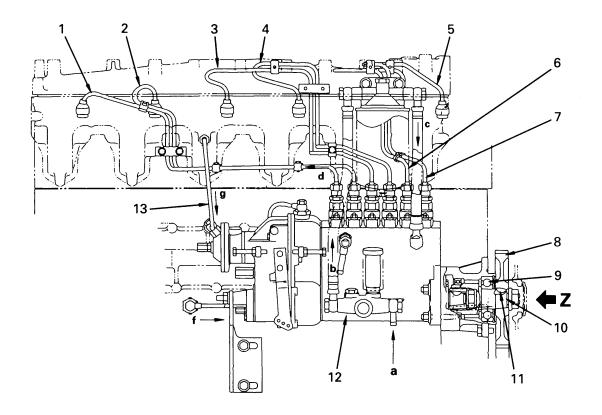
Lubrication method:

Forced lubrication using engine oil

Governor

Type: Bosch RSV centrifugal type

All-speed governor

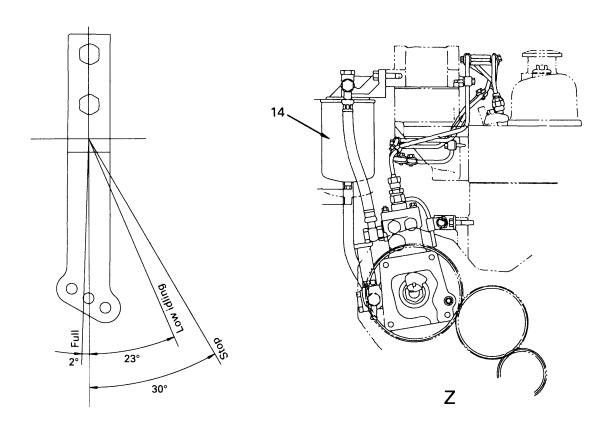

Fuel injection timing:

Differs according to machine model

See values in STANDARD VALUE TABLE.

11-029

FUEL INJECTION PUMP (WITH MECHANICAL GOVERNOR) (WITH BOOST COMPENSATOR DEVICE)



SLE00096

- 1. Fuel injection pipe (No. 6)
- 2. Fuel injection pipe (No. 5)
- 3. Fuel injection pipe (No. 4)
- 4. Fuel injection pipe (No. 3)
- 5. Fuel hose
- 6. Fuel injection pipe (No. 2)
- 7. Fuel injection pipe (No. 1)
- 8. Injection pump gear
- 9. Ball bearing
- 10. Speed pickup shaft
- 11. Drive shaft
- 12. Fuel injection pump
- 13. Air pipe
- 14. Fuel filter

- a: From fuel tank
- b: To fuel filter
- c: To fuel injection pump
- d: To injection nozzle
- f: From cylinder block
- g: To fuel injection pump (boost pressure)

SPEEDCONTROL LEVER ANGLE

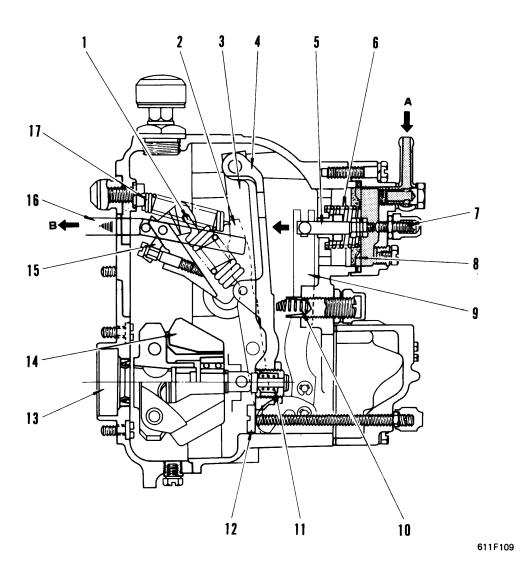
SLE00098 SLE00097

Fuel injection pump

Type: Nippon Denso NB(EP-9)

Lubrication method: Forced lubrication using engine

oil

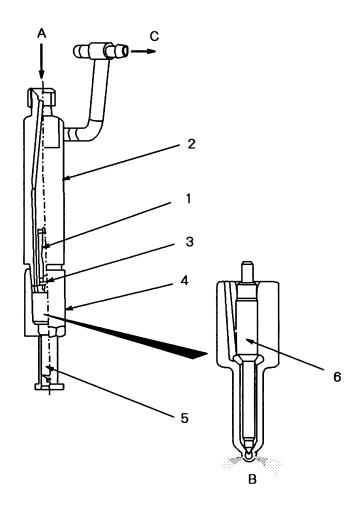

Governor

Type: Bosch RSV centrifugal type

All-speed governor

Fuel injection timing: Differs according to machine

See values in STANDARD VALUE TABLE.



- 1. Governor spring
- 2. Floating lever
- 3. Guide lever
- 4. Tension lever
- 5. Push rod
- 6. Boost compensator spring
- 7. Adjustment screw
- 8. Diaphragm
- 9. Boost compensator lever

- 10. Idling sub spring
- 11. Angleich spring
- 12. Full load stopper
- 13. Camshaft
- 14. Flyweight
- 15. Swivel lever
- 16. Control rack
- 17. Start spring
- A. Air supply pressure (boost pressure)
- B. Fuel increase direction

322101

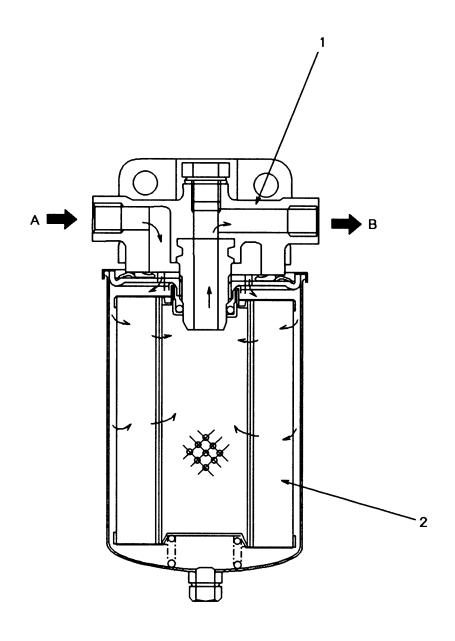
FUEL INJECTION NOZZLE

- 1. Nozzle spring
- 2. Nozzle holder
- 3. Push rod
- 4. Retaining cap
- 5. Nozzle body
- 6. Nozzle
- A. From fuel injection pump
- B. To cylinder (injection)
- C. To fuel tank

FUEL INJECTION NOZZLE

• Maker : DIESEL KIKI (S6D108-1)

: NIPPON DENSO (SA6D108-1)

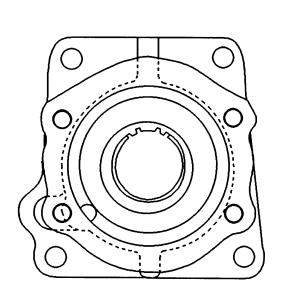

• Type : Multi-hole type

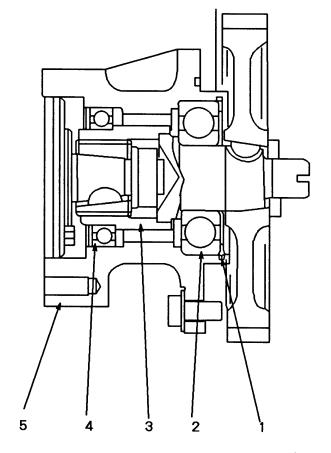
• Injection pressure : 235kg/cm² (S6D108-1)

: $265 \text{kg/cm}^2 (SA6D108-1)$

★ Adjustment of injection pressure: by shim

FUEL FILTER

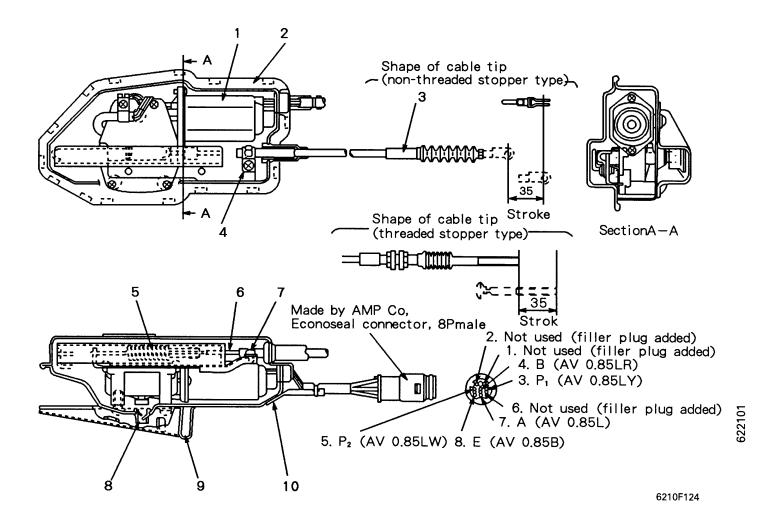

- 1. Bracket
- 2. Cartridge
- A. From feed pump
- B. To injection pump


FUEL FILTER

• Filtration area: 0.5m²

622101

FUEL INJECTION PUMP DRIVE CASE



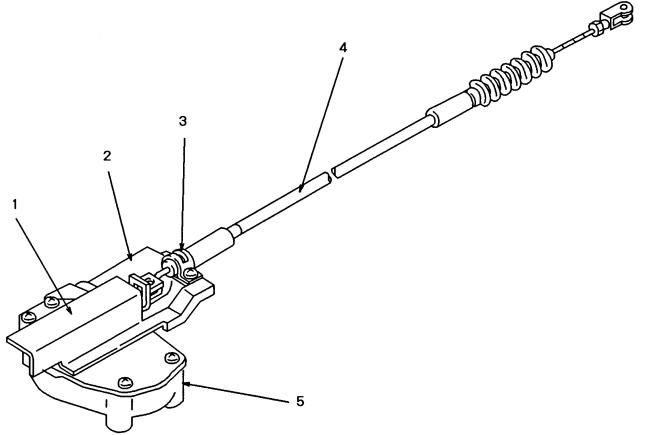
KS100032

- 1. Snap ring
- 2. Ball bearing
- 3. Drive shaft
- 4. Ball bearing
- 5. Case

ENGINE STOP MOTOR

- 1. Motor assembly
- 2. Cover
- 3. Cable assembly
- 4. Cable clamp
- 5. Coil spring
- 6. Cable
- 7. Screw
- 8. Breather
- 9. Bracket assembly
- 10. Cover assembly

ENGINE STOP MOTOR

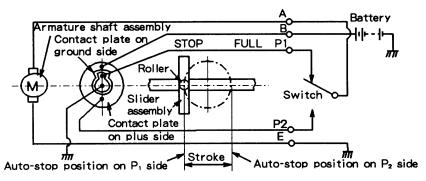

· Maker: Jidosha Denki Kogyo Co.

Ltd

- Rated voltage: DC24V
- · Operating force: 15kg min.
- Stroke: 35^{+1.0}mm
- Weight: 1.2kg

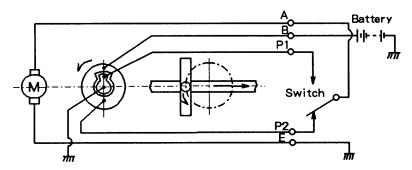
- 1. Gear cover assembly
- 2. Slider assembly
- 3. Armature shaft
- 4. Contactor assembly
- 5. Roller
- 6. Worm wheel assembly
- 7. Motor assembly
- 8. Gear case assembly

STRUCTURAL DRAWING (2)


620F01082

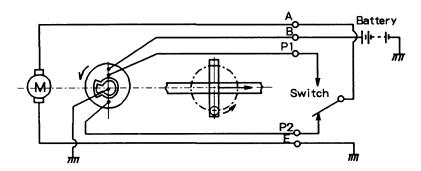
- 1. Gear cover assembly
- 2. Motor assembly
- 3. Cable clamp
- 4. Cable assembly
- 5. Gear case assembly

322101


DESCRIPTION OF OPERATION AND CIRCUITS

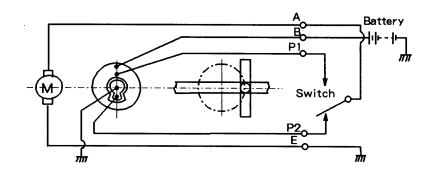
1. Stop Condition (0° or 360°)

The above drawing shows the stopped condition when a closed circuit has been formed. The slider assembly is stopped at the auto-stop position on the P_1 side.


2. When switch is turned (when starting the motor)

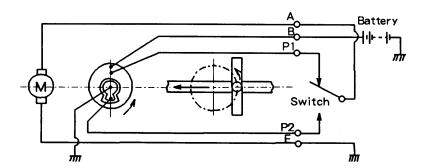
When the switch is moved to the P_2 side (starting switch ON), an electric current flows from the plus side contact plate through the P_2 auto-stop terminal and switch and into the armature shaft assembly, thereby starting the motor.

The slider assembly starts to move in the direction of the arrow at the same time as the roller starts to move.


3. Turning Condition (90° in the drawing)

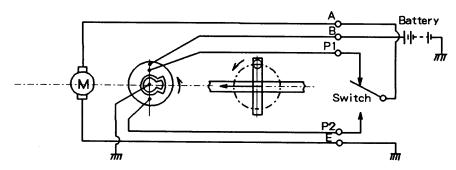
Electric current continues to pass through the armature assembly and the motor continues to turn. Because of the rotation of the roller, the

slider assembly also continues to move in the direction of the arrow.


4. When stopped (180°)

A closed circuit is formed when the P_2 auto-stop terminal rides on the minus-side contactor plate, and the motor comes to

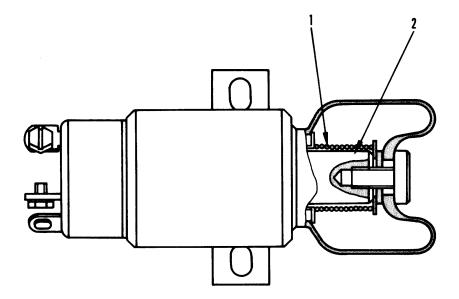
a sudden stop. The slider assembly also stops.


5. When switch is turned (when starting the motor)

When the switch is moved to the P_1 side (starting switch OFF), an electric current flows from the plus contactor plate through the P_1 auto-stop terminal and switch and into the armature shaft assembly, thereby starting the motor.

The slider assembly starts to move in the direction of the arrow at the same time as the roller starts to move.

6. Turning condition (270° in the drawing)

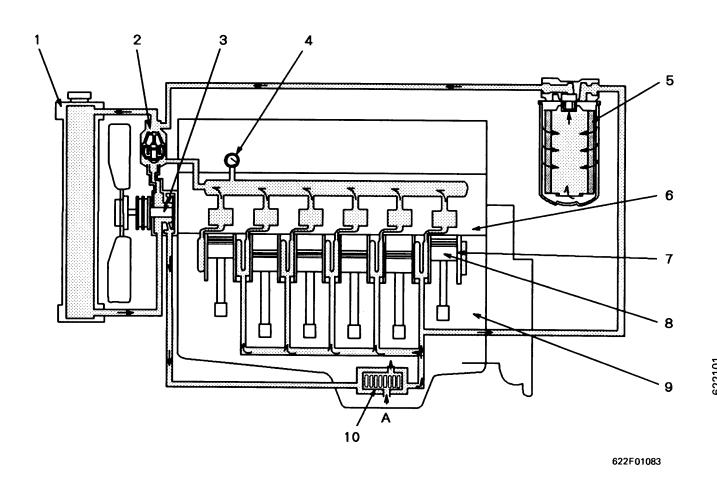


Electric current continues to pass through the armature shaft assembly and the motor continues to turn. The slider assembly also continues to move in the direction of the arrow.

Then the circuit returns to stop condition 1.

FUEL CUT SOLENOID

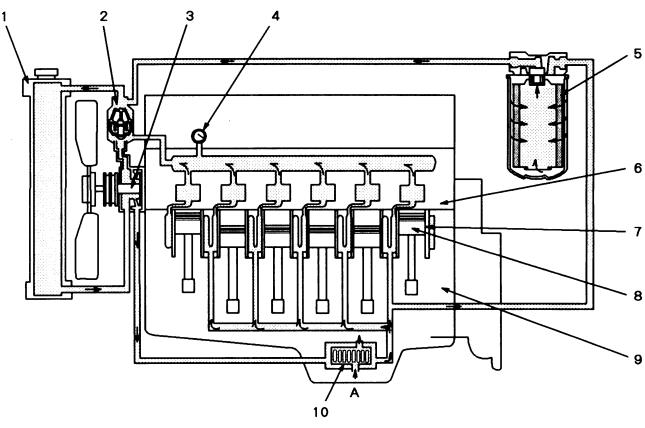
A. Contact method (continuous when stopped)


- When the engine is stopped, electricity passes through the solenoid and the solenoid plunger is pulled electrically. This moves a rod, which moves the injection pump stop lever to the STOP position and cuts the fuel to stop the engine.
 - Therefore, this solenoid is only used when stopping the engine; during normal operations, it is in the free position.
- When running the engine, no electricity passes through the solenoid. The solenoid has no magnetic force, so the solenoid shaft is pulled back by the return spring.

- 1. Return spring
- 2. Plunger

COOLING SYSTEMCOOLING SYSTEM CHART

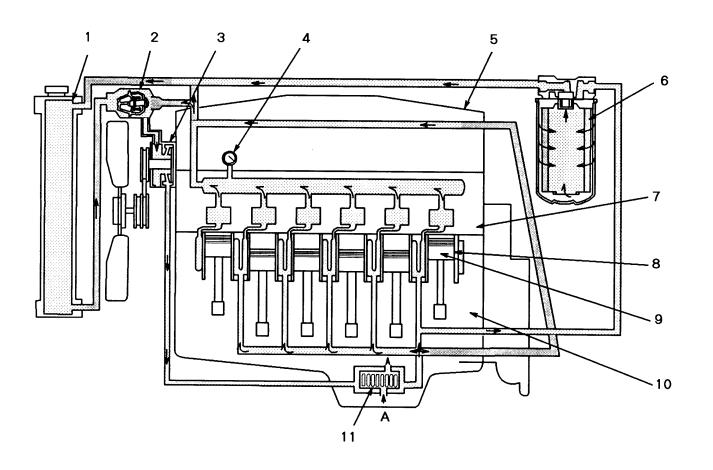
S6D108-1 (D57S-1)


· Inlet control thermostat

- 1. Radiator
- 2. Thermostat
- 3. Water pump
- 4. Water temperature gauge
- 5. Corrosion resistor
- 6. Cylinder head
- 7. Cylinder liner
- 8. Piston
- 9. Cylinder block
- 10. Oil cooler

A. From oil pump (oil)

· Outlet control thermostat

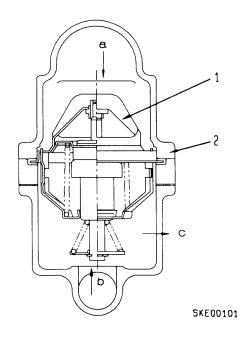

622F01083

- 1. Radiator
- 2. Thermostat
- 3. Water pump
- 4. Water temperature gauge
- 5. Corrosion resistor
- 6. Cylinder head
- 7. Cylinder liner
- 8. Piston
- 9. Cylinder block
- 10. Oil cooler

A. From oil pump (oil)

SA6D108-1 (PC300-5) (AUSTOFT)

Inlet control thermostat

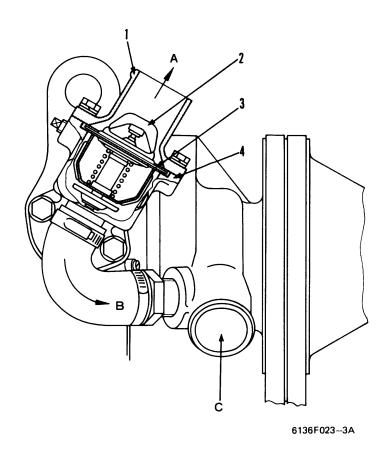


- 1. Radiator
- 2. Thermostat
- 3. Water pump
- 4. Water temperature gauge
- 5. After-cooler
- 6. Corrosion resistor
- 7. Cylinder head
- 8. Cylinder liner
- 9. Piston
- 10. Cylinder block

- 11. Oil cooler
- A. From oil pump (oil)

THERMOSTAT

INLET CONTROL THERMOSTAT

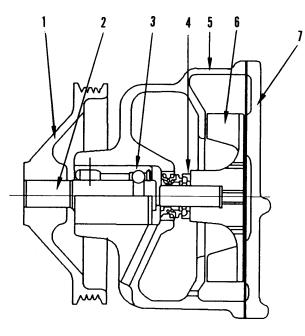


- Thermostat
- 2. Thermostat housing
- a: Radiator
- b: Bypass (from cylinder head)
- Water pump

Thermostat

Cracking temperature: 71 ± 2°C Full open temperature: 85°C Fully open lift: 10 mm

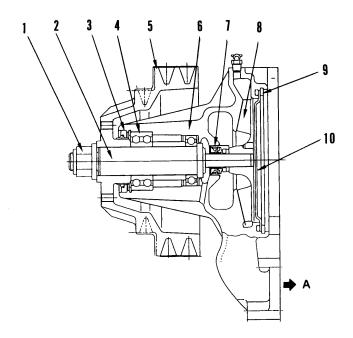
Outlet control thermostat (WA320, 380-3, WA420-3), (EG150BS-5)



- 1. Connector
- 2. Thermostat
- 3. Gasket
- Thermostat housing
- A. To radiator
- B. To water pump
- C. From radiator

Thermostat

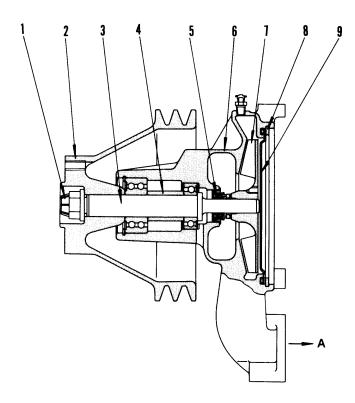
Cracking temperature: 76.5 ± 2°C Full open temperature: 90°C Full open lift: 10 mm


WATER PUMP

- 1. Fan pulley
- 2. Pump shaft
- 3. Bearing
- 4. Water seal
- 5. Pump body
- 6. Impeller
- 7. Pump cover

Engine	Machine model	Outside diameter of pulley (mm)
S6D108-1	D57S-1B	
SA6D108-1	PC300-5	133

622F01119



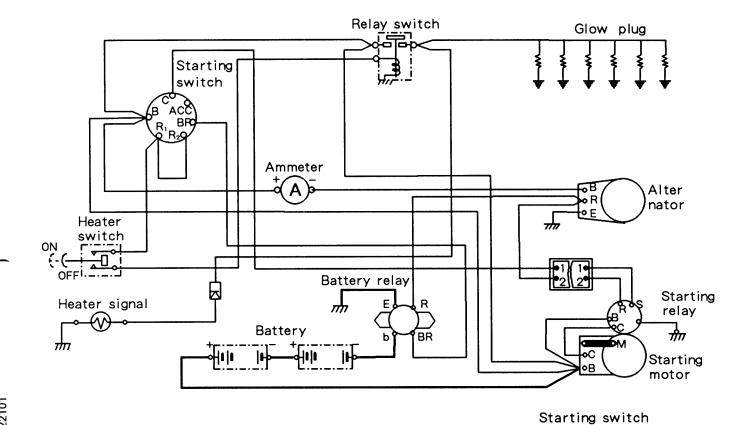
- 1. Lock nut
- 2. Pump shaft
- 3. Oil seal
- 4. Ball bearing
- 5. Fan pulley
- 6. Pump body
- 7. Water seal
- 8. Impeller
- 9. Snap ring
- 10. Pump cover

A. To engine

Engine	Machine model	Outside diameter of pulley (mm)
0004004	WA320-3	235
S6D108-1	WA380-3	225

622F01120

6138F021-1

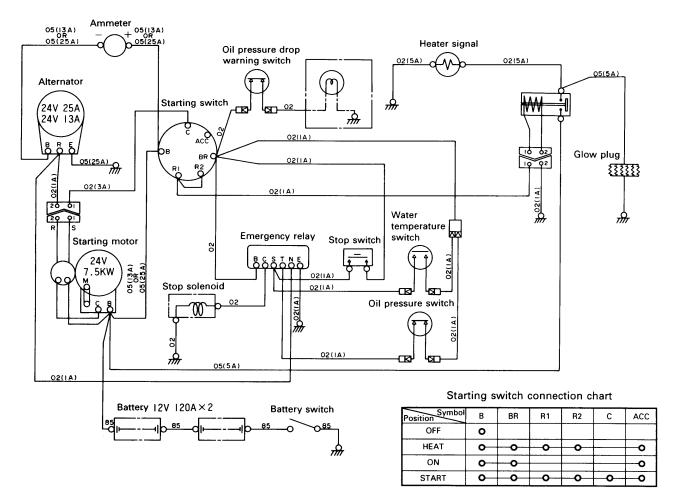

- Nut
- 2. Fan pulley
- Pump shaft 3.
- 4. Spacer
- Water seal
- 6. Pump body
- 7. Impeller
- 8.
- Snap ring Pump cover

A. To engine

Engine	Machine model	Outside diameter of pulley (mm)
S6D108-1	EG150BS-5	195

ELECTRICAL SYSTEM

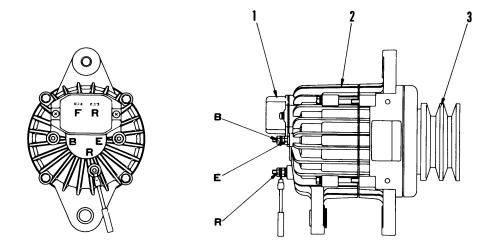
WIRING DIAGRAM

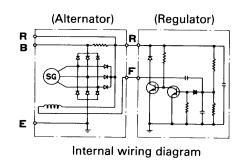


START

REHEAT OFF ON START

Automatic return Automatic return

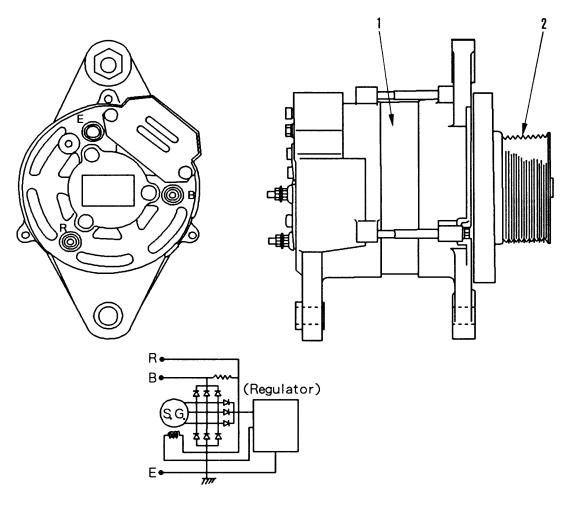

EG150BS-5



622F01121

ALTERNATOR

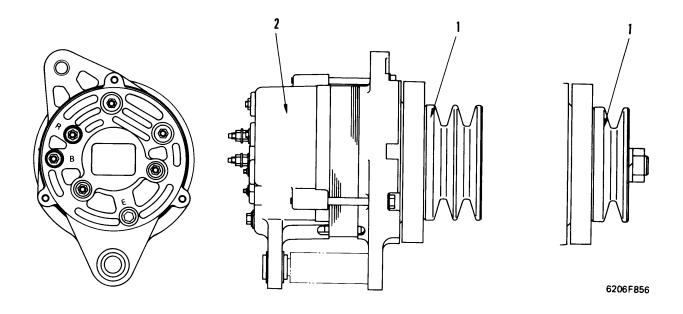
Sealed type



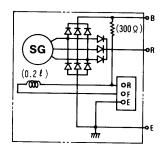
6138F192A

- 1. Regulator
- 2. Alternator
- 3. Alternator pulley

Engine	Machine	Туре	Specifications	Weight	Pulley O.D.
S6D108-1	D75S-1	Nikko Denki, sealed type	24 V, 13 A	8.5 kg	95 mm
SA6D108-1	Egypt Eim Power unit	Nikko Denki, sealed type	24 V, 13 A	8.5 kg	95 mm

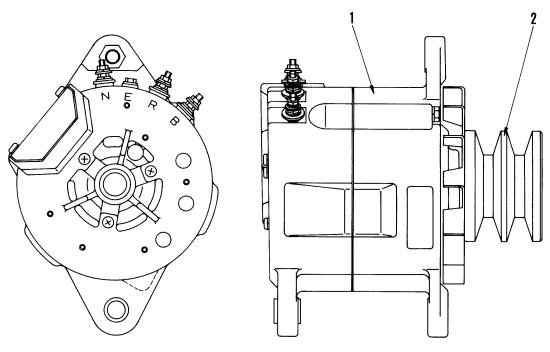


Internal wiring diagram

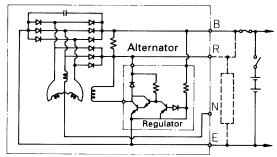

- 1. Alternator
- 2. Alternator pulley B, E, R: Terminals

Engine	Machine	Туре	Specifications	Weight	Pulley O.D.
S6D108-1	D57S-1 (OP)	Nikko Denki, Open type	24 V, 25 A	8.5 kg	85 mm
SA6D108-1	PC300-5	Nikko Denki, Open type	24 V, 25 A	8.5 kg	88 mm

With built-in regulator (open type)



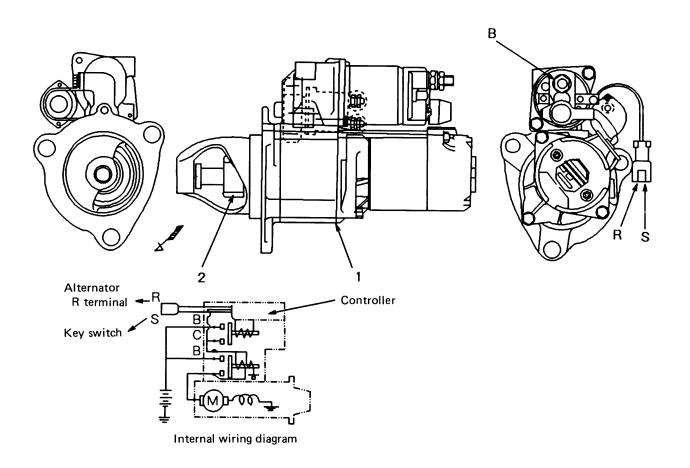
- 1. Alternator pulley
- 2. Alternator



Internal wiring diagram

Engine	Machine	Type	Specifications	Weight	Pulley O.D.
S6D108-1	EG150BS-5	Nikko Denki, Open type	24 V, 25 A	6.5 kg	95 mm

Internal wiring diagram

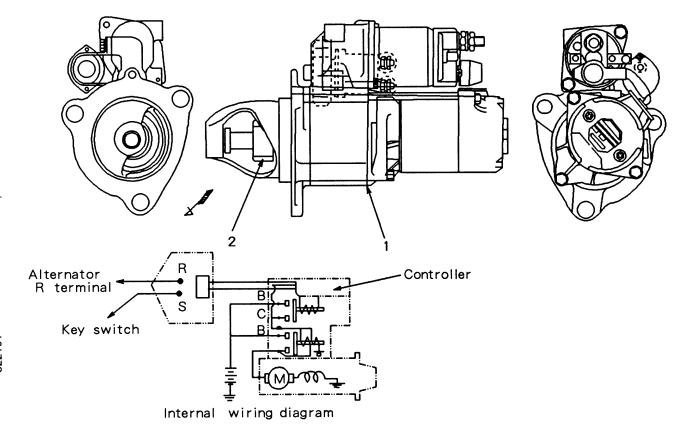

6150F144-1

- 1. Alternator pulley
- 2. Alternator

B, R, N, E: Terminals

Engine	Machine	Туре	Specifications	Weight	Pulley O.D.
S6D108-1	WA320-3 WA380-3	Sawafuji Denki, open type	24 V, 50 A	10 kg	95 mm
SA6D108-1	WA420-3	Sawafuji Denki, open type	24 V, 50 A	10 kg	95 mm

STARTING MOTOR

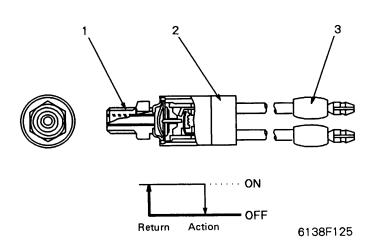


KS100003

- Starting motor
 Starting motor pinion
- B, R, S: Terminals

Engine	Machine model	Туре	Specifications	Weight	No. of pinion teeth
S6D108-1	D57S-1B WA320-3 WA380-3 EG150BS-5	Fujisawa Denki, sealed type (waterproof, oilproof)	24 V, 7.5 kW	14.5 kg	12
SA6D108-1	PC300-5 WA420-3	Fujisawa Denki, sealed type (waterproof, oilproof)	24 V, 7.5 kW	14.5 kg	12

(AUSTOFT)


- 1. Starting motor
- 2. Starting motor pinion

B,R,S: Terminals

Engine	Machine	Туре	Specifications	Weight	No. of pinion teeth
SA6D108-1	AUSTOFT	Sawafuji Denki, sealed type	24V, 7.5kW	14.5kg	12

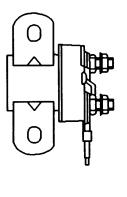
622101

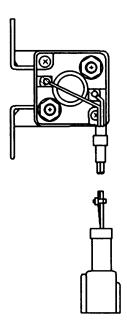
OIL PRESSURE SWITCH

- 1. Nipple
- 2. Switch
- 3. Connector

OIL PRESSURE SWITCH

Operating point


ON :0.15
$$^{+0.03}_{-0.02}$$
 MPa (1.5 $^{+0.03}_{-0.02}$ kg/cm²)


OFF : 0.1
$$^{+\,0.03}_{-\,0.02}$$
 MPa (1.0 $^{+\,0.03}_{-\,0.02}$ kg/cm²)

RELAY SWITCH

RELAY SWITCH

Rated voltage : DC 24 V

- 1. Heat generation coil (Fe-Cr)
- 2. Control coil (Fe)
- 3. Body
- 4. Rated voltage color marking

5	
7	
33	
v	

Rated voltage (color marking)	Type	Name
24V (Red)	Standard type	Self-control type ceramic glow plug
24V (Red)	Quick glow type	Metal 2-wire type glow plug

ENGINE 12 TESTING AND ADJUSTING

Adjusting valve clearance	12-003
ENGINE BODY	
Measuring compression pressure	12-004
FUEL SYSTEM	
Testing and adjusting	
fuel injection timing	12-005
Adjusting fuel cut solenoid link	12-008
Procedure for adjusting engine	
stop motor cable	12-010
Adjusting engine speed sensor	12-012
PERFORMANCE TEST	
Run-in standard	12-013
Performance test criteria	12-014
TESTING AND ADJUSTING DATA	
Fuel injection pump calibration data	12-016
Testing and adjusting tool list	
Standard value table	

TROUBLESHOOTING 12-021

INTAKE AND EXHAUST SYSTEM

When carrying out testing and adjusting, or troubleshooting, stop the machine on level ground, fit safety pins, block the wheels, and apply the parking brake.

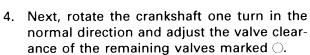
When carrying out operations with two or more workers, always use signals, and do not allow any unauthorized person near the machine.

When checking the water level, if the radiator cap is removed when the engine is hot, boiling water will spurt out and may cause burns, so always wait for the engine to cool down before checking the water level.

Be extremely careful not to touch any hot parts,

Be extremely careful not to get caught in the fan or any other rotating parts.

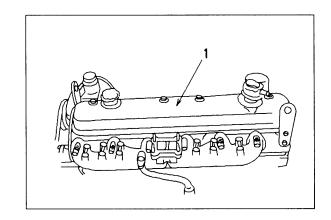
When removing the plugs or caps from places under hydraulic pressure, water pressure, or air pressure, release the internal pressure first. Fit the measuring tools securely before carrying out any testing, adjusting, or troubleshooting.

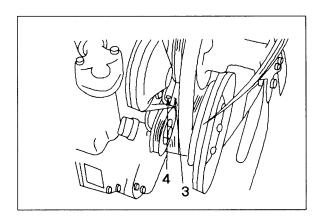

- When using the standard values table for judgement in testing, or troubleshooting, it is necessary to be careful of the following points.
- 1. The standard values for the new machines in the standard values table are values given as reference from the standards for new machines and machines shipped from the factory. They should be used as values for estimating wear during operation or as target values when carrying out repairs.
- The failure judgement standard values in the standard value table are values using estimated 2. values based on the results of various tests and standard values for machines shipped from the factory. Use these values for reference together with the repair and operation history of the machine when judging failures.
- 3. Do not use this standard values table as a standard for judging claims.

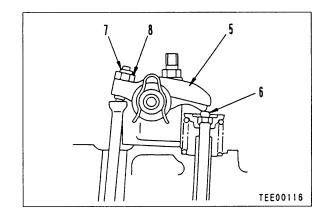
INTAKE AND EXHAUST SYSTEM ADJUSTING VALVE CLEARANCE

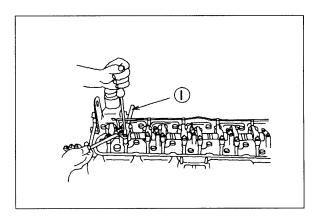
Method of adjusting valve clearance

- 1. Remove cylinder head cover (1).
- 2. Rotate the crankshaft in normal direction to align pointer (4) with the 1-6 TOP mark on crankshaft pulley (3). When rotating, check the movement of the intake valve of No. 6 cylinder.
- 3. Adjust the clearance of the valves markedin the valve arrangement table below.
 - ★ Valve arrangement table


\wedge	Cylinder No.	•	1	2	2	;	3	4	1	į	5	6	3
$ \swarrow $	Intake valve		•		•		0		•		0		\circ
V	Exhaust valve	•		0		•		0		•		0	

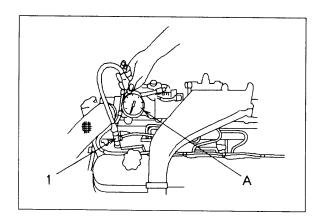



- ★ To adjust the valve clearance, loosen locknut (8) of adjustment screw (7), then insert feeler gauge ① of the specified thickness between valve stem (6) and rocker arm (5), and adjust with the adjustment screw to a tight fit.
- 5. Tighten the locknut to keep the adjustment screw in position.


Locknut: 44.1 ± 4.9Nm (4.5 ± 0.5 kgm)

- ★ Firing order: 1-5-3-6-2-4
- ★ It is also possible to turn the crankshaft 120° each time and adjust the intake and exhaust valve clearance of each cylinder according to the firing order.
- ★ For details of the valve clearance, see TEST-ING AND ADJUSTING, Standard Value Table.

ENGINE BODY


MEASURING COMPRESSION PRESSURE

Method of measuring compression pressure

- When measuring the compression pressure, be careful not to touch the exhaust manifold or muffler, or to get caught in rotating parts.
 - ★ Measure the compression pressure with the engine warmed up. (Oil temperature : 40 - 60°C)
- 1. Adjust the valve clearance.
 - **★** For details, see ADJUSTING VALVE CLEARANCE.
- 2. Remove the spill pipe, then disconnect the fuel injection tube.
- 3. Remove the nozzle holder assembly from each cylinder.
 - ★ Be careful not to let any dirt or dust get inside.
 - ★ When removing the nozzle holder assembly, replace the seat gasket.
- 4. Install the adapter (1) into the nozzle holder mount of the cylinder to be measured, and tighten to the specified torque.

Skgm Adapter : 4.41
$$\pm$$
 4.9 Nm (4.5 \pm 0.5 kgm)

- 5. Connect compression gauge A to the adapter.
- Place the fuel control level in the NO INJEC-TION position. Crank the engine with the starting motor and measure the compression pressure at the point where the gauge indicator remains steady.
 - If the fuel control lever is not placed at the NOINJECTION position, fuel will spurt out.
 - ★ If the adapter mount is coated with a small amount of oil, it will help to prevent leakage.
 - ★ For details of the standard values for the compression pressure, see TESTING AND ADJUSTING, Standard Value Table.

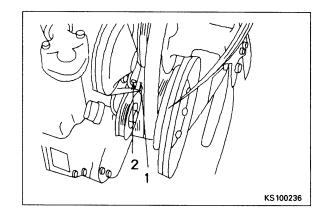
FUEL SYSTEM

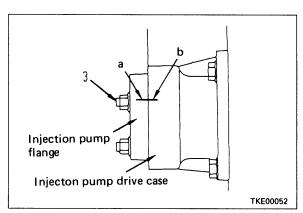
TESTING AND ADJUSTING FUEL INJECTION TIMING

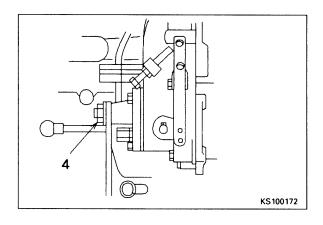
The following methods are used for testing and adjusting the fuel injection timing of the injection pump.

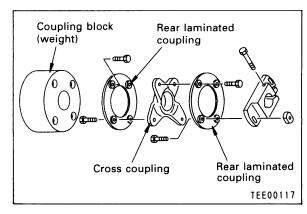
- If the injection pump has not been repaired and it is reassembled to the same engine, use the match mark method.
- If the injection pump has been repaired or replaced, use the delivery valve method when assembling the pump.
 - With the delivery valve method, it is necessary to replace the delivery valve copper gasket O-ring with a new part, so prepare a new part before starting the operation.
 - ★ Set the No.1 cylinder at the compression top dead center befor carrying out testing and adjusting.
 For details, see ADJUSTING VALVE CLEARANCE.

TESTING AND ADJUSTING INJECTION TIMING BY MATCH MARK METHOD

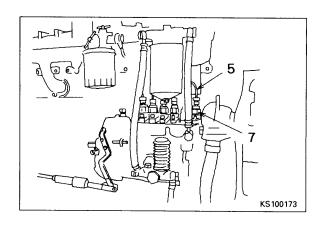

- 1. Rotate the crankshaft 30 40° in the reverse direction from the No.1 cylinder TOP position.
- 2. Rotate it slowly in the normal direction, and align pointer (2) with the fuel injection timing line on crankshaft pulley (1).
- 3. Check that line **a** on the injection pump and line **b** on the injection pump drive case are aligned.
 - if the lines are not aligned, loosen nut (3) in the oblong hole and pump mounting nut (4), then move the fuel injection pump to align the line, and tighten the nut.

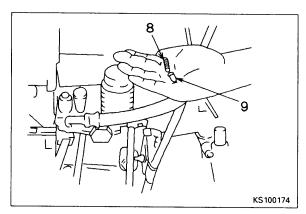

Nut: $66.2 \pm 7.4 \text{ Nm}$ (6.75 ± 0.75 kgm)

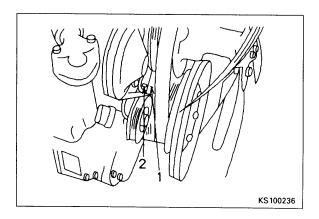

TESTING AND ADJUSTING BY MATCH MARK METHOD (LAMINATED COUPLING TYPE)

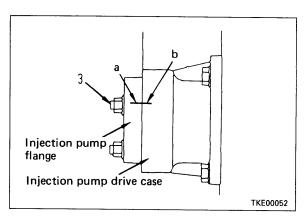

- Carry out Steps 1 and 2 above for the flange type.
- 2. Check that line (a) on the injection pump is aligned with the line on the coupling block (weight).
- ★ If the lines are not aligned, loosen the bolts of the front laminated and flange couplings, align the lines, then tighten the bolts.

Skem Bolt: 88.3 - 93.2 Nm (9.0 - 9.5 kgm)

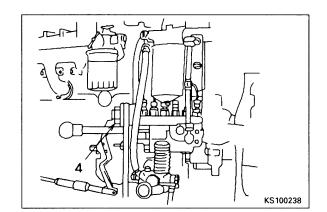


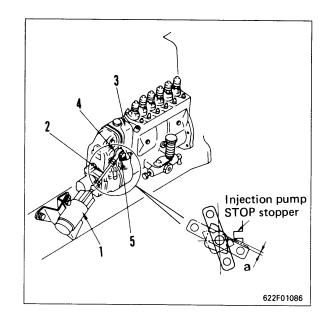





TESTING AND ADJUSTING BY DELIVERY VALVE METHOD

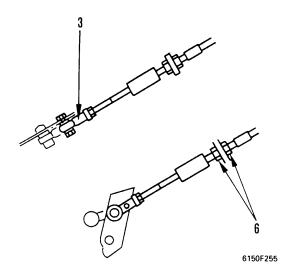
- Disconnect fuel injection tube (5) from the No.1 cylinder.
- 2. Remove delivery valve holder (7).
- 3. Take out spring (8) and delivery valve (9) from inside the delivery valve holder, then assemble the delivery valve holder again.
- Set the fuel control lever at the FULL position, then operate the priming pump and rotate the crankshaft slowly in the normal direction.
 - Check the point where the fuel stops flowing from the delivery valve holder.
- Check that the injection timing line of the crankshaft pulley (1) and the pointer (2) are aligned at the point where the fuel stops flowing.
 - ★ BEYOND injection timing line : Timing RETARTED
 - ★ BEFOR injection timing line : Timing AD-VANCED
 - ★ if the test shows that the injection timing is incorrect, adjust the fuel injection timing as follows.
 - ★ After testing and adjusting, do not forget to reassemble the spring and delivery valve.
 - Rotate the crankshaft 30 40° in the reverse direction from the No.1 cylinder TOP position.
 - 2) Rotate it slowly in the normal direction, and align pointer (2) with the fuel injection timing line on crankshaft pulley (1).
 - 3) Loosen nut (3) in the oblong hole in the mounting flange of the fuel injection pump, and pump mounting bolt (4), then operate the priming pump and rotate the pump flange a little at a time. Stop at the point where the fuel stops flowing from the delivery valve holder.





- 4) Tighten the nut in the oblong hole in the mounting flange of the fuel injection pump, and the pump mounting bolt.
- ★ Check the injection timing again to confirm that the timing is correct.
- 5) Make match mark (a) and (b).

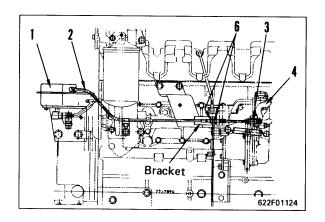
ADJUSTMENT FUEL CUT SOLENOID LINK

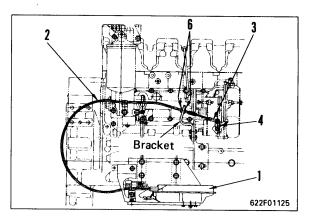

- Stop the engine, connect solenoid (1) and injection pump (3) with rod (2), and assemble temporarily.
- 2. Pull the rod fully by hand to the solenoid end, and adjust the length of the rod so that there is a clearance of 0.5 1.0 mm between stop lever (4) and stopper (5) at the STOP end.
- 3. Pass electricity through the solenoid and adjust the rod finally so that the clearance between the stop lever and the stopper at the STOP side is dimension a.
 - ★ Dimension a: 0.5 1.0 mm
- 4. Stop and start the engine 2 3 times, and check that the solenoid moves smoothly and works properly. If the movement is not smooth, adjust the linkage to improve the movement.

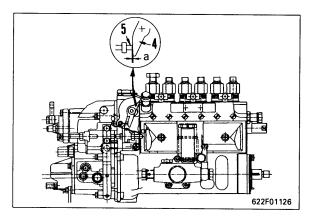
★ Problems caused by improper adjustment of solenoid.

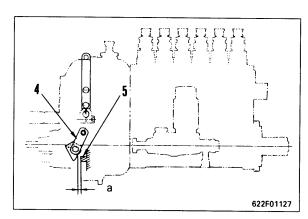
	Problem
 Wnen electricity is passing, clearance between stop lever and stopper at STOP side is 0 	 Excessive current flows to solenoid, and solenoid coil burns out. Injection pump governor is bent and causing scuffuing (Evcessive force is brought to bear on lever)
When free, clearance between stop lever and stopper at FULL side is too large	Amount of fuel injected drops, so engine output drops.

PROCEDURE FOR ADJUSTING ENGINE STOP MOTOR CABLE



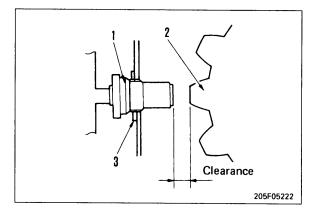

- Temporarily install ball joint (3) to cable (2) of engine stop motor (1) (tighten fully, then turn back approx. 1/2 turns), then install a ball joint to the stop lever of the fuel injection pump.
- 2. Pull injection pump stop lever (4) by hand to the ENGINE STOP (NO INJECTION) position, and temporarily fix the cable to the bracket.


When doing this, put stop lever (4) in contact with ENGINE STOP stopper (5), and temporarily fit the cable to the bracket using the holding nut.


- ★ Engine stop motor (1) is delivered with cable (2) pulled (engine stop position).
- ★ Stop lever (4) of the fuel injection pump is at the RUN position when the lever is free. (It is pulled to the RUN position by a spring.)
- 3. Adjust so that clearance a between stop lever (4) of the fuel injection pump and STOP stopper (5) is 1 2 mm.

Carry out the adjustment with nut (6) holding the cable to the bracket, or make fine adjustments by changing the amount that ball joint (3) is screwed in.

- 4. Tighten all bolts and nuts.
- 5. Turn the engine starting switch ON and OFF repeatedly, and check that engine stop motor (1) and the cable move smoothly. Then check the following points again.
 - When the engine is running, check visually that there is slack in cable (2) of engine stop motor cable (1), and that stop lever (4) of the fuel injection pump is fully returned to the RUN position.
 - Check again that the clearance between stop lever (4) and STOP stopper (5) is 1
 2 mm when the engine is stopped.
 - ★ Engine stop motor (1) has limit switches built in on both sides of the cable stroke.
 - ★ Engine stop motor stroke: 35 mm Fuel injection pump stop lever stroke: 30 mm
 - ★ When the engine is running, there is slack in cable (2) of engine stop motor (1), and the RUN position is maintained by the action of a spring (this is frequently built into the fuel injection pump).
 - ★ There is a loose spring inside engine stop motor (1), and this absorbs the tolerance of stop motor (1) when the engine is stopped.


However, if it is absorbed by the loose spring of engine stop motor (1), force is applied to the injection pump, so depending on the model, this may be impossible.

With such models, if the clearance between stop lever (4) and the STOP stopper is made 0 when the engine is stopped, there is a risk that problems may occur with the injection pump.

- ★ Problems caused by defective adjustment of the engine stop motor cable.
- When the clearance between the stop lever and STOP stopper is excessive with the engine stop motor cable pulled
- When the clearance between the stop lever and the RUN stopper is excessive at the free position
- Engine does not stop
- Fuel injection amount drops, causing loss of engine output power

ADJUSTING ENGINE SPEED SENSOR (MECHANICAL GOVERNOR)

- 1. Screw in until tip of sensor (1) contacts ring gear (2).
- 2. After sensor (1) contacts gear (2), turn the gear back one turn.
- 3. Tighten with locknut (3).
 - ★ Be careful to arrange the sensor wiring so that no excessive force is brought to bear on the wiring.
 - ★ Be careful not to scratch or get metal particles on the tip of the sensor.

PERFORMANCE TEST RUN-IN STANDARD

- ★ Load are given for the case of the dynamometer arm length is 716 mm.
- This list shows the standard on condition that the fan is removed.

Engine	Applicable			Order						
model machine	ltem		1	2	3	4	5	6		
		Running time	min.	2	3	7	10	6		
		Engine speed	rpm	800	1,220	1,540	1,770	1,900		
	D57S-1	Load	N {kg}	0 {0}	279 {28.5}	442 {45.1}	576 {58.9}	718 {73.2}		
		Output	kW (HP)	0 {0}	25.6 {34.3}	51.1 (68.5)	76.7 {103}	102 {137}		
		Running time	min.	2	3	7	10	6		
		Engine speed	rpm	780	1,430	1,860	2,140	2,380		
	WA320-3	Load	N {kg}	0 {0}	186 {19.0}	373 {38.0}	549 {56.0}	735 {75.0}		
		Output	kW (HP)	0 {0}	20.0 {26.8}	52.0 {69.7}	88.1 {118}	131 {176}		
		Running time	min.	2	3	7	10	6		
		Engine speed	rpm	760	1,320	1,715	1,980	2,200		
	WA380-3	Load	N {kg}	0 {0}	226 {23.0}	441 {45.0}	667 (68.0)	883 {90.0}		
		Output	kW (HP)	0 {0}	22.4 {30.0}	56.8 {76.0}	99.0 (133)	145 {195}		
		Running time	min.	2	3	7	10	6		
	Generator EG150BS-5	Engine speed	rpm	750	1,130	1,420	1,640	1,800		
	Generator	Load	N {kg}	0 {0}	294 {30.0}	588 {60.0}	883 {90.0}	1,180 {120}		
	for OEM	Output	kW (HP)	0 {0}	25.0 {33.4}	62.7 {84.0}	109 {146}	159 {213}		
S6D108-1		Running time	min.							
		Engine speed	rpm							
		Load	N {kg}							
		Output	kW (HP))						
		Running time	min.							
		Engine speed	rpm							
		Load	N {kg}							
		Output	kW (HP	}						
		Running time	min.							
		Engine speed	rpm							
		Load	N (kg)							
		Output	kW {HF	'}						
		Running time	min.							
		Engine speed	I rpm							
		Load	N {kg	}						
		Output	kW (H	2}						

- ★ Load are given for the case of the dynamometer arm length is 716 mm.
- ★ This list shows the standard on condition that the fan is removed.

Engine	Applicable	ltem				Oı	rder		
model	machine	item		1	2	3	4	5	6
		Running time	min.	5	15	5	5	20	
	PC300-5	Engine speed	rpm	700	1,220	1,540	1,700	1,950	
	FC300-5	Load	N {kg}	0 {0}	275 {28.0}	539 {55.0}	814 {83.0}	1,080 {110}	
		Output	kW (HP)	0 {0}	25.0 {34.0}	62.5 {85.0}	108 {147}	158 {215}	
		Running time	min.	2	3	7	10	3	
	WA320-3	Engine speed	rpm	750	1,320	1,715	1,980	2,200	
	VVA320-3	Load	N {kg}	0 {0}	255 {26.0}	520 {53.0}	775 {79.0}	1,030 {105}	
		Output	kW (HP)	0 (0)	25.0 {33.8}	67.0 {89.6}	115 {154}	170 {228}	
	Sugar cane	Running time	min.	5	10	10	15	15	5
	harvester AUSTOFT in	Engine speed	rpm	750	1,200	1,700	1,900	2,150	2,400
	AUSTRALIA (Engine No.	Load	N {kg}	0 {0}	490 {50.0}	678 {69.1}	792 {80.8}	887 {90.5}	981 {100}
	10001 –10926)	Output	kW (HP)	0 {0}	44.0 {59.2}	86.0 {116}	113 {151}	143 {192}	177 {237}
	Sugar cane	Running time	min.	5	10	10	15	15	5
	harvester AUSTOFT in AUSTRALIA (Engine No. 10927 and up)	Engine speed	rpm	750	1,200	1,700	1,900	2,150	2,400
		Load	N {kg}	0 {0}	478 {48.7}	669 {68.2}	764 {77.9}	859 {87.6}	955 {97.4}
SA6D108-1		Output	kW (HP)	0 {0}	45.0 {60.0}	88.0 {118}	115 {154}	145 {194}	179 {240}
0A00100-1		Running time	min.	2	3	7	10	3	
	Generator EG185B-L-1	Engine speed	rpm	750	1,130	1,420	1,640	1,800	
	(for ALGERIA)	Load	N {kg}	0 {0}	343 {35.0}	686 {70.0}	1,030 {105}	1,370 {140}	
		Output	kW (HP)	0 {0}	29.0 {39.0}	39.0 {98.0}	127 {170}	185 {248}	
		Running time	min.						
	Generator DENYO	Engine speed	rpm						
	DCA180	Load	N {kg}						
		Output	kW (HP)						
		Running time	min.)					
	SA6D108-M-1	Engine speed	rpm						
	3A0D100-101-1	Load	N {kg}	(The pe	rformance te	est is not do	- ' ne at factory	.)	-
		Output	kW (HP))					
		Running time	min.						
		Engine speed	rpm						
		Load	N {kg}						
		Output	kW (HP)		-				

PERFORANCE TEST CRITERIA

- ★ The values in the table are the standard values for machines with the muffler installed, air cleaner installed, air cleaner installed, alternator under no load, and air compressor opened (if installed).
- ★ The load for the dynamometer are at an arm's length of 716 mm.

*1 994 - 1,059 {101 - 108} (50 Hz) 1,010 - 1,060 {103 - 108} (60 Hz) *2 1,130 - 1,190 {151 - 121} (50 Hz) 1,130 - 1,200 {116 - 122} (60 Hz)

			,010 - 1,060 {103 - 108} (60 Hz)	1,130 - 1,200	(116 – 122) (60 Hz)
Engine model	Applicable machine	Test item	Specified value	Engine speed (rpm)	Dynamometer (N {kg})
		Flywheel horsepower	99.3 kW {133 HP}/1,900 rpm (Net)	1,895 – 1,905	738 – 780 {75.3 – 79.5}
	D57S-1	Maximum torque	618 Nm {63.0 kgm}/1,400 rpm (Net)	1,300 – 1,500	885 - 936 {90.2 - 95.5}
		High idling speed	2,050 – 2,150 rpm	2,050 – 2,150	_
		Low idling speed	800 – 850 rpm	800 – 850	-
		Flywheel horsepower	121 kW {163 HP}/2,380 rpm (Net)	2,375 – 2,385	701 – 741 {71.5 – 75.6}
	WA320-3	Maximum torque	647 Nm {66.0 kgm}/1,600 rpm (Net)	1,500 – 1,700	896 – 978 {91.4 – 99.7}
		High idling speed	2,560 – 2,610 rpm	2,560 – 2,610	-
		Low idling speed	780 – 830 rpm	780 – 830	-
		Flywheel horsepower	140 kW {187 HP}/2,200 rpm (Net)	2,195 – 2,205	860 – 911 {87.7 – 92.9}
	WA380-3	Maximum torque	804 Nm {82.0 kgm}/1,500 rpm (Net)	1,400 – 1,600	1,100 - 1,180 {112 - 120}
		High idling speed	2,450 – 2,550 rpm	2,450 – 2,550	-
		Low idling speed	800 – 850 rpm	800 – 850	_
		Rated flywheel horsepower	113 kW {151 HP}/1,500 rpm (50 Hz) 134 kW {180 HP}/1,800 rpm (60 Hz)	1,495 - 1,505 (50 Hz) 1,795 - 1,805 (60 Hz)	*1
S6D108-1	Generator EG150BS-5	Maximum flywheel horsepower	(Net) 128 kW {171 HP)/1,500 rpm (50 Hz) 152 kW {204 HP)/1,800 rpm (60 Hz) (Net)		*2
	Generator for OEM	High idling speed	max. 1,575 rpm (Rated, 50 Hz) max. 1,890 rpm (Rated, 60 Hz)	max. 1,575 (Rated, 50 Hz) max. 1,890 (Rated, 60 Hz)	-
		Low idling speed	700 – 800 rpm	700 – 800	-
		Flywheel horsepower			
		Maximum torque			
		High idling speed			
		Low idling speed			
		Flywheel horsepower			
		Maximum torque			
		High idling speed			
		Low idling speed			
		Flywheel horsepower			
		Maximum torque			
		High idling speed			
		Low idling speed			

- ★ For fuel, use ASTM D975 No. 1 or No. 2.
- For lubricant, use SAE15W-40 or SAE30 oil.

*3 112 - 119 {149 - 160} (50 Hz)

Lubrication oil	
Lubricating oil pressure (kPa (kg/cm²))	Exhaust gas temperature (°C
0.3 - 0.5 {3.0 - 5.0}	max. 600
0.3 - 0.5 {3.0 - 5.0}	max. 670
0.3 - 0.5 {3.0 - 5.0}	_
min. 0.12 (min. 1.2)	-
0.3 - 0.5 {3.0 - 5.0}	max. 600
-	max. 650
_	-
min. 0.12 (min. 1.2)	_
0.3 - 0.5 {3.0 - 5.0}	max. 600
-	max. 670
_	-
min. 0.12 {min. 1.2}	-
0.3 - 0.5 {3.0 - 5.0 0.3 - 0.5 {3.0 - 5.0	
0.3 - 0.5 {3.0 - 5.0 0.3 - 0.5 {3.0 - 5.0	
0.3 - 0.5 {3.0 - 5.0 0.3 - 0.5 {3.0 - 5.0	
min. 0.12 {min. 1.2	}

- ★ The values in the table are the standard values for machines with the muffler installed, air cleaner installed, air cleaner installed, alternator under no load, and air compressor opened (if installed).
- ★ The load for the dynamometer are at an arm's length of 716 mm.

*5 1,200 - 1,280 {122 - 130} (50 Hz) 1,200 - 1,280 {122 - 130} (60 Hz)

*6 1,320 - 1,400 {135 - 143} (50 Hz) 1,320 - 1,390 {135 - 142} (60 Hz)

Engine model	Applicable machine	Test item	Specified value	Engine speed	Dynamometer
		Flowbeel barranaves		(rpm)	(N {kg})
		Flywheel horsepower	154 kW {207 HP}/1,950 rpm (Net)	1,945 – 1,955	1,050 – 1,110 {107 – 113}
	PC300-5 PC300HD-5 PC360LC-5	Maximum torque	814 Nm {83.0 kgm}/1,500 rpm (Net)	1,400 – 1,600	1,080 - 1,140 {110 - 117}
	1 000020-0	High idling speed	2,115 – 2,235 rpm	2,115 – 2,235	_
		Low idling speed	700 – 750 rpm	700 – 750	-
		Flywheel horsepower	162 kW {217 HP}/2,200 rpm (Net)	2,195 – 2,205	971 – 1,070 {99.0 – 109}
	WA420-3	Maximum torque	847 Nm {86.4 kgm}/1,500 rpm (Net)	1,400 – 1,600	1,170 - 1,250 {120 - 128}
		High idling speed	2,425 – 2,525 rpm	2,405 – 2,525	-
		Low idling speed	700 – 750 rpm	700 – 750	-
	Sugar cane	Flywheel horsepower	179 kW {240 HP}/2,400 rpm (Net)	2,395 - 2,405	945 - 1,040 {96.4 - 107}
	harvester AUSTOFT in AUSTRALIA (Engine No. 10001 – 10926)	Maximum torque	784 Nm {80.0 kgm}/1,600 rpm (Net)	1,500 - 1,700	1,040 – 1,150 {106 – 117}
		High idling speed	2,560 – 2,640 rpm	2,560 – 2,640	_
		Low idling speed	950 – 1,050 rpm	950 – 1,050	-
	Sugar cane harvester AUSTOFT in AUSTRALIA (Engine No. 10927 and up)	Flywheel horsepower	180 kW {241 HP}/2,500 rpm (Net)	2,495 – 2,505	935 984 {95.4 100}
		Maximum torque	824 Nm {84.0 kgm}/1,600 rpm (Net)	1,500 – 1,700	1,100 - 1,210 {112 - 123}
SA6D108-1		High idling speed	2,700 – 2,750 rpm	2,700 – 2,750	-
		Low idling speed	950 – 1,050 rpm	950 – 1,050	_
	Generator EG180B-L-1 (for ALGERIA)	Long time flywheel horsepower	136 kW {182 HP}/1,500 rpm (Net)	1,495 – 1,505	1,200 - 1,280 {122 - 130}
•		Normal flywheel horsepower	150 kW {201 HP}/1,500 rpm (Net)	1,495 - 1,505	1,320 1,400 {135 - 143}
		High idling speed	max. 1,575 rpm	max. 1,575	-
		Low idling speed	700 – 750 rpm	700 – 750	
		Rated flywheel horsepower	136 kW {182 HP}/1,500 rpm (50 Hz) 162 kW {217 HP}/1,800 rpm (60 Hz)	1,495 - 1,505 (50 Hz) 1,795 - 1,805 (60 Hz)	*5
	Generator DENYO DCA180	Maximum flywheel horsepower	(Net) 150 kW (201 HP)/1,500 rpm (50 Hz) 178 kW (239 HP)/1,800 rpm (60 Hz) (Net)	1,495 - 1,505 (50 Hz) 1,795 - 1,805 (60 Hz)	*6
		High idling speed	max. 1,575 rpm (Rated, 50 Hz) max. 1,870 rpm (Rated, 60 Hz)	max. 1,575 (Rated, 50 Hz) max. 1,870 (Rated, 60 Hz)	<u>-</u>
		Low idling speed	700 – 800 rpm	700 – 800	-
		Maximum horsepower	309 kW {420 HP}/2,700 rpm	2,700	1,548 {158}
	SA6D108-M-1	High idling speed	2,920 – 3,120 rpm	2,920 – 3,120	-
		Low idling speed	700 – 750 rpm	700 – 750	-

- ★ For fuel, use ASTM D975 No. 1 or No. 2.
- ★ For lubricant, use SAE15W-40 or SAE30 oil.

135 - 143 (180 - 192) (50 Hz) 162 - 172 (217 - 231) (60 Hz) 148 - 157 (190 - 211) (50 Hz) 178 - 188 (239 - 252) (60 Hz)

lywheel horsepower (kW {HP})	Torque (Nm {kgm})	Fuel consumption (sec./200cc)	Coolant temperature (°C)	Lubricating oil temperature (°C)	Lubricating oil pressure (MPa (kg/cm²))	Exhaust gas temperature (°C
153 – 162 (Gross) {205 – 217}	-	min. 18.0	70 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 650
-	770 - 819 (Gross) {78.5 - 83.5}	-	70 – 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 650
-	-	-	70 – 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	-
-	-	-	70 – 80	90 – 110	min. 0.12 (min. 1.2)	-
160 - 176 (Gross) {215 - 236}	-	min. 15.0	70 – 90	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 600
-	839 - 898 (Gross) {85.6 - 91.6}	-	70 – 90	90 – 110	-	max. 650
-	-	-	70 – 90	90 – 110	_	-
-	-	-	70 – 90	min. 80	min. 0.12 (min. 1.2)	-
170 – 188 (Gross) {228 – 252}	-	min. 15.4	70 – 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 650
-	745 - 824 (Gross) {76.0 - 84.0}	-	70 – 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 650
_	_	_	70 – 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	_
_	_	_	70 – 80	90 – 110	min. 0.12 (min. 1.2)	-
175 – 184 (Gross) {235 – 247}	-	min. 15.4	70 – 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 650
-	784 - 863 (Gross) {80.0 - 88.0}	-	70 – 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 650
-	-	-	70 – 80	90 – 110	0.3 - 0.5 {3.0 - 5.0}	-
-	_	-	70 – 80	90 – 110	min. 0.12 (min. 1.2)	-
135 – 143 (Gross) {180 – 192}	-	min. 19.5	70 – 90	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 670
149 – 157 (Gross) {199 – 211}	_	min. 19.5	70 – 90	90 – 110	0.3 - 0.5 {3.0 - 5.0}	max. 670
-	_	-	70 – 90	90 – 110	-	-
-	_	-	70 – 90	90 – 110	min. 0.12 (min. 1.2)	_
*7	_	min. 17.8 (50 Hz) min. 14.8 (60 Hz)	70 – 90 70 – 90	90 - 110 90 - 110	0.3 - 0.5 {3.0 - 5.0 0.3 - 0.5 {3.0 - 5.0	
*8			70 – 90 70 – 90	90 – 110 90 – 110	0.3 - 0.5 {3.0 - 5.0 0.3 - 0.5 {3.0 - 5.0	
- -			70 – 90 70 – 90	90 – 110 90 – 110	0.3 - 0.5 (3.0 - 5.0 0.3 - 0.5 (3.0 - 5.0	
_	_	_	70 – 90	90 – 110	min. 0.12 (min. 1.2	}
309 {420} (Gross)	1,107 {113.0} (Gross)	-	85	90 - 110	294 - 490 {3.0 - 5.0	max. 690
_		_	85	90 – 110	294 - 490 (3.0 - 5.0	0}
_		_	85	90 – 110	98 {1.0}	

CALIBRATION DATA

Engine model	Pump assembly No.	Engine serial No.	Applicable machine	Page
	6221-71-1310			12-016-1
	6221-71-1311	11040	- D57S-1	12-016-2
	6221-71-1210		WA320-3	12-016-3
	6221-71-1230		WA380-3	12-016-4
S6D108-1	6221-71-1940		Generator EG150BS-5 Generator for OEM	12-016-5
	6222-71-1110 6222-71-1120		PC300-5 PC300HD-5 PC360LC-5	12-016-6
	6222-71-1130		1 000020 3	
	6222-71-1410		WA420-3	12-016-7
	6222-71-1920	10001 – 10926	Sugar cane harvester	12-016-8
	6222-71-1921	10927 and up	AUSTOFT in AUSTRALIA	12-016-9
SA6D108-1	6222-71-1940		Generator EG185B-L-1 (for ALGERIA)	12-016-10
			Generator DENYO DCA180	
	6222-75-1311		SA6D108-M-1	12-016-11

Injection Pump Assembly Number 6221-71-1310 (101605-3990)

): Injection pump manufacturer's part No.

(): Injection pump manufacturer's p							
Injection Pump Type	Injection pump Manufacturer						
PE-AD	ZEXEL						

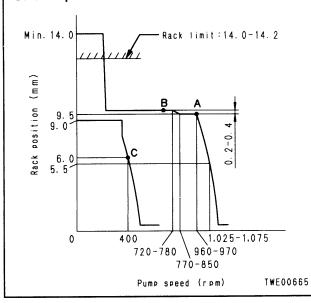
Applicab	le Machine	Applical	ole Engine
Model	Serial No.	Model	Serial No.
D57S-1		S6D108-1	

Injection Pump Specification

injection rump specification						
Rotating direction	Clockwise					
Injection order	1 - 5 - 3 - 6 - 2 - 4					
Injection interval	59°30′ – 60°30′					
Plunger pre-stroke (mm)	3.55 - 3.65					
Delivery valve (mm³/st) retraction volume	70					

Engine Specification

Flywheel horsepow	107 {143}/1,900 (Gross)	
Maximum torque (Nm {kgm}/ rpm		635 {64.7}/1,400 (Gross)
High idling speed	(rpm)	2,050 – 2,150
Low idling speed	(rpm)	800 – 850


Pump tester capacity for Service standard	Motor 7.5 kW
--	--------------

Calibration Standard

): Injection pump manufacturer's part number

Jailbration Standard				7. Injection pump manufacturer's part number				
				Service	standard	Manufactu	rer standard	
Conditions	Nozzle & n	ozzle holdei	r part No.					
Service standard	Nozzle part No.			(105780-0000)		6221-11-3120 (105017-1120)		
indicates data	Nozzle holo	ler part No.		(1057	80-8140)	6221-11-3100	(105118-5100)	
using calibration test parts.	Injection pipe (mm) (Outside dia. x length)			6 x 2 x 600		6 x 2 x 690		
Manufacturer	Test oil			А	STM D975 No. 2 die	esel fuel or equiva	lent	
standard is data	Oil temperature (°C)			40 to 45				
for factory test.	Nozzle opening pressure (MPa{kg/cm²})			17.2 {175}		23.5 {239}		
	Transfer pump pressure (kPa{kg/cm²})			157 {1.60}		157	157 {1.60}	
				Service stand	lard (cc/1000 st.)	Manufacturer sta	andard (cc/1000 st.)	
• Rack positions B to E are the	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder	
reference volume when adjusting	A (Basic point)	9.5	950	★ 82.3 - 84.3	max. 3.3	★80.4 - 83.6	max. 3.2	
the injection volume. • Marks ★ are	В	9.8	700	★ 88.4 - 94.4	_	★ 90.1	-	
	С	6.0	400	★ 12.8 – 15.2	max. 2.8	★ 11.2 – 13.8	max. 2.6	
average volumes.	D							
								

Injection Pump Assembly Number 6221-71-1311 (101605-3991)

(): Injection pump manufacturer's part No.

7. Injustion pu	mp manaracturer s	
Injection Pump Type	Injection pump Manufacturer	
PE-AD	ZEXEL	

Applicab	le Machine	Applicable Engine	
Model	Serial No.	Model	Serial No.
D57S-1		S6D108-1	

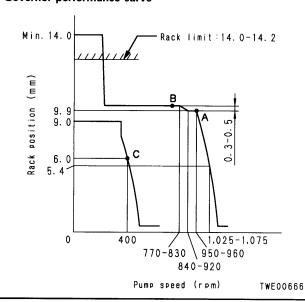
Injection Pump Specification

injection rump openituation					
Rotating direction	Clockwise				
Injection order	1 - 5 - 3 - 6 - 2 - 4				
Injection interval	59°30′ – 60°30′				
Plunger pre-stroke (mm)	3.55 – 3.65				
Delivery valve (mm³/st) retraction volume	70				

Engine Specification

Flywheel horsepow	107 {143}/1,900 (Gross)	
Maximum torque	(Nm {kgm}/ rpm)	635 {64.7}/1,400 (Gross)
High idling speed	(rpm)	2,050 - 2,150
Low idling speed	(rpm)	800 – 850

Pump tester capacity for Service standard	Motor 7.5 kW	


Calibration Standard

): Injection pump manufacturer's part number

Cambration Stant	aru			(/. Inject	ion pump manura	cturer's part ni	umber
				Service	standard	Manufact	turer standard
Conditions	Nozzle & n	ozzle holde	r part No.				
Service standard	Nozzle par	t No.		(105780-0000)		6221-11-3120 (105017-1120)	
indicates data	Nozzle hole	der part No		(1057	80-8140)	6221-11-310	00 (105118-5100)
using calibration test parts.	Injection pi (Outside dia	ipe . x inside dia	(mm) . x length)	6 x	2 × 600	6 x	2 x 690
Manufacturer	Test oil Oil temperature (°C)		Д	STM D975 No. 2 die	esel fuel or equiv	/alent	
standard is data for factory test.				40 t	o 45		
Nozzle opening pressure		ng pressure (I	MPa{kg/cm²})	17.:	2 {175}	23	.5 {239}
	Transfer pump pressure (kPa{kg/cm²})		157	{1.60}	157 {1.60}		
Injection volume				Service stand	lard (cc/1000 st.)	Manufacturer s	tandard (cc/1000 st.)
• Rack positions B to E are the	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder
reference volume when adjusting	A (Basic point)	9.9	950	★82.3 – 84.3	max. 3.3	★ 87.8	
the injection volume.	В	10.3	700	★ 88.4 - 94.4	_	★ 103.1	
Marks ★ are	С	6.0	400	★ 12.8 – 15.2	max. 2.8	★ 12.5	
average volumes.	D						

Ε

Injection Pump Assembly Number 6221-71-1210 (101609-3091)

): Injection pump manufacturer's part No.

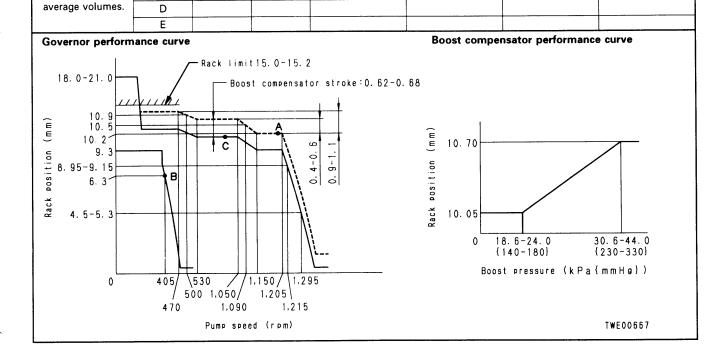
(): Injection pu	mp manufacturer s	part No
Injection Pump Type	Injection pump Manufacturer	
PE-AD	ZEXEL	

Applicable	e Machine	Applical	ole Engine
Model	Serial No.	Model	Serial No.
WA320-3		S6D108-1	

Injection Pump Specification

jood.o ap openinea				
Rotating direction	Clockwise			
Injection order	1 - 5 - 3 - 6 - 2 - 4			
Injection interval	59°30′ – 60°30′			
Plunger pre-stroke (mm)	3.55 - 3.65			
Delivery valve (mm³/st) retraction volume	70			

Engine Specification


Flywheel horsepow	131 {175}/2,380 (Gross)	
Maximum torque	(Nm {kgm}/ rpm)	661 {67.4}/1,600 (Gross)
High idling speed	(rpm)	2,560 – 2,610
Low idling speed	(rpm)	780 – 830

Pump tester capacity for Service standard Motor 7.5 kW

Calibration Standard

): Injection pump manufacturer's part number

Calibration Stand	ard			(). mjecu	on pump manura	cturer's part nu	mbei
				Service	standard	Manufacti	urer standard
Conditions	Nozzle & n	ozzle holde	r part No.				
- Camalan atomaland	Nozzle part	: No.		(1057	80-0000)	6221-11-312	0 (105017-1120)
 Service standard indicates data 	Nozzle holo	der part No.		(1057	80-8140)	6221-11-310	0 (105118-5100)
using calibration test parts.	Injection pi	pe . x inside dia.	(mm) x length)	6 x 2	2 × 600	6 x	2 × 690
 Manufacturer 	Test oil Oil temperature (°C)		А	STM D975 No. 2 die	. 2 diesel fuel or equivalent		
standard is data				40 t	o 45		
for factory test. Nozzle opening pressure (M		MPa{kg/cm²})	17.2 {175}		23.5 {239}		
	Transfer pump pressure (kPa{kg/cm²})		kPa{kg/cm²})	157	{1.60}	157 {1.60}	
				Service stand	lard (cc/1000 st.)	Manufacturer st	andard (cc/1000 st.)
• Rack positions B to E are the	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder
reference volume when adjusting	A (Basic point)	10.2	1,190	★ 83.0 - 85.0	max. 3.4	★ 87.8	
the injection volume.	В	6.3	405	★ 11.3 - 13.7	max. 2.6	★ 103.1	
Marks ★ are	С						

Injection Pump Assembly Number 6221-71-1230 (101609-3101)

): Injection pump manufacturer's part No.

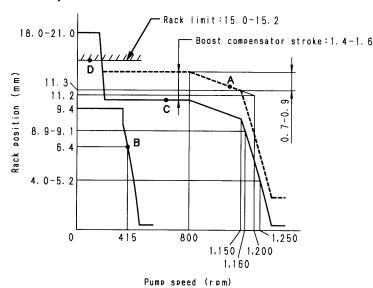
1. Injection pump manuacturer s					
Injection Pump Type	Injection pump Manufacturer				
PE-AD	ZEXEL				

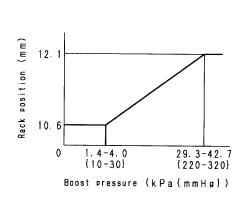
e Machine	Applicat	ole Engine
Serial No.	Model	Serial No.
	S6D108-1	
		Serial No. Model

Injection Pump Specification

mjootion tump opcomouti	
Rotating direction	Clockwise
Injection order	1 - 5 - 3 - 6 - 2 - 4
Injection interval	59°30′ – 60°30′
Plunger pre-stroke (mm)	3.55 – 3.65
Delivery valve (mm³/st) retraction volume	70

Engine Specification


Flywheel horsepow	149 {200}/2,200 (Gross)	
Maximum torque	(Nm {kgm}/ rpm)	816 {83.2}/1,500 (Gross)
High idling speed	(rpm)	2,450 - 2,550
Low idling speed	(rpm)	760 – 810


Pump tester capacity for Service standard	Motor 7.5 kW
--	--------------

Calibration Stand	lard			(): Injection pump manufacturer's part number			
				Service standard	Manufacturer standard		
Conditions	Nozzle & nozzle holder part No.						
Service standard	Nozzle part No.			(105780-0000)	6221-11-3120 (105017-1120)		
indicates data	Nozzie holder part No.			(105780-8140)	6221-11-3100 (105118-5100)		
using calibration test parts.	Injection pipe (mm) (Outside dia. x inside dia. x length)			6 x 2 x 600	6 x 2 x 690		
Manufacturer	Test oil			ASTM D975 No. 2 diesel fuel or equivalent			
standard is data for factory test.	Oil temperature (°C)			40 to 45			
Tor Tublory tool.	Nozzle opening pressure (MPa{kg/cm²})			17.2 {175}	23.5 {239}		
	Transfer pu	Transfer pump pressure (kPa{kg/cm²})		157 {1.60}	157 {1.60}		
Injection volume		Back	Rumn	Service standard (cc/1000 st.)	Manufacturer standard (cc/1000 st.)		

				Service standard (cc/1000 st.)		Manufacturer standard (cc/1000 st.)	
• Rack positions B to E are the	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder
reference volume when adjusting	A (Basic point)	11.3	1,100	* 102.0 – 104.0	max. 4.2	★ 105.0	
the injection volume.	В	6.4	395	★11.3 – 13.7	max. 2.6	★ 12.5	
● Marks ★ are	С						
average volumes.	D						
	E						

Boost compensator performance curve

TWE00668

Injection Pump Assembly Number 6221-71-1940 (101609-3012)

): Iniection pump manufacturer's part No.

(): injection pump manufacturer's p					
Injection Pump Type	Injection pump Manufacturer				
PE-AD	ZEXEL				

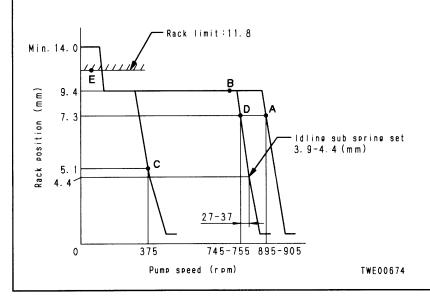
Applicable	Machine	Applicable Engine		
Model	Serial No.	Model	Serial No.	
Generator EG150BS-5 Generator for OEM		S6D108-1		

Injection Pump Specification

injection Fump Specification					
Clockwise					
1 - 5 - 3 - 6 - 2 - 4					
59°30′ – 60°30′					
3.55 – 3.65					
70					

Engine Specification

Engine opeomodicin						
Flywheel horsepow	116 {155}/1,500 (Gross) 140 {104}/1,800 (Gross)					
Maximum torque	_					
High idling speed	(rpm)	Max. 1,575 (50 Hz) Max. 1,890 (60 Hz)				
Low idling speed	(rpm)	700 - 800				


Pump tester capacity	Motor 7.5 kW
for Service standard	

Calibration Standard

): Injection pump manufacturer's part number

Calibration Standard				(): injection pump manufacturer's part number			
				Service	standard	Manufact	urer standard
Conditions	Nozzle & r	ozzie holde	r part No.				
Service standard	Nozzle part No.			(105780-0000)		6221-11-3120 (105017-1120)	
indicates data	Nozzle hol	der part No.	,	(10578	0-8140)	6221-11-3100 (105118-5100)	
using calibration test parts.	Injection p (Outside dia	ipe . x inside dia.	(mm) x length)	6 x 2	× 600	6 x	2 × 690
 Manufacturer 	Test oil			ASTM D975 No. 2 diesel fuel or equivalent			
standard is data	Oil temperature (°C)				40 to 45		
for factory test.	Nozzle opening pressure (MPa{kg/cm²})			17.2 {175}		23.5 {239}	
	Transfer pump pressure (kPa{kg/cm²})		157 {1.60}		157 {1.60}		
				Service standard (cc/1000 st.)		Manufacturer standard (cc/1000 st.)	
 Rack positions B to E are the 	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder
reference volume when adjusting	A (Basic point)	7.3	900	★ 81.6 – 83.6	max. 3.4	★81.2	
the injection volume.	В	9.4	725	★ 142.1 – 149.1	_	★ 150.2	
Marks ★ are	С	Approx. 5.1	375	★ 15.2 – 17.6	max. 3.2	★12.5	
average volumes.	D	7.3	750	★80.9	_	★ 79.7	
	E	11.8	100	★ 208.0 - 228.0	_	★210.0	

Governor performance curve

Injection Pump Assembly Number

6222-71-1110 (191000-7030) 6222-71-1120 (191000-7560) 6222-71-1130

): Injection pump manufacturer's part No.

1	1. Injection pump manufacturer :						
Р	Injection ump Type	Injection pump Manufacturer					
	NB (EP-9)	DENSO					

Applicab	le Machine	Applicable Engine		
Model	Serial No.	Model	Serial No.	
PC300-5 PC300HD-5 PC360LC-5		SA6D108-1		

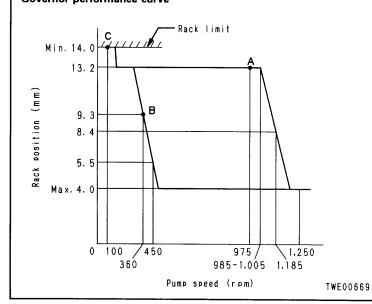
Injection Pump Specification

injection i dilip opecification					
Rotating direction	Clockwise				
Injection order	1 - 5 - 3 - 6 - 2 - 4				
Injection interval	59°30′ – 60°30′				
Plunger pre-stroke (mm)	4.45 - 4.55				
Delivery valve (mm³/st) retraction volume	80				

Engine Specification

Flywheel horsepow	152 {207}/1,950 (Net)	
Maximum torque	(Nm {kgm}/ rpm)	814 {83.0}/1,500 (Net)
High idling speed	(rpm)	2,125 – 2,235
Low idling speed	(rpm)	700 – 750

Pump tester capacity Motor 7.5 kW for Service standard


1: Injection

Calibration Stand	lard			(): Injecti	on pump manufa	cturer's part no	umber
				Service	standard	Manufac	turer standard
Conditions	Nozzle & n	ozzle holde	r part No.				
Service standard	Nozzle par	t No.		(09340	00-0540)		
indicates data	Nozzle hol	der part No		(09310	00-0190)		
using calibration test parts.	Injection p (Outside dia	ipe . x inside dia	(mm) . x length)	6 x 2	2 × 600		
 Manufacturer 	Test oil		-	A	STM D975 No. 2 die	esel fuel or equiv	/alent
standard is data for factory test.	Oil temperature (°C)			40 t	o 4 5		
ioi lactory test.	Nozzle opening pressure (MPa{kg/cm²})		17.2	{175}			
	Transfer pump pressure (kPa{kg/cm²})			157	{1.60}		
lui			_	Service stand	ard (cc/1000 st.)	Manufacturer s	tandard (cc/1000 st.)
• Rack positions B to E are the	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder
reference volume when adjusting	A (Basic point)	13.2	975	★ 137.0 – 147.0	max. 17.0		
the injection volume.	В	9.3	360	★ 19.0 – 23.0	max. 2.1		
Marks ★ are	С			· · · · · · · · · · · · · · · · · · ·			***************************************

Governor performance curve

D Ε

average volumes.

Injection Pump Assembly Number 6222-71-1410 (092000-0360)

): Injection pump manufacturer's part No.

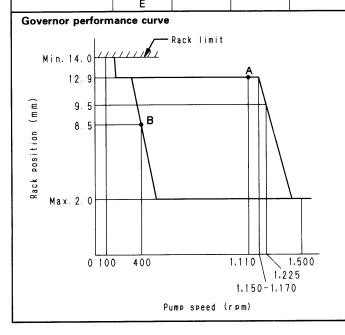
(): injection pu	mp manufacturer s	. pa
Injection Pump Type	Injection pump Manufacturer	
NB (EP-9)	DENSO	

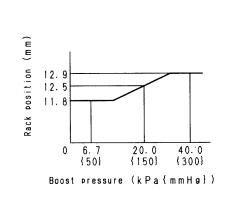
Applicab	le Machine	Applicable Engine	
Model	Serial No.	Model	Serial No.
WA420-3		SA6D108-1	

Injection Pump Specification

mjootion rump epoemean	
Rotating direction	Clockwise
Injection order	1 - 5 - 3 - 6 - 2 - 4
Injection interval	59°30′ – 60°30′
Plunger pre-stroke (mm)	4.45 – 4.55
Delivery valve (mm³/st) retraction volume	90

Engine Specification


Flywheel horsepow	171 {232}/2,200 (Gross)	
Maximum torque	(Nm {kgm}/ rpm)	865 {88.2}/1,500 (Gross)
High idling speed	(rpm)	2,425 – 2,525
Low idling speed	(rpm)	700 – 750


Diverse tratage consolities	
Pump tester capacity	Motor 7.5 kW
for Service standard	IVIOLOT 7.5 KVV

Calibration Standard

): Injection pump manufacturer's part number

Jandration Stand	laru			(/. Injection	on pump manua	cturer a part ne	illine!
				Service	standard	Manufact	urer standard
Conditions	Nozzle & n	ozzle holde	r part No.				
Service standard	Nozzle part	t No.		(09340	0-0540)		
indicates data	Nozzle holo	der part No		(09310	0-0190)		
using calibration test parts.	Injection pipe (mm) (Outside dia. x inside dia. x length)		6 x 2	x 600			
 Manufacturer 	Test oil			AS	STM D975 No. 2 die	esel fuel or equiv	alent
standard is data	Oil temperature (°C)			40 t	o 45		
for factory test.	Nozzle opening pressure (MPa{kg/cm²})		17.2	{175}			
	Transfer pump pressure (kPa{kg/cm²})		157	{1.60}			
				Service stand	ard (cc/1000 st.)	Manufacturer s	tandard (cc/1000 st.)
• Rack positions B to E are the	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder
reference volume when adjusting	A (Basic point)	12.9	1,100	★ 145.0 – 155.0	max. 8.0		
the injection volume.	В	8.5	400	★ 10.0 - 14.0	max. 5.0		
Marks ★ are	С						
average volumes.	D						

Boost compensator performance curve

TWE00670

Injection Pump Assembly Number 6222-71-1920 (191000-7021)

): Injection pump manufacturer's part No.

Injection	Injection pump
Pump Type	Manufacturer
NB (EP-9)	DENSO

Applicable Machine		Applicable Engine		
Model	Serial No.	Model	Serial No.	
Sugar cane harvester AUSTOFT in AUSTRALIA		SA6D108-1		

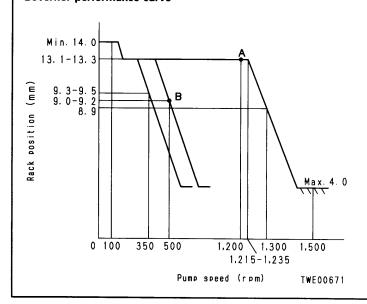
Injection Pump Specification

injection i amp opecinicati	<u> </u>
Rotating direction	Clockwise
Injection order	1 - 5 - 3 - 6 - 2 - 4
Injection interval	59°30′ – 60°30′
Plunger pre-stroke (mm)	4.45 - 4.55
Delivery valve (mm³/st) retraction volume	80

Engine Specification

Flywheel horsepow	177 {240}/2,400 ()	
Maximum torque (Nm {kgm}/ rpm)		785 {80.0}/1,600 ()
High idling speed	(rpm)	2,560 – 2,640	
Low idling speed	(rpm)	950 – 1,050	

Pump tester capacity Motor 7.5 kW for Service standard


Calibration Standard

Januration Standard				(): Injecti): Injection pump manufacturer's part number			
				Service	standard	Manufact	urer standard	
Conditions	Nozzle & nozzle holder part No.							
Service standard	Nozzle par	t No.		(09340	0-50540)			
indicates data	Nozzle hol	der part No		(09350	00-0190)			
using calibration test parts.	Injection pipe (mm) (Outside dia. x inside dia. x length)			6 x 2 x 600				
Manufacturer	Test oil			A	STM D975 No. 2 die	esel fuel or equiv	alent	
standard is data for factory test.	Oil temper	ature	(°C)		40 t	o 45		
ioi lactory test.	Nozzle openi	ing pressure (MPa{kg/cm²})	17.2	{175}			
	Transfer pur	mp pressure (kPa{kg/cm²})	157	{1.60}			
Injection volume		Deal		Service stand	ard (cc/1000 st.)	Manufacturer s	tandard (cc/1000 st.)	
 Rack positions B to E are the 	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder	
reference volume when adjusting	A (Basic point)	13.1	1,200	★ 134.0 – 144.0	max. 8.0			
the injection volume.	В	8.9	500	★ 13.0 – 17.0	max. 5.0			
● Marks ★ are	С							
					1			

Governor performance curve

D Ε

average volumes.

Injection Pump Assembly Number 6222-71-1921 (191000-7023)

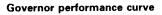
): Injection pump manufacturer's part No.

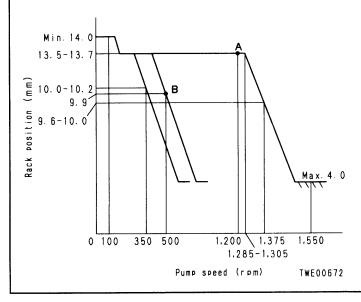
(). Injection pu	mp manufacturer s	P
Injection Pump Type	Injection pump Manufacturer	
NB (EP-9)	DENSO	

Applicable	e Machine	Applicable Engine		
Model	Serial No.	Model	Serial No.	
Sugar cane		SA6D108-1		
harvester				
AUSTOFT in				
AUSTRALIA				

Injection Pump Specification

injection ramp openious	···
Rotating direction	Clockwise
Injection order	1 - 5 - 3 - 6 - 2 - 4
Injection interval	59°30′ – 60°30′
Plunger pre-stroke (mm)	4.45 – 4.55
Delivery valve (mm³/st) retraction volume	80


Engine Specification


Flywheel horsepow	ver (kW {HP}) / rpm)	177 {240}/2,500 ()
Maximum torque	(Nm {kgm}/ rpm)	824 {84.0}/1,600 ()
High idling speed	(rpm)	2,700 – 2,750	
Low idling speed	(rpm)	950 – 1,050	

Pump tester capacity	Motor 7.5 kW
for Service standard	Motor 7.5 kW

Calibration Standard

Calibration Standard				(): Injection	on pump manuta	facturer's part number			
				Service	standard	Manufact	urer standard		
Conditions	Nozzle & n	ozzle holde	r part No.						
 Service standard indicates data using calibration test parts. Manufacturer 	Nozzle part No.			(09340	0-50540)				
	Nozzle holo	der part No.		(093500-0190)					
	Injection pi	pe x inside dia.	(mm) x length)	6 x 2 x 600					
	Test oil			ASTM D975 No. 2 diesel fuel or equivalent					
standard is data	Oil temperature (°C)			40 to 45					
for factory test.	Nozzle opening pressure (MPa{kg/cm²})		17.2 {175}						
	Transfer pump pressure (kPa{kg/cm²})			157	{1.60}				
				Service standa	ard (cc/1000 st.)	Manufacturer s	tandard (cc/1000 st.)		
Rack positions B to E are the reference volume when adjusting the injection volume.	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder		
	A (Basic point)	13.6	1,250	★ 143.0 - 153.0	max. 8.0				
	В	9.9	500	★ 27.0 - 31.0	max. 5.0				
Marks ★ are	С								
average volumes.	D								

Injection Pump Assembly Number 6222-71-1940 (191000-8240)

(): Injection pump manufacturer's part No.

7. Injection pump manufacturer s						
Injection Pump Type	Injection pump Manufacturer					
NB (EP-9)	DENSO					

Model Serial No	o. Model	Serial No.
Camanatan		00,10,10
Generator	SA6D108-1	
EG185B-L-1		
(for ALGELIA)		

Injection Pump Specification

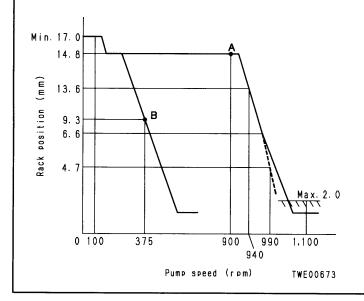
	
Rotating direction	Clockwise
Injection order	1 - 5 - 3 - 6 - 2 - 4
Injection interval	59°30′ – 60°30′
Plunger pre-stroke (mm)	4.45 – 4.55
Delivery valve (mm³/st) retraction volume	80

Engine Specification

Flywheel horsepow	153 {208}/1,500 (Gross, 50 Hz 183 {249}/1,800 (Gross, 60 Hz	
Maximum torque	(Nm {kgm}/ rpm)	
High idling speed	(rpm)	Max. 1,575 (50 Hz) Max. 1,890 (60 Hz)
Low idling speed	(rpm)	700 – 800

Pump tester capacity for Service standard Motor 7.5 kW

Calibration Standard


): Injection pump manufacturer's part number

				Service	standard	Manufactu	rer standard
Conditions	Nozzle & ı	nozzle holde	r part No.				
Service standard	Nozzle part No.			(09340	00-0540)		
indicates data	Nozzle ho	Nozzle holder part No.			(093500-0190)		
using calibration test parts.	Injection pipe (mm) (Outside dia. x inside dia. x length) Test oil			6 x 2	2 × 600		
 Manufacturer 				ASTM D975 No. 2 diesel fuel or equivalent			
standard is data for factory test.	Oil temperature (°C)			40	to 45		
ioi lactory test.	Nozzle opening pressure (MPa{kg/cm²})		17.2	{175}			
	Transfer pu	mp pressure (kPa{kg/cm²})	157	{1.60}		
				Service standard (cc/1000 st.)		Manufacturer sta	andard (cc/1000 st.)
Injection volume	Rack point	Rack position	Pump speed	Injection	Maximum	Injection	Maximum

• Rack positions B to E are the	point	position (mm)	speed (rpm)	Injection volume
reference volume when adjusting	A (Basic point)	14.8	900	★ 172.0 - 182.0
the injection volume.	В	9.3	375	★ 11.0 - 15.0
● Marks ★ are	С			
average volumes.	D			

Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder
★ 172.0 – 182.0	max. 4.5		
★ 11.0 – 15.0	max. 10.0		

Governor performance curve

Injection Pump Assembly Number 6222-75-1311 (092000-3500)

): Injection pump manufacturer's part No.

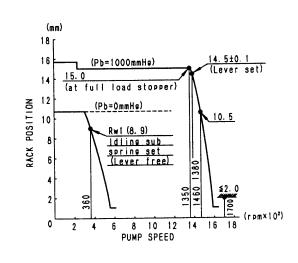
7. Injection pump mandacturer s					
Injection Pump Type	Injection pump Manufacturer				
NB (EP-9)	DENSO				

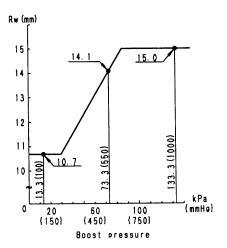
Applicable Machine		Applicable Engine			
Model	Serial No.	Model	Serial No.		
SA6D108-M-1		SA6D108-1			

Injection Pump Specification

illection rump opecinication				
Clockwise				
1 - 5 - 3 - 6 - 2 - 4				
59°30′ – 60°30′				
3.65 - 3.75				
100				

Engine Specification


Maximum fywheel hors	309 {420}/2,700 (Gross)	
Maximum torque	(Nm {kgm}/ rpm)	-
High idling speed	(rpm)	2,920 - 3,020
Low idling speed	(rpm)	700 – 750


Pump tester capacity for Service standard

Calibration Standard (): Injection pump manufacturer's part number

Calibration Standard				(): Injection pump manufacturer's part number					
				Service	standard	Manufact	urer standard		
Conditions	Nozzle & n	ozzle holdei	r part No.						
Service standard	Nozzle part No.			(093400-0540)					
indicates data	Nozzle holo	der part No.		(0931	00-0190)				
using calibration test parts.	Injection pipe (mm) (Outside dia. x inside dia. x length)			6 x 2 x 600					
 Manufacturer 	Test oil			Α	STM D975 No. 2 die	sel fuel or equiv	alent		
standard is data	Oil temperature (°C)				40 t	to 45			
for factory test.	Nozzle opening pressure (MPa{kg/cm²})		17.2 {175}						
	Transfer pump pressure (kPa{kg/cm²})			157 {1.60}					
				Service stand	ard (cc/1000 st.)	Manufacturer s	tandard (cc/1000 st.)		
Injection volume Rack positions B to E are the	Rack point	Rack position (mm)	Pump speed (rpm)	Injection volume	Maximum variance between cylinder	Injection volume	Maximum variance between cylinder		
reference volume when adjusting	A (Basic point)	15.0	1,350	197.0 – 207.0	max. 8				
the injection volume.	В	8.9	360	27.0 - 31.0	max. 5				
Marks ★ are	С								
average volumes.	D								
	E					<u> </u>			

TESTING AND ADJUSTING TOOL LIST

No.	Testing and measuring item	Fault finding tool	Part No.	Remarks
1	Engine speed	Multi-tachometer	799-203-8000	Digital reading: 60-20,000rpm
2	Battery S.G.	Battery coolant	-o5 500 4004	1.100 — 1.300
3	Freezing temperature of cooling water	tester	795-500-1001	-550℃
4	Water temperature, oil temperature, air intake temperature	Thermistor tem-	700 500 1000	0 — 200°C
5	Exhaust temperature	perature gauge	790-500-1300	0 − 1,000℃
6	Lubricating oil pressure			0 - 10 kg/cm²
7	Fuel pressure			0 - 20 kg/cm²
8	Intake pressure, exhaust pressure	Engine pressure measuring kit	799-203-2002	0 — 1,500 mm Hg
9	Blow-by pressure			O − 1,000mmH ₂ O
10	Intake resistance			-1,000 0mmH₂O
11	Compression pressure	Compression gauge	795-502-1203	0 -70 kg∕cm²
12	Blow-by pressure	Blow-by checker	799-201-1503	0 — 500 mmH₂O
13	Valve clearance	Feeler gauge	795-116-1330	0.35,0.65mm
	Valve clearance	1 00101 gaage	795-125-1330	0.25,0.45mm
14	Exhaust gas color	Handy smoke checker	799-201-9000	Dirtiness 0 - 70% with stand- ard color(Dirtiness%×1/10 ≒ Bosch scale)
15	Water and fuel content in oil	Engine oil checker	799-201-6000	Provided with 0.1 and 0.2 water content standard sample
16	Fuel injection pressure Fuel injection nozzle spray condition	Nozzle tester	Commercially available	0 — 300 kg∕cm²
17	Coolant quality	Water quality tester	799-202-7001	PH, nitrite ion concentration
18	Pressure valve function Leakage in cooling system	Radiator cap tester	799-202-9001	0 - 2 kg/cm²
19	Radiator blockage	Anemometer (Air speed gauge)	799-202-2001	1 − 40 m/s
		Cranking kit	795-610-1000	
20	Engine cranking	Barring device	795-215-1600	
20	Electrical circuit	Tester	Commercially available	Current, Voltage, Resistance

TESTING AND ADJUSTING DATA

	Er	ngine model			S6D	108-1	
	Applicat	ole machine model		D57	7S-1	WAS	320-3
Classifi- cation	ltem	Condition, etc.	Unit	Standard value	Permissible value	Standard value	Permissible value
Θ.	Engine speed	High idling speed	rpm	2,050 – 2,150	2,050 – 2,150	2,560 - 2,610	2,560 – 2,610
man	Linginio opoca	Low idling speed	rpm	800 – 850	800 – 850	780 – 830	780 – 830
Performance	Necessary starting speed	0°C (Without starting aid)	rpm	min. 130	100	min. 130	100
	starting speed	–20°C (With starting aid)	rpm	min. 100	100	min. 100	100
	Intake resistance	At all speed	kPa {mmH₂O}	max. 2.94 {max. 300}	7.47 {762}	max. 2.94 {max. 300}	7.47 {762}
	Boost pressure	At rated flywheel horsepower	kPa {mmHg}	73.2 - 86.5 {550 - 650}	56.0 {420}	113 – 146 {850 – 1,100}	86.5 {650}
tem	Exhaust pressure (Turbine inlet pressure)	At rated flywheel horsepower	kPa {mmHg}	65.2 - 77.1 {490 - 580}	50.5 {380}	93.1 – 120 {700 – 900}	66.5 {500}
ıst sys	Exhaust temperature (Turbine inlet temp.)	All speed (20°C)	°C	max. 650	700	max. 650	700
xhau		Quick acceleration (Low idle → High idle)		max. 5.0	7.0	max. 5.5	7.5
Intake, exhaust system	Exhaust gas color	At rated flywheel horsepower	Bosch index	max. 3.0	4.0	max. 2.5	3.5
ī		High idling speed		max. 1.0	2.0	max. 1.0	2.0
	Valve clearance (When engine is hot	Intake valve	mm	0.34	_	0.34	_
	or cold)	Exhaust valve	mm	0.66	-	0.66	-
Engine body	Compression pressure (SAE30 or SAE15W-40)	Oil temperature: 40 – 60°C (Engine speed: 250 – 300 rpm)	MPa {kg/cm²}	min. 2.9 {min. 30}	2.4 {24}	min. 2.9 {min. 30}	2.4 {24}
	Blow-by pressure (SAE30 or SAE15W-40)	At rated flywheel horsepower (Water temperature: Min. 70°C)	kPa {mmH ₂ O}	max. 0.78 {max. 80}	1.57 {160}	max. 0.78 {max. 80}	1.57 {160}
		At rated flywheel horsepower SAE30 or SAE15W-40 oil	kPa {kg/cm²}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}
system	Oil pressure (Oil temperature:	SAE10W oil	kPa {kg/cm²}	0.25 - 0.45 {2.5 - 4.5}	0.18 {1.8}	0.25 - 0.45 {2.5 - 4.5}	0.18 {1.8}
	Min. 80°C)	At low idling SAE30 or SAE15W-40 oil	√ kPa {kg/cm²}	min. 0.12 {min. 1.2}	0.07 {0.7}	min. 0.12 {min. 1.2}	0.07 {0.7}
Lubrication		SAE10W oil	kPa {kg/cm²}	min. 0.10 {min. 1.0}	0.07 {0.7}	min. 0.10 {min. 1.0}	0.07 {0.7}
Lu	Oil temperature	All speed (Oil in oil pan)	°C	90 – 110	120	90 – 110	120
	Oil consumption ratio	At continuous rated horsepower (Ratio to fuel consumption)	%	max. 0.5	1.0	max. 0.5	1.0
E E	Fuel injection pressure	Nozzle tester	MPa {kg/cm²}	23.5 - 24.5 {240 - 250}	18.4 {188}	23.5 - 24.5 {240 - 250}	18.4 {188}
Fuel system	Fuel injection timing	B.T.D.C.	degree	21 – 23	_	21 – 23	-
	Radiator pressure valve	Opening pressure (Differential pressure)	kPa {kg/cm²}	60 - 80 {0.6 - 0.8}	60 – 80 (0.6 – 0.8}	60 - 80 {0.6 - 0.8}	60 - 80 {0.6 - 0.8}
Cooling system	Fan speed	At rated engine speed	rpm	1,795 – 1,905	1,795	1,535 – 1,635	1,535
ن ن	Fan belt tension	Deflects when pushed with a force of 60 N {6 kg}	mm	5 – 7	9	5 – 10	5 – 10

S6D108-1

WA38	80-3	Generator I Generator f					
Standard value	Permissible value	Standard value	Permissible value	Standard value	Permissible value	Standard value	Permissible value
2,450 - 2,550	2,450 – 2,550	1,565 - 1,575 (50Hz) 1,870 - 1,890 (60Hz)	1,565 - 1,575 (50Hz) 1,870 - 1,890 (60Hz)				
810 – 840	810 – 840	700 – 800	700 – 800				
min. 130	100	min. 130	100				
min. 100	100	min. 100	100				
max. 2.94 {max. 300}	7.47 {762}	max. 2.94 {max. 300}	7.47 {762}				
126 – 160 {950 – 1,200}	100 {750}						
93.1 – 120 {700 – 900}	66.5 {500}	*	1				
max. 650	700	max. 700	700				
max. 5.5	7.5	_	-				
max. 2.5	3.5	max. 2.0	3				
max. 1.0	2.0	max. 1.0	2.0				
0.34	-	0.34	-				
0.66	-	0.66	-				
min. 2.9 {min. 30}	2.4 {24}	min. 2.9 {min. 30}	2.4 {24}				
max. 0.78 {max. 80}	1.57 {160}	max. 1.47 {max. 150}	2.94 {300}				
0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}				
0.25 - 0.45 {2.5 - 4.5}	0.18 {1.8}	0.25 - 0.45 {2.5 - 4.5}	0.18 {1.8}				
min. 0.12 {min. 1.2}	0.07 {0.7}	min. 0.12 {min. 1.2}	0.07 {0.7}				
min. 0.10 {min. 1.0}	0.07 {0.7}	min. 0.10 {min. 1.0}	0.07 {0.7}				
90 – 110	120	90 – 110	120				
max. 0.5	1.0	max. 0.5	1.0				
23.5 - 24.5 {240 - 250}	18.4 {188}	26.5 - 27.5 {270 - 280}	20.8 {212}				
21 – 23	-	18 – 20	_				
60 - 80 {0.6 - 0.8}	60 - 80 {0.6 - 0.8}	40 - 60 {0.4 - 0.6}	40 - 60 {0.4 - 0.6}				
1,490 – 1,590	1,490 – 1,590	1,085 - 1,155 (50 Hz) 1,305 - 1,385 (60 Hz)	1,085 – 1,155 (50 Hz) 1,305 – 1,385 (60 Hz)				
5 – 10	5 – 10	_	-				

*1	Standard value				Permissible value			
	At rated At		max. At r		ated	At max.		
	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz
Boost pressure	min. 97.1 {min. 730}	min. 136 {min. 1,020}	min. 117 {min. 880}	min. 160 {min. 1,200}	81.0 {610}	113 {850}	97.8 {735}	133 {1,000}
Exhaust pressure	min. 66.5 {min. 500}	min. 109 {min. 820}	min. 77.1 {min. 580}	min. 125 {min. 940}	52.5 {395}	85.7 {645}	60.5 {455}	98.4 {740}

	E	ngine model			SA6	0108-1	
	Applicat	ole machine model	A		PC300HD-5 0LC-5	WA	120-3
Classifi- cation	ltem	Condition, etc.	Unit	Standard value	Permissible value	Standard value	Permissible value
<u> </u>	Engine speed	High idling speed	rpm	2,115 – 2,235	2,115 – 2,235	2,425 – 2,525	2,425 – 2,525
man		Low idling speed	rpm	700 – 750	700 – 750	750 – 800	750 – 800
Performance	Necessary starting speed	0°C (Without starting aid)	rpm	min. 130	100	min. 110	900
	- Coloring opera	-20°C (With starting aid)	rpm	min. 100	100	min. 90	900
	Intake resistance	At all speed	kPa {mmH₂O}	max. 2.94 {max. 300}	6.23 {635}	max. 2.94 {max. 300}	7.47 {762}
	Boost pressure	At rated flywheel horsepower	kPa {mmHg}	73.2 - 86.5 {550 - 650}	100 {750}	113 - 146 {850 - 1,100}	79.8 {600}
stem	Exhaust pressure (Turbine inlet pressure)	At rated flywheel horsepower	kPa {mmHg}	65.2 - 77.1 {490 - 580}	66.5 {500}	126 - 146 {950 - 1,100}	99.8 {750}
Intake, exhaust system	Exhaust temperature (Turbine inlet temp.)	All speed (20°C)	°C	max. 650	650	max. 650	700
xhau		Quick acceleration (Low idle → High idle)		max. 4.0	6.0	max. 5.5	7.5
take, e	Exhaust gas color	At rated flywheel horsepower	Bosch index	-	-	max. 2.0	3.0
<u>=</u>		High idling speed		max. 1.5	_	max. 1.0	2.0
	Valve clearance	Intake valve	mm	0.34	-	0.34	-
	(When engine is hot or cold)	Exhaust valve	mm	0.66	-	0.66	-
Engine body	Compression pressure (SAE30 or SAE15W-40)	Oil temperature: 40 – 60°C (Engine speed: 250 – 300 rpm)	MPa {kg/cm²}	min. 2.7 {min. 28}	2.3 {23}	min. 2.7 {min. 28}	2.3 {23}
Eng bo	Blow-by pressure (SAE30 or SAE15W-40)	At rated flywheel horsepower (Water temperature: Min. 70°C)	kPa {mmH₂O}	max. 1.47 {max. 150}	2.94 {300}	max. 1.47 {max. 150}	2.94 {300}
		At rated flywheel horsepower SAE30 or SAE15W-40 oil	kPa {kg/cm²}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}
system	Oil pressure (Oil temperature:	SAE10W oil	kPa {kg/cm²}	0.25 - 0.45	0.18 {1.8}	0.25 - 0.45 {2.5 - 4.5}	0.18 {1.8}
_	Min. 80°C)	At low idling SAE30 or SAE15W-40 on	kPa {kg/cm²}	min. 0.12 {min. 1.2}	0.07 {0.7}	min. 0.12 {min. 1.2}	0.07 {0.7}
Lubricatio		SAE10W oil	kPa {kg/cm²}	min. 0.10 {min. 1.0}	0.07 {0.7}	min. 0.10 {min. 1.0}	0.07 {0.7}
L	Oil temperature	All speed (Oil in oil pan)	°C	90 – 110	120	90 – 110	120
	Oil consumption ratio	At continuous rated horsepower (Ratio to fuel consumption)	%	max. 0.5	1.0	max. 0.5	1.0
 E =	Fuel injection pressure	Nozzle tester	MPa {kg/cm²}	26.5 - 27.5 {270 - 280}	20.2 {212}	26.5 - 27.5 {270 - 280}	20.2 {212}
Fuel system	Fuel injection timing	B.T.D.C.	degree	15 – 17	_	21 – 23	_
g r	Radiator pressure valve	Opening pressure (Differential pressure)	kPa {kg/cm²}	40 - 60 {0.4 - 0.6}	40 - 60 (0.4 - 0.6}	60 - 80 {0.6 - 0.8}	60 - 80 {0.6 - 0.8}
Cooling system	Fan speed	At rated engine speed	rpm	1,520 - 1,600	1,520	1,600 – 1,700	1,600
Οø	Fan belt tension	Deflects when pushed with a force of 60 N (6 kg)	mm	3 *2	3 *2	5 – 10	5 – 10

*2Between water pump and fan pulley: 6 (mm)

*3	Long time rated	Normal
Boost pressure	min. 112 {min. 840}	min. 129 (min .970)
Exhaust pressure	min. 67.8 {min. 510}	min. 77.1 (min. 580)

SA6D108-1

Sugar cane harvester AUSTOFT in AUSTRALIA (Serial No. 10001 – 10926)		Sugar cane AUSTOFT in A (Serial No. 10)	AUSTRALIA	Gene EG185B-L-1 (f	rator or ALGERIA)	Gener DENYO D	
Standard	Permissible value	Standard value	Permissible value	Standard value	Permissible value	Standard value	Permissible value
value 2,560 - 2,640	2,560 – 2,640	2,700 - 2,750	2,700 - 2,750	1,565 – 1,575	1,565 – 1,575		1,565 - 1,575 (50Hz) 1,870 - 1,890 (60Hz)
950 – 1,050	950 – 1,050	950 – 1,050	950 – 1,050	700 – 800	700 – 800	700 – 800	700 – 800
min. 130	100	min. 130	100	min. 130	100	min. 130	100
min. 100	100	min. 100	100	min. 100	100	min. 100	100
max. 2.94 {max. 300}	6.23 {635}	max. 2.94 {max. 300}	6.23 {635}	max. 2.94 (max. 300)	7.47 {762}	max. 2.94 {max. 300}	7.47 {762}
120 {900}	102 {765}	120 {900}	89.8 {675}	*3	-	*	1
104 {min. 780}	57.8 {555}	min. 106 {min. 800}	57.8 {555}	J	-		
max. 650	650	max. 650	650	max. 670	700	max. 650	700
_	-	_	-	-	_	-	-
max. 7.3	9.3	-	-	max. 1.5	2.5	max. 1.5	2.5
max. 1.5	2.5	max. 1.5	2.5	max. 1.0	2	max. 1.0	2
0.34	_	0.34	-	0.34	-	0.34	-
0.66	_	0.66	-	0.66	-	0.66	-
min. 2.7	2.3 {23}	min. 2.7 {min. 28}	2.3 {23}	min. 2.7 {min. 28}	2.3 {23}	min. 2.7 {min. 28}	2.3 {23}
(min. 28) max. 1.47 (max. 150)	2.94 {300}	max. 1.47 {max. 150}	2.94 {300}	max. 1.96 {max. 200}	3.92 {400}	max. 1.96 {max. 200}	3.92 {400}
0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}
_	-	-	_	0.25 - 0.45 {2.5 - 4.5}	0.18 {1.8}	0.25 - 0.45 {2.5 - 4.5}	0.18 {1.8}
min. 0.12 {min. 1.2}	0.07 {0.7}	min. 0.12 {min. 1.2}	0.07 {0.7}	min. 0.12 {min. 1.2}	0.07 {0.7}	min. 0.12 {min. 1.2}	0.07 {0.7}
-	_	-	-	min. 0.10 {min. 1.0}	0.07 {0.7}	min. 0.10 {min. 1.0}	0.07 {0.7}
90 - 110	120	90 - 110	120	90 – 110	120	90 – 110	120
max. 0.5	1.0	max. 0.5	1.0	max. 0.5	1.0	max. 0.5	1.0
26.0 - 27.0 {265 - 275}	23.3 {238}	26.0 - 27.0 {265 - 275}	23.3 {238}	26.5 - 27.5 {270 - 280}	20.8 {212}	26.5 - 27.5 {270 - 280}	20.8 {212}
23 - 25	-	23 - 25	-	16 – 18	-	16 - 18	-
	-	-	-	40 - 60 {0.4 - 0.6}	40 - 60 {0.4 - 0.6}	40 - 60 {0.4 - 0.6}	40 - 60 {0.4 - 0.6}
1,755 – 1,845	1,755 - 1,845	1,870 – 1,905	1,870 - 1,905	1,085 - 1,158	1,085 – 1,155	1,305 - 1,385 (50 Hz 1,085 - 1,155 (60 Hz	2) 1,305 - 1,385 (50 h 2) 1,085 - 1,155 (60 h
5 – 10	12	5 – 10	12	5 – 10	5 – 10	5 – 10	5 – 10

* •	Standard value				Permissible value				
*4	At r	ated	At max.		At rated		At max.		
	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	
Boost pressure	min. 112	min. 146 (min. 1,100)	min. 129	min. 164 {min. 1,230}	93.5 {703}	122 {921}	108 {812}	137 {1,030}	
Exhaust pressure	(min. 840) min. 67.8 (min. 510)	min. 1,100, min. 105 (min. 790)	min. 77.1 {min. 580}	min. 118 {min. 890}	56.8 {427}	87.9 {661}	64.5 {485}	91.8 {690}	

	Er	ngine model			SA6D)108-1	
	Applicab	ole machine model		SA6D1	08-M-1		-
Classifi- cation	ltem	Condition, etc.	Unit	Standard value	Permissible value	Standard value	Permissible value
9	Engine speed	High idling speed	rpm	2,920 – 3,120	2,920 – 3,120		
man		Low idling speed	rpm	700 – 750	700 – 750		
Performance	Necessary starting speed	0°C (Without starting aid)	rpm	min. 130	100		
	starting speed	-20°C (With starting aid)	rpm	-	_		
	Intake resistance	At all speed	kPa {mmH ₂ O}	max. 2.94 {max. 300}	-		
	Boost pressure	At rated flywheel horsepower	kPa {mmHg}	-	_		
Intake, exhaust system	Exhaust pressure (Turbine inlet pressure)	At rated flywheel horsepower	kPa (mmHg)	-	-		
	Exhaust temperature (Turbine inlet temp.)	All speed (20°C)	°C	max. 690	700		
exhau		Quick acceleration (Low idle → High idle)	Basak] -			
ıtake, e	Exhaust gas color	At rated flywheel horsepower	Bosch index	A.D.E., s	converter selection to there is no converted to the conve	ction is done t criteria value.	у
<u>=</u>		High idling speed		J			
	Valve clearance (When engine is hot	Intake valve	mm	0.34	-		
	or cold)	Exhaust valve	mm	0.66	-		
Engine body	Compression pressure (SAE30 or SAE15W-40)	Oil temperature: 40 - 60°C (Engine speed: 250 - 300 rpm)	MPa {kg/cm²}	min. 2.7 {min. 28}	min. 2.3 {min. 23}		
	Blow-by pressure (SAE30 or SAE15W-40)	At rated flywheel horsepower (Water temperature: Min. 70°C)	kPa {mmH ₂ O}	max. 1.96 {max. 200}	2.94 {300}		
		At rated flywheel horsepower SAE30 or SAE15W-40 oil	MPa {kg/cm²}	0.30 - 0.50 {3.0 - 5.0}	0.21 {2.1}		
system	Oil pressure (Oil temperature:	SAE10W oil	MPa {kg/cm²}	-	-		
	Min. 80°C)	At low idling SAE30 or SAE15W-40 oil	MPa {kg/cm²}	min. 0.12 {min. 1.2}	0.07 {0.7}		
Lubrication		SAE10W oil	MPa {kg/cm²}	_	-		
נ	Oil temperature	All speed (Oil in oil pan)	°C	90 – 110	120		
	Oil consumption ratio	At continuous rated horsepower (Ratio to fuel consumption)	%	max. 0.5	1.0		
Fuel system	Fuel injection pressure	Nozzle tester	MPa {kg/cm²}	26.0 - 27.0 {265 - 275}	21.6 {220}		
Fu	Fuel injection timing	B.T.D.C.	degree	21 – 23	-		
0 c	Radiator pressure valve	Opening pressure (Differential pressure)	kPa {kg/cm²}	-	-		
Cooling system	Fan speed	At rated engine speed	rpm	-	-		
υø	Fan belt tension	Deflects when pushed with a force of 60 N (6 kg)	mm	-	-		

*2 Between water pump and fan pulley: 6 (mm)

*3	Long time rated	Normal
Boost pressure	min. 112 {min. 840}	min. 129 (min .970)
Exhaust pressure	min. 67.8 {min. 510}	min. 77.1 (min. 580)

TROUBLESHOOTING

		o remember when troubleshooting	
	Method	of using troubleshooting chart	12-024
	S-1	Starting performance is poor (Starting always takes time)	12-028
	S-2	Engine does not start 1 Engine does not turn	12-030
	S-3	Engine does not pick up smoothly (Follow-up is poor)	12-032
~	S-4	Engine stops during operations	12-033
	S-5	Engine does not rotate smoothly (hunting)	12-034
	S-6	Engine lacks output (no power)	12-035
	S-7	Exhaust gas is black (incomplete combustion)	12-036
	S-8	Oil consumption is excessive (or exhaust gas is blue)	12-037
101779	S-9	Oil becomes contaminated quickly	12-038
Ö	S-10	Fuel consumption is excessive	12-039
	S-11	Oil is in cooling water, or water spurts back, or water level goes down	12-040
	S-12	Oil pressure lamp lights up (drop in oil pressure)	12-041
	S-13	Oil level rises	12-042
-	S-14	Water temperature becomes too high (overheating)	12-043
	S-15	Abnormal noise is made	12-044
	S-16	Vibration is excessive	12-045

POINTS TO REMEMBER WHEN TROUBLESHOOTING

Troubleshooting means locating the basic cause of the failure, and carrying out swift repairs, and ensuring that the failure does not occur again.

When carrying out troubleshooting, it is of course important to understand the structure and function. But to carry out the troubleshooting effectively, a quick method is to carry out troubleshooting using the problems mentioned by the operator as a guide in locating the cause.

1. Do not disassemble the machine simply because there is a failure

If the machine is disassembled immediately just because there is a fullure:

- Unrelated or unnecessary places are also disassembled
- It becomes difficult to locate the cause of the failure

This means that there is not only a waste of time and money on replacement parts, oil, and grease, but this action will also lose the confidence of the user and operator.

For this reason also, it is important to carry out troubleshooting based on full investigation before starting and troubleshooting following the correct order.

2. Questions to ask the user and operator

- 1) Are there any problems other than those already reported?
- 2) Did anything unusual happen before the failure occurred?
- 3) Did the failure occur suddenly, or had the condition of the machine been poor before the failure occurred?
- 4) What were the conditions when the failure occurred?
- 5) Had any repairs been carried ot before the failure occurred?
- 6) Had any similar failure occurred before?

3. Checks before troubleshooting

- 1) Check the oil level.
- Check for any external leakage of oil from the piping and hydraulic equipment.
- 3) Check the travel of the control levers.
- 4) Other maintenance items can also be carried out visually, so carry out any check that is considered necessary.

4. Confirming failure

Check the degree of the problem to judge for yourself if it is really a failure, or if there is some problem in the handling or operation of the machine.

When driving the machine and re-enacting the failure, be sure that the investigation or measurement does not make the failure worse.

5. Troubleshooting

Narrow down the causes of the failure from the results of the questions and checks in the above ltems 2-4, then follow the troubleshooting flow chart to locate the failure.

- ★ Basic procedure for troubleshooting
 - 1) Start from the simple places.
 - 2) Start from the most probable places.
 - 3) Investigate related parts also.

6. Basic action to remedy cause of failure

Even if the failure is repaired, if the root cause of the failure is not repaired, the same failure will occur again.

To prevent this, it is necessary to investigate why the failure occurred, and to remove the root cause of the failure.

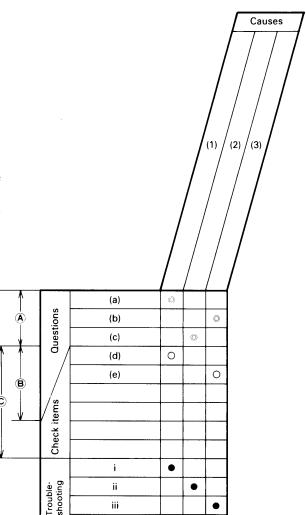
METHOD OF USING TROUBLESHOOTING CHART

This troubleshooting chart is divided into three sections: questions, check items, and troubleshooting. The questions and check items are used to pinpoint high probability causes that can be located from the failure symptoms or simple inspection without using troubleshooting tools.

Next, troubleshooting tools or direct inspection are used to check the high probability causes to make final confirmation.

[Questions]

Sections A + B in the chart on the right corresponds to the items where answers can be obtained from the user. The items in B are items that can be obtained from the user, depending on the user's level.


[Check items]

The serviceman carries out simple inspection to narrow down the causes. The items under © in the chart on the right correspond to this.

The serviceman narrows down the causes from information (A) that he has obtained from the user and the results of (C) that he has obtained from his own inspection.

[Troubleshooting]

Troubleshooting is carried out in the order of probability, starting with the causes that have been marked as having the highest probability from information gained from [Questions] and [Check items].

The basic method of using the troubleshooting chart is as follows.

Items listed for [Questions] and [Check items] that have a relationship with the Cause items are marked with \bigcirc , and of these, causes that have a high probability are marked with \bigcirc .

Check each of the **[Questions]** and **[Check items]** in turn, and marked the \bigcirc or \bigcirc in the chart for items where the problem appeared. The vertical column (Causes) that has the highest number of points is the most probable cause, so start troubleshooting for that item to make final confirmation of the cause.

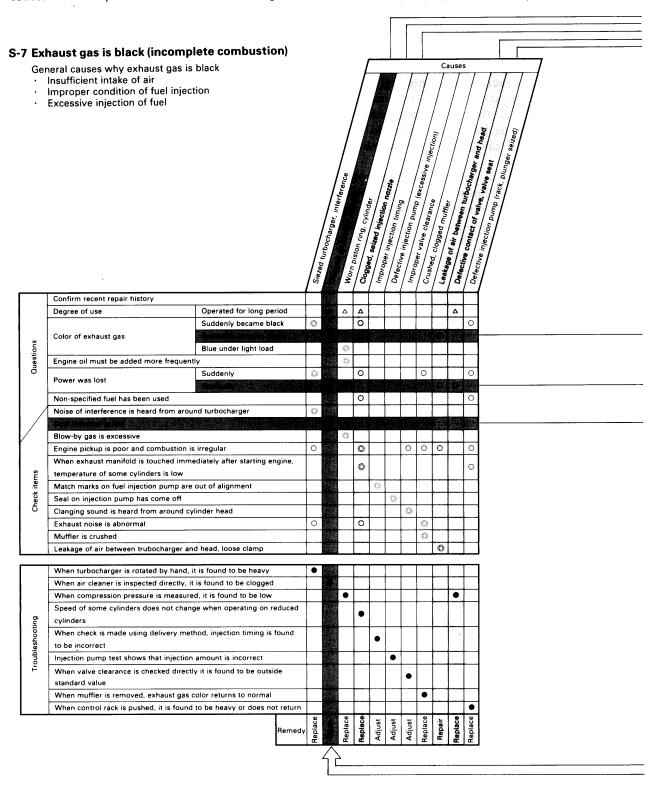
- ※1. For [Confirm recent repair history] in the [Questions] Section, ask the user, and mark the Cause column with △ to use as reference for locating the cause of the failure. However, do not use this when making calculations to narrow down the causes.
- ※2. Use the △ in the Cause column as reference for [Degree of use (Operated for long period)] in the [Questions] section as reference. As a rule, do not use it when calculating the points for locating the cause, but it can be included if necessary to determine the order for troubleshooting.

Confirm recent repair history

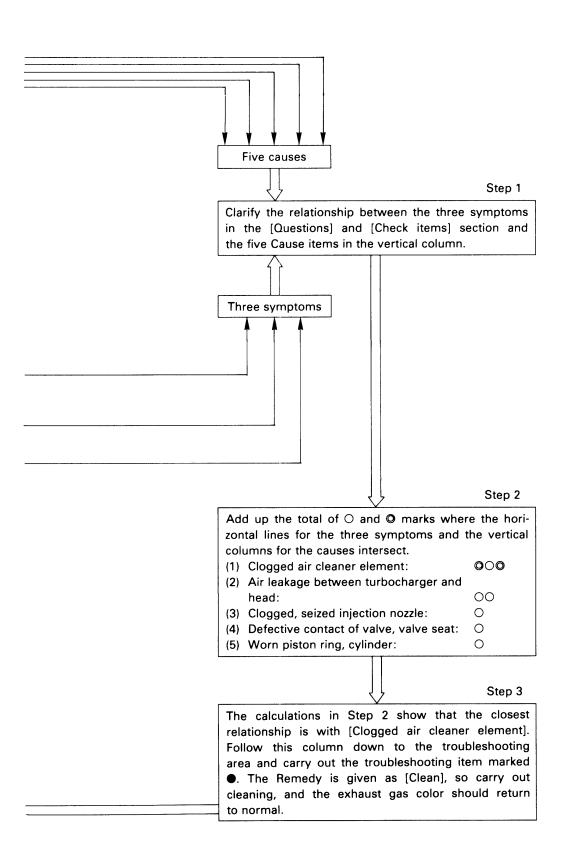
Operated for long period

Degree of use

※1


※2

Seized furbocharger, interference Worn piston ring, cylinder Clogged, seized injection nozzle Defective injection timing Sefective injection pump (excessive injection)	
ΔΔΔ	


· Example of troubleshooting when exhaust gas is black

Let us assume that [Clogged air cleaner] is taken to be the cause of black exhaust gas. Three symptoms have causal relationship with this problem: [Exhaust gas slowly became black], [Power slowly became weaker], and [Dust indicator is red].

If we look from these three symptoms to find the causes, we find that there is a relationship with five causes. Let us explain here the method of using this causal relationship to pinpoint the most probable cause.

S-1 Starting performance is poor (Starting always takes time)

General causes why starting performance is poor

- · Defective electrical system
- · Insufficient supply of fuel
- · Insufficient intake of air
- · Improper selection of fuel (At ambient temperature of -10° C or below, use ASTM D975 No. 1, and -10° C or above, use ASTM D975 No. 2 diesel fuel.)
 - ★ Battery charging rate.

Ambient Charging rate temperature	100%	90%	80%	75%	70%
20°C	1.28	1.26	1.24	1.23	1.22
0°C	1.29	1.27	1.25	1.24	1.23
−10°C	1.30	1.28	1.26	1.25	1.24

Legend

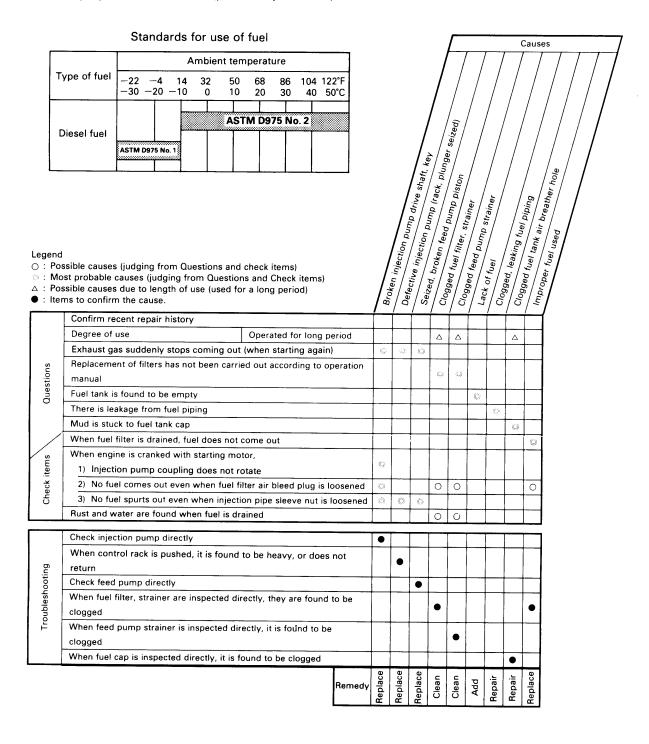
- O: Possible causes (judging from Questions and check items)
 - : Most probable causes (judging from Questions and Check items)
- \triangle : Possible causes due to length of use (used for a long period)
- : Items to confirm the cause.

	0°C	1.29	1.27	1.25	1.24	1.23			/	valve se	/	/	Ι.	Ι.	Ι,	Ι,	Ι,	Ι,	رج /	Ι.	Ι,	/ a /	\ \sightarrow \ \sightarrow \ \sightarrow \ \sightarrow \ \sightarrow \ \sightarrow \ \ \sightarrow \sightarrow \ \sightarrow \ \sightarrow \ \sightarrow \ \sightarrow \sightarrow \ \sightarro
_	-10°C	1.30	1.28	1.26	1.25	1.24			/ ,	/ kg /	′ ₌ /	' /	` . /	/	_/			_/	atte/	_/	_/	ŠĆ.) et s
	****	L	I				_	Porn Piston ring 6	Cie contact of	Closs of cleaner of Valve, Valv	Close fuel filter, str.	Defo. Jump s.	Defective glow plus	Defective glow relation	time.	/ ط		/:	Defection no	Defective injection time	Leakaca Injection pump	ر م / خ	air breather hole
	cific gravity sho in the above tab		ea the v	alue for t	ne charg	jing rai	е		Ĭ/,	2 / 2	ر نا / نا	6 / 2		7/5	/ ξ		/_	/ 2	ž / ¿	3/ €	11/18/	Jie!	ded fuel fank air br
	weather the spe		vitv must	exceed	the value	e for th	е		3/5) / ¿	/ 5	15	3	ج /	Defect Blow til	Defect	Defective alternator	teric /	/ ¿	6	5	Clogged 4	/ 🐉 /
	rate of 75% in	-		CACCCA			•	۶] ا	Shta	/ 👸	/ ﷺ /	a p	18/	/ g/	8/	ing/	fer /	8/	Jec.	lect/	lect/	66	<u>r</u>
								50	(o /	, a /	ž/	/ يقر	/ هج	/ ھ	/ فج	/ و	, a	<u>0</u> /	ē/	ē/	e /	5 /	ž/
							/	à	cti)	96/ <u>3</u>	96/g	8 / s	(c) / (d)	ن کے ای کا کا	$\frac{7}{5}$	3/3	! / !	<u>}</u> / <u>}</u>	\$ / \$		ج / ﴿	§ / §	<i>;</i>
							/;	خ / خ	8/2		r)		$p_{\rm el}$	Pei D	6	oet/) et		6) efe	-ea	100	/
	Confirm recent re	enair histor	·v				-	+	+	+	+-	/ 	┼		-	-	/ ~	-	 ~	+~	\leftarrow	Ĥ	<i>:</i> I
	Degree of use	cpan motor	<u>, </u>	Operat	ed for long	neriod		+	Δ		Δ	┼-			-		Δ		-	-	+-	\vdash	
	Degree or use				ally became		- 1	1 25	+-	+-	1	┢	-	 	1	\vdash	-	-		-	┼	\vdash	
	Ease of starting				when warn		- 1		+-	+	+	:0:	0	Ó	-		(0)	-		<u> </u>	\vdash	\vdash	
s	Indicator lamp de	nes not ligh	nt un		***************************************		+	+-	+-	+	+	0	-Ci-	10	-			-	-	-	┼	\vdash	
Questions	Engine oil must b	<u>~</u>		ntly			7.		+	+	\vdash	-	-	 	-	-	-	-		-	┼	\vdash	
rest	Replacement of t				noording to		-+-	+	+	+	+-	┼		-		-	-	-		-	┼	1	
ď	operation manua		or been ca	eu out at	corung to	•			0	Q	33							0		0			
	Dust indicator is						-	+-	-0-	+	+	+	-	+-	-	-	+	-	-	-	\vdash	\vdash	
	Non-specified fue		used				+	+	+	0	0	+	 -	+-		-	-	0	├	0	\vdash	Н	
1 1	Battery charge la		daed				-	+	+	۲	Ĕ	-	-	-	(0)	(O)	-	۲	-	۲	\vdash	\vdash	
	Starting motor cr		e slowly				+	+	+	+	 	 	 —		45.	521	(C):	-	-	-	\vdash	Н	
\perp	When exhaust m			nediately a	fter starting	a engine	-+	+-	+	╁	\vdash	\vdash	┼	-	-		-	-	-	-	┼─	\vdash	
1/	temperature of s			nediately a	nter starting	g engine	'											0			1		
Y I	Engine does not			Combustic	on is irrequ	ılar		-	+	-	\vdash	╁	 	-	_			(0)	├	-	\leftarrow	Н	
	Blow-by gas is ex		ootiny, bite	COMBUSTIC	511 13 111 0 g u		- 10	_	+	+	┼	\vdash		-	-		├	6.	\vdash	-	₩		
	Match marks on		on numn ar	e out of ali	anment			+	+-	+	\vdash	-	₩		_		\vdash	\vdash	(Ö)	\vdash	┼		
s	Mud is stuck to f			e out or an	giinent			+-	+	+-	-	-	₩	├	-		-	-	(9)	-	┼	0	
Check items	When engine is o			notor				+	+-	\vdash	-	-	-	-	-	\vdash	├		-	├-	+-	\vdash	
, ¥	1) Little fuel co		-		mn cleave	nut is								ĺ						0			
- g	loosened	ines out e	ven v vnen n	njection pa	mp sieeve	iiut is						İ				ĺ							
	2) Little fuel co	mes out ex	ven when f	ual filtar air	bleed plus	a is	-	+	+	\vdash	-	-	├─	-	 	_		-		⊢	₩	\vdash	
	loosened	ines out e	ven when i	uer inter an	pieed bid	y is				0	0									0			
1	Leakage from fue	al piping					-	+	+		-	-	├		-	-	_	-		6	0	\vdash	
	There is hunting		e (rotation	is irregular	1		+	+-	+	0	0	├	┼—	├-	├	-	<u> </u>		-	۲	0	0	
										10	10	<u> </u>						L	_	_		므	
	When compressi						•	•	1	↓_			<u> </u>			L.		<u> </u>	_		_		
	When air elemen							1	•	_			<u> </u>				L	<u> </u>					
	When fuel filter,	strainer are	inspected	directly, th	ey are four	nd to			ŀ	•											•		
	be clogged							↓_	1	Ĺ	<u> </u>	<u> </u>							_		L	Ш	
	When feed pump			directly, it	is found to	be clog	ged	\downarrow	-	_	•	_		_						L	<u> </u>	Ш	
6	Heater mount do						_	+-	-	-	 	•	•	•			ļ	_		├	ሥ	\sqcup	
l ij	Voltage is 26 — 3			r terminal l	s and	Ye		+	+	 	<u> </u>			_	•		<u> </u>	_			\sqcup	Н	
કુ	terminal E with e					N	2	\vdash	+	ـ	_	_				•	L		<u> </u>		\vdash	Ш	
Troubleshooting	Either specific gr						_	+	1	_	_	<u> </u>	<u> </u>				•	ļ	Ļ	ļ	Ш	Н	
10.	Speed of some c	yıınders do	es not chai	nge when o	perating o	n reduc	d			1								•					
1 -	Cylinders	odo u=1= :	dalina	about 1010	ata at at a t			+	+	+		_	\vdash	-		_				\vdash	$\vdash \vdash$	Н	
	When check is m	ade using (selivery me	tnod, injec	tion timing	is found													•				
1	to be incorrect	li in minet i i	1 14 14 44				-	+-	+-	_	<u> </u>	<u> </u>	-						_	\vdash	\sqcup	Н	
	When control rac						rn			1										ا ۽ ا			
	(when blind plug			noved, it ca	an De Seen	ınat														•			
1	plunger control s When fuel cap is			n found to	ho ale: '		-+	+	<u> </u>	-	<u> </u>	Ŀ				· .			<u> </u>	\vdash	$\vdash \vdash$	닉	
ш	when ruer cap is	mspected (uirectly, it i	o round to	ue clogged		-	+-	₩.	-	├	(1)	6	-	•	6		-	\vdash	-	$\vdash \vdash$	븨	
						Rem	Replace App	Repair	Clean	Clean	Clean	Replace	Replace	Replace	Replace	Replace	Replace	Replace	Adjust	Replace	Repair	Clean	
							Rep	⊥æ	Lဝီ	Ö	ō	Re d	Rep	Rec	Rep	Rep	Rep	Rep	Ad	Rep	æ	ŏ	
																					_		

S-2 Engine does not start

① Engine does not turn

General causes why engine does not turn


- · Internal parts of engine seized
 - * If internal parts of the engine are seized, carry out troubleshooting for "Engine stops during operations".
- Failure in power trainDefective electrical system

: Mos △ : Pos	sible causes (judging from Questions and st probable causes (judging from Questions sible causes due to length of use (used fons to confirm the cause.	ns and Check items)		Defection	Defect: Wiring of Starris	Defection	Broken Starting motor	Defection 9ear	Deferm	Defect: Defect:	Defection	starting Switch
s	Confirm recent repair history											
Questions	Degree of use	Operated for long per	iod		Δ		Δ					
nes	Condition of horn when starting	Horn does not sound		2						0	0	
0	switch is turned ON	Horn sound level is lo	w		12						Ш	
		Rotating speed is slow	٧		7							
/	When starting switch is	Makes grating noise				2	9					
	turned to START, pinion	Soon disengages aga	in					0				
	moves out, but	Makes rattling noise a	ınd		0	0						
/ _s		does not turn)))				
Check items	When starting switch is turned to START	, pinion does not move	out	14	0						0	
, , ,	When starting switch is turned to ON, the	ere is no clicking sound		ij	0				42			
je je	Battery terminal is loose			circuit						9		
	When battery is checked, battery electro	lyte is found to be low		o Gu	Ů,							
		hattani ia law		starting	•							
	Specific gravity of electrolyte, voltage of		_	of st	_	-					-	
	For the following conditions 1) — 5), turn	_	,	o bu								
1	connect the cord, and carry out troublest			virir							•	
	When terminal B and terminal C of engine starts	starting switch are conn	ected,	defective wiring								
Troubleshooting	When ternimal B and terminal C of engine starts	starting motor are conn	ected,	defe		•						l
esho	3) When terminal B and terminal C of	safety relay are connec	ed,	g for								ı
roubl	engine starts			bleshooting for				•				ſ
-	 When terminal of safety switch and are connected, engine starts 	terminal B of starting n	notor	rplesh				•				
	5) There is no 24V voltage between b terminal E	attery relay terminal B	and	out trou					•			
	When ring gear is inspected directly, too chipped	th surface is found to b	e	Carry			•					
			Remedy	_	Replace	Replace	Replace	Replace	Replace	Replace	Replace	
					<u> </u>			<u>,</u>	1 44		1	

Engine turns but no exhaust gas comes out (Fuel is not being injected)

General causes why engine turns but no exhaust gas comes out

- · Supply of fuel impossible
- · Supply of fuel is extremely small
- · Improper selection of fuel (particularly in winter)

	③ Exhaust gas comes out t start	out engine does (ποτ					$\overline{}$						Cau	ses			April 100 March
	(Fuel is being injected)								$\overline{}$	7	7		7	7	\int	7		777
	General causes why exhaust	gas comes out	but					ž /										
	engine does not start						6. e.	/	/	/ ,	/	/	/	/ ,	/ ,	/	/	/ / / /
	· Lack of rotating force due	to defective elec	tri-				, je	\ \	' /	' /		' /			/	/	' /	' / / /
	cal system					_/	00 C	s_{L}			/							<u> </u>
	· Insufficient supply of fuel					13	. plunge.									/_	/ క్ల	
	· Insufficient intake of air					چ /	/n/d	/	/	/	/	/	/	/	/ _	sten	'ف <u>ج</u> /	/ % / /
	· Improper selection of fuel					E J	ر بر ا اعرب	/ /	/ /	′. /	_/	/ /	' /	' /	te /	\ \frac{1}{8} \	$\int_{\mathbf{e}^{ct}}$	\ \frac{1}{4} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
					ken vat.	tion pur	Clon	Closs fuel filter, Str.	Clong feed pump st	Defect:	Defective glow plug	Defect:	Defective glow timer	Leaks or deteriors.	Jing, air	Close Close	ank air b	Trigger fuel used
Leg					br /	j.	5	ie	Pag	, c,	96	90/6	9/0/	5/	o's	/ject	e /	e _n
	Possible causes (judging from Question Most probable causes (judging from Q		ıs)		: / `فج	\ <u>`</u>	pist	p _e	p _a	p_{a}	, G	./ ج	: / ۾	/ يۇ	e` / ;	$\frac{1}{p_0}$	g t	, Jeć
Δ:	Possible causes due to length of use (u		,			الح الح	$\frac{1}{5}$	$\frac{5}{5}$	δ / δ	$\frac{5}{8}/\frac{3}{4}$		2 / g		3/3		\tilde{s}/\tilde{s}	\tilde{g}/\tilde{g}	<i>5</i> /
• :	Items to confirm the cause.			/ مّ	'/ °	/3	/ 8	/ 8	/3	/ 0	/ ٥	/ å	/ న	ر م	/ಕ	/ਠੱ	/ <u>ξ</u>	/
	Confirm recent repair history																	
	Degree of use	Operated for long peri	od			Δ	Δ	Δ		<u> </u>					Δ			
	Suddenly failed to start			1.					<u> </u>									
	When engine is cranked, abnormal noi		head	1.0												_		
Sus	Engine oil must be added more freque	ntly		ļ	ļ	1.2	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ					<u> </u>		
Questions	Non-specified fuel has been used			ļ	0		ļ	-		_					0		_	
Oue	Replacement of filters has not been ca	rried out according to op	eration				ζ.	0.		ŝ	42	9						
	maĥual			-			-		 	ļ		-			_	-		
	Rust is found when fuel is drained Dust indicator is red				-	-	<u> </u>	9	10	-		-		-		-	-	
	Indicator lamp does not light up			-		-		-		g	<u></u>	5/46				-		
	Starting motor cranks engine slowly					-	-	-	 	9	257	2	755	-	-	-		
	Mud is stuck to fuel tank cap			-	_						-		-			0		
	When fuel lever is placed at FULL positi	tion, it does not contact s	stopper	-	0		ļ	ļ	ļ	-	-					<u> </u>		
ľ	When engine is cranked with starting r				۰		<u> </u>	_		-	 —				-	<u> </u>	-	
	Little fuel comes out even when ir		is		4.													
SI	loosened																	
Check items	2) Little fuel comes out even when for	uel filter air bleed plug is									 							
eck	loosened						3	0									0	
Š	There is leakage from fuel piping													400				
	When exhaust manifold is touched im	mediately after starting																
	engine, temperature of some cylinder	is low																
	When fuel filter is drained, no fuel com	es out					L		<u> </u>		<u> </u>			<u> </u>			Ç.	
	Remove head cover and check directly			•												T		İ
	When control rack is pushed, it is found		t return	<u> </u>	•								_					
	When compression pressure is measur					•			 				ļ					
	When fuel filter, strainer are inspected	directly, they are found t	to be				1_											
6	clogged						•										•	
otin	When feed pump strainer is inspected	directly, it is found to be	clogged					•										
Troubleshooting	When air element is inspected directly,	it is found to be clogged	t						•									
nble	Heater mount does not become warm									•	•	•						
Tro	Either specific gravity of electrolyte or	voltage of battery is low											•					
	When feed pump is operated, there is	no response, or pump i	s heavy											•				
	Speed of some cylinders does not char	nge when operating on re	educed												•			
	cylinders				<u> </u>			ļ	<u> </u>	<u> </u>	ļ	<u> </u>	ļ		Ľ	<u> </u>	ļ	1
	When fuel cap is inspected directly, it is	s found to be clogged	r		<u> </u>	_			<u> </u>		ļ_			_	_	•	_	1
			Remedy	Replace	Replace	Replace	Clean	Clean	Clean	Replace	lace	lace	Replace	Repair	a	an		
			Lemedy	Rep	Rep	Rep	S	ဦ	S	Rep	Replace	Replace	Rep	Reg	Clean	Clean]

S-3 Engine does not pick up smoothly (Follow-up is poor)

General causes why engine does not pick up smoothly

- · Insufficient intake of air
- · Insufficient supply of fuel
- · Improper condition of fuel injection
- · Improper fuel used

Clogged fuel filter, strainer Clogged fuel filter, strainer Clogged injection nozzle, defective spray Seized injection nozzle, defective spray Worn piston ring, cylinder Improper valve clearance Clogged fuel tank air beather hole Clogged, leaking fuel piping

Legend

- O: Possible causes (judging from Questions and check items)
- : Most probable causes (judging from Questions and Check items)
- $\ensuremath{\triangle}$: Possible causes due to length of use (used for a long period)
- : Items to confirm the cause.

	Confirm recent repair history												
[Degree of use	Operated for long period	Δ	Δ	Δ			Δ					Δ
	Replacement of filters has not been carri	ed out according to operation											
	manual								ĺ				
suc	Non-specified fuel is being used			(1)	-01	(0)	-00						
Questions	Engine oil must be added more frequent	ly											
ð	Rust and water are found when fuel is di	rained											
	Dust indicator is red		-										
	Noise of interference is heard from arou	nd turbocharger	<u> </u>						- 1				
1 /	Engine pick-up suddenly became poor					0			2.70		0	0	
/	Color of exhaust gas	Blue under light load						- 1					
1 / 1	Color of extrader gas	Black	0			id.			0				0
1/	Clanging sound is heard from around cy	linder head								102			
1/	Mud is stuck to fuel tank cap										(C)		
V = 1	There is leakage from fuel piping											3.75	
S L	High idling speed under no load is norm	al, but speed suddenly drops									0		
Check items	when load is applied										Ŭ		
eck	There is hunting from engine (rotation is	irregular)	1	0	13.	0					0		
ర్	When exhaust manifold is touched imme	ediately after starting engine,					0						
	temperature of some cylinders is low						Ŭ						
	Blow-by gas is excessive							Ø					

	When air element is inspected directly, it is found to be clogged	•										
	When fuel filter, strainer are inspected directly, they are found to be clogged		•									
!	When feed pump strainer is inspected directly, it is found to be clogged			•								
Troubleshooting	Speed of some cylinders does not change when operating on reduced cylinders				•							
sho	When control rack is pushed, it is found to be heavy, or does not return					•						
l ple	When compression pressure is measured, it is found to be low						•					•
Tro	When turbocharger is rotated by hand, it is found to be heavy							•				
	When valve clearance is checked directly, it is found to be outside standard value								•			
	When fuel cap is inspected directly, it is found to be clogged									•		
	When feed pump is operated, operation is too light or too heavy										•	
	Remed	Clean	Clean	Clean	Repair	Replace	Replace	Replace	Adjust	Clean	Repair	Replace

S-4 Engine stops during operations

General causes why engine stops during operations

- · Seized parts inside engine
- · Insufficient supply of fuel
- · Overheating
 - ★ If there is overheating and insufficient output, carry out troubleshooting for overheating.
- · Failure in power train
 - ★ If the engine stops because of a failure in the power train, carry out troubleshooting for the chassis.

Broken, seized Diston, connecting rod Broken, seized crankshaft bearing Broken, seized crankshaft bearing Broken, seized gear train Broken bump auxiliary equipment Lack of fuel Clogged fuel filter, strainer Broken, seized feed pump strainer Clogged leel filter, strainer Broken, seized feed pump biston Clogged leel fank air breather hole Clogged fuel filter, strainer Broken, seized feed pump biston Clogged leel fank air breather hole Failure in chassis power frain																
ed piston, comecting rod system (valve, rocker lever, etc.) system (valve, rocker lever, etc.) sump drive shaft, key filter, strainer d feed bump biston king fuel piping ettion bump (rack, plunger stuck) sssis bower train										Caus	es					
	eized piston	eized crankshot	alve system (v.s.)	eized gear train	ump auxiliary	iel bump drivo	Jel shaft, key	fuel filter, Strain		<i>//</i>	/	uel tank air bro	injection pure	chassis pow.	ver train	7
	Broke	Broke	Broke	Broke	Broke	rack	$C_{OO_{G}}$	Cloga	Broke	Clogo	Clogo	Defec	Failur			
Broke Broke Broke Broke Clogg Clogg Clogg Clogg			_											ĺ		

Legend

622101

- O: Possible causes (judging from Questions and check items)
- : Most probable causes (judging from Questions and Check items)
- △ : Possible causes due to length of use (used for a long period)
- : Items to confirm the cause.

Confirm recent repair history

			!				1			1							
	Degree of use	Operated for long period									Δ	Δ					
		Abnormal noise was heard											0			0	
		and engine stopped sudde	nly			- 1											
	Condition when engine	Engine overheated and stop	pped		0			0									
	stopped	Engine stopped slowly								7.	0	0					
Suc		There was hunting and eng	ine									0			0		
Questions		stopped		1			İ			14	0						
Ö	Fuel gauge lamp lights up									-							
	Fuel tank is found to be empty																
	Replacement of filters has not bee	n carried out according to															
	operation manual																
	Non-specified fuel is being used										0	0	0			0	
/	When feed pump is operated, the	e is no response or it is heavy	/								0	0					
	Mud is stuck to fuel tank cap														4.		
	Engine turns, but stops when tran	smission control lever is															
	operated																
"		Does not turn at all															
ems	Try to turn by hand using	Turns in opposite direction															
Check items	barring tool	Moves amount of backlash					:	-									
Chec		Shaft does not turn															me
Ü	Rust and water are found when fu	el is drained									7						vol
	Metal particles are found when oi	is drained		***	1.0						0	0					Sis
	Remove oil pan and check directly											Γ	1				chassis volume
	Remove head cover and check directly				_	•								-			.⊑
	nemove nead cover and check dir																ō
	When goar train is inspected, it do					•						-					÷
	When gear train is inspected, it do	pes not turn					•										hootir
Đ.	Turns when pump auxiliary equip	nes not turn ment is removed					•	•									oleshootir
ooting	Turns when pump auxiliary equip When fuel filter, strainer are inspe	nes not turn ment is removed					•	•			•						roubleshootir
eshooting	Turns when pump auxiliary equip When fuel filter, strainer are inspe to be clogged	nes not turn ment is removed cted directly, they are found					•	•			•						ut troubleshootir
oubleshooting	Turns when pump auxiliary equip When fuel filter, strainer are inspe to be clogged When feed pump strainer is inspe	nes not turn ment is removed cted directly, they are found					•	•			•	•					ry out troubleshootir
Troubleshooting	Turns when pump auxiliary equip When fuel filter, strainer are inspe to be clogged When feed pump strainer is inspe to be clogged	nes not turn ment is removed cted directly, they are found					•	•			•	•					Carry out troubleshooting
Troubleshooting	Turns when pump auxiliary equip When fuel filter, strainer are inspet to be clogged When feed pump strainer is inspet to be clogged Check feed pump directly	nes not turn ment is removed cted directly, they are found cted directly, it is found					•	•			•	•	•				Carry out troubleshootin
Troubleshooting	Turns when pump auxiliary equip When fuel filter, strainer are inspe to be clogged When feed pump strainer is inspe to be clogged Check feed pump directly When control rack is pushed, it is	nes not turn ment is removed cted directly, they are found cted directly, it is found					•	•			•	•	•			•	Carry out troubleshootin
Troubleshooting	Turns when pump auxiliary equip When fuel filter, strainer are inspet to be clogged When feed pump strainer is inspet to be clogged Check feed pump directly	nes not turn ment is removed cted directly, they are found cted directly, it is found		9:	Φ.			•	æ				•			-	Carry out troubleshootin
Troubleshooting	Turns when pump auxiliary equip When fuel filter, strainer are inspe to be clogged When feed pump strainer is inspe to be clogged Check feed pump directly When control rack is pushed, it is	nes not turn ment is removed cted directly, they are found cted directly, it is found	Remedy	Replace	Replace	Replace	Replace	Replace	Replace	Add	Clean	Clean	Replace	Repair	Clean	Replace •	Carry out troubleshootin

S-5 Engine does not rotate smoothly (hunting)

General causes why engine does not rotate smoothly

- · Air in fuel system
- · Defective governor mechanism
- Defective engine throttle controller mechanism (engine throttle controller type)
 - ★ If there is no hunting when the engine throttle controller rod is disconnected, carry out troubleshooting for the electrical system.

	bleshooting for the electrical	system.													
	bleshooting for the electrical	system.				ر م	hor	rack				Cau	7	feed pump and nozzle	
ः M o	essible causes (judging from Questions and ost probable causes (judging from Questions and ost probable causes due to length of use (used forms to confirm the cause. Confirm recent repair history	ns and Check items) or a long period)		Joseph Company	Def Operation 2	Defening adjustment	Low Coperation of	Lack Lack	<u> </u>		Cloas fuel filter, stra	Cloas air in circuit h	Cloop air in circuit b	seed fuel tank air breather hole Till and feed bump and nozzle	
	Degree of use	Operated for long per		_	<u> </u>			<u> </u>	Δ	Δ					
ł		Occurs at certain speed	a range	UF.	.0:	Ċ	0		_	_	_				
Suc	Condition of hunting	Occurs at low idling Occurs even when speraised	eed is	0	0	0	(0)		0	0	0	0	0		
Questions		Occurs on slopes						(0)							
ď	Fuel tank is found to be empty							: 10							
i -	Replacement of filters has not been carri operation manual	ed out according to							es e	()					
	Rust is found when fuel is drained								0	0					
1 /	Leakage from fuel piping										0	(0)			
	When feed pump is operated,										100	745			
<u>~</u>	1) No response, light, return is quick										(O)	6			
ter	2) No response, light, return is normal										(0)				
Check items	Engine speed sometimes rises too high			43	9										
Š	Engine is sometimes difficult to stop			(3)		0									
L	Seal on injection pump has come off				Q		0								
	When governor lever is moved it is found	to be stiff		•		•	Ι	T						1	
	When injection pump is tested, governor		rlv	-	-	-		-				<u> </u>			
ing	adjusted				•										
100t	When control rack is pushed, it is found to		return	ļ	<u> </u>	•		<u> </u>			L			1	
lesh	When food pump strainer is inspected directly, it is				<u> </u>	ļ	•	<u> </u>					•	1	
Troubleshooting	When feed pump strainer is inspected di clogged	,							•						
	When fuel filter, strainer are inspected di	rectly, they are found to	be							•				l	
L	clogged				<u> </u>								Щ		
		F	Remedy	Adjust	Adjust	Adjust	Adjust	Add	Claen	Clean	Repair	Repair	Clean		

2-2	Engine	lacks	output (no	nower)
2-0	Enume	IdUKS	Julpul		POWEI

General causes why engine lacks output

- · Insufficient intake of air
- · Insufficient supply of fuel
- · Improper condition of fuel injection
- · Improper fuel used

(if non-specified fuel is used, output drops)

- · Lack of output due to overheating
 - * If there is overheating and insufficient output, carry out troubleshooting for overheating.

Causes	
oray t ustment	
Seized turbochager, interference Clogged fuel filter, strainer Clogged feed bump strainer Clogged injection nozzle, defective spray Improper valve clearance Bent fuel lever linkage, valve seat Clogged lever linkage, defective adjustment Clogged lever linkage, defective adjustment Clogged leaking fuel piping	/
Seized turbocharger, interference Clogged turbocharger, interference Clogged fuel filler, strainer Clogged feed bump strainer Seized injection nozzle, defectiving pulunger Defective contact of valve, valve Clogged fuel fever linkage, defective Clogged fuel fever linkage, defective Clogged fuel faver linkage, defective Clogged fuel faver linkage, defective Clogged fuel fank air breather ho	
Seized the Worn pilotope of Clogged Seized the Worn pilotope of Clogged Seized the Worn pilotope of Clogged Seized the Clogged Clogged Clogged Clogged Clogged Clogged of Clogge	

Leaend

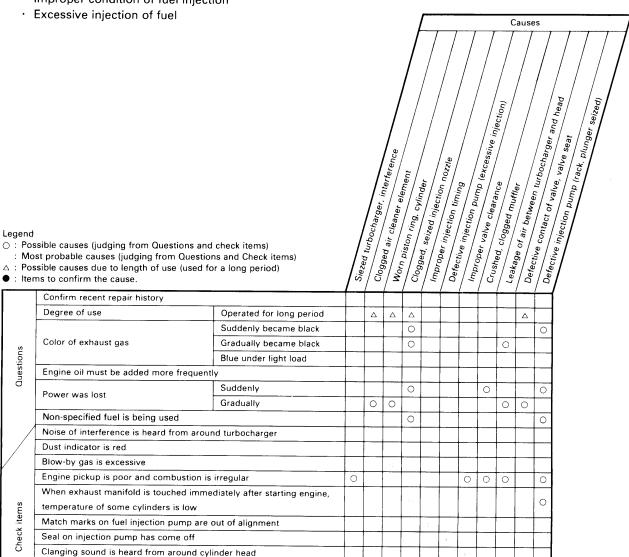
- O: Possible causes (judging from Questions and check items)
- : Most probable causes (judging from Questions and Check items)
- $\boldsymbol{\triangle}$: Possible causes due to length of use (used for a long period)
- : Items to confirm the cause.

	Confirm recent repair history													
[Degree of use	Operated for long period	Δ		Δ	Δ	Δ				Δ			
	0-	Suddenly		9										
,	Power was lost	Gradually	0		0	0	0	0			0			
ions	Engine oil must be added more frequen	tly			2									
Questions	Replacement of filters has not been carr manual	ied out according to operation				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ş							
	Non-specified fuel is being used					.5.	Ø.	37.	9					
	Dust indicator is red		9											
		Black	7	-7										
	Color of exhaust gas	Blue under light load			0									
	Noise of interference is heard from arou	ind turbocharger		13										
	Blow-by gas is excessive				3									
	Engine pickup is poor and combustion is	s irregular		G.				0					0	0
ems	High idling speed under no load is norm when load is applied	al, but speed suddenly drops				5	Ģ							0
Check items	When exhaust manifold is touched imm temperature of some cylinders is low	ediately after starting engine,						4.	0					
	There is hunting from engine (rotation is	s irregular)				0	0						0	0
1	Clanging sound is heard from around cy	rlinder head								6				
	High idling speed of engine is low								0			ð		
	Leakage from fuel piping												44	

	When air element is inspected directly, it is found to be clogged	•											
	When trubocharger is rotated by hand, it is found to be heavy		•										
	When compression pressure is measured, it is found to be low			•						•		Ш	
	When fuel filter, strainer are inspected directly, they are found												
	to be clogged												
Troubleshooting	When feed pump strainer is inspected directly, it is found to be clogge	d				•							
90	Speed of some cylinders does not change when operating on reduced												
səlc	cylinders												
l or	When control rack is pushed, it is found to be heavy, or does not return	١						•					
F	When valve clearance is checked directly, it is found to be												
	outside standard value												
	When lever is placed at FULL position, it does not contact stopper										•		
	When feed pump is operated, operation is too light or too heavy											•	
	When fuel cap is inspected directly, it is found to be clogged												•
		ڃ	Replace	Replace	ug.	LE.	air	Replace	ıst	ace	ıst	air	Ë
	Reme	Clean	eple	eple	Clean	Clean	Repair	eple	Adjust	Replace	Adjust	Repair	Clean
	ł	1 -	1 00	1 000	1	1		Œ	ı •	100	1	1 1	l l

S-7 Exhaust gas is black (incomplete combustion)

General causes why exhaust gas is black


· Insufficient intake of air

Exhaust noise is abnormal

Leakage of air between trubocharger and head, loose clamp

Muffler is crushed

· Improper condition of fuel injection

0

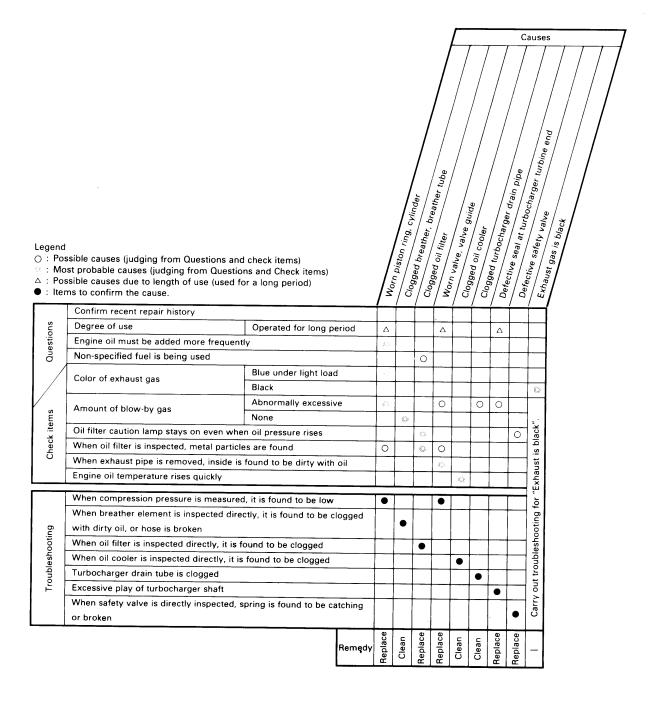
0

njection pump test shows that injection amount is incorrect When valve clearance is checked directly it is found to be outsi	-d-						•					
When check is made using delivery method, injection timing is o be incorrect					•							
Speed of some cylinders does not change when operating on resulting or resulting on resulting or	educed				•							
When compression pressure is measured, it is found to be low				•	1						•	
When air cleaner is inspected directly, it is found to be clogged	1		•					_				<u> </u>
^	When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on rylinders When check is made using delivery method, injection timing is	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found	When air cleaner is inspected directly, it is found to be clogged When compression pressure is measured, it is found to be low peed of some cylinders does not change when operating on reduced ylinders When check is made using delivery method, injection timing is found

S-8 Oil consumption is excessive (or exhaust gas is blue)

★ Do not run the engine at idling for more than 20 minutes continuously. (Both low and high idling)

General causes why oil consumption is excessive


- · Abnormal combustion of oil
- · External leakage of oil
- · Wear of lubrication system

						- /						Ca	uses				
: Mo	f ssible causes (judging from Questions an ost probable causes (judging from Questi ssible causes due to length of use (used ms to confirm the cause.	ons and Check items)	Broken	Worn cing	Clong Cyling	Leakan Urbrung Iner	Leakan oil filter, oil	Leakas on piping	Leakan oil drain or	Broken ou pan, Colin	Worn S. Cooler Tringler head, etc.	Worn c.		Dust suit	7	Valve (stem, guide), broken seal	
	Confirm recent repair history																
_ ر	Degree of use	Operated for long period		Δ							Δ	Δ			Δ		
Questions	Oil consumption suddenly increased		4.1		L					0							
lest	Engine oil must be added more frequer	ntly								0							
ď	Engine oil becomes contaminated quic	kly	0		0												
	Exhaust gas is blue under light load		1.														
1 /		Abnormally excessive	1.5									0			0		
\perp	Amount of blow-by gas	None			4												
1/	Area around engine is dirty with oil					12	n		0								
SE SE	There is oil in engine cooling water									- 27							
ite	When exhaust pipe is removed, inside	is found to be dirty with oil									14				0		
Check items	Inside of turbocharger intake pipe is di											1.					
٥	Oil level in clutch or TORQFLOW transr	nission damper chamber rises															
	Clamps for intake system are loose													-			
	When compression pressure is measur	ed it is found to be low	•	•	T			l	T					-			
	When breather element is inspected, it		-	Ť	-	 			_	\vdash							
	1	is found to be clogged with			•												
gu	There is external leakage of oil from an	ngine	-	-	 	•	•	•	•				-		-		
000	There is external leakage of oil from er			-		+	<u> </u>	<u> </u>	-	•	-		\vdash		-		
esh	Pressure-tightness test of oil cooler sho	ows there is leakage	-	-	-	├	-	 	 		•	•	\vdash		-		
Troubleshooting	Excessive play of turbocharger shaft			 		 			-	\vdash	-	-	•		-		
150	Check rear seal directly		-		-	-		-	-	\vdash		-			<u> </u>		
	When intake manifold is removed, dus		<u> </u>	ļ	<u> </u>	ـــ	ļ		<u> </u>	-	-	_		•	_		
	When intake manifold is removed, insi-	de is found to be dirty with oil	L.	_		-	<u> </u>				<u></u>	-	<u> </u>		•		
		Remedy	Replace	Replace	Clean	Repair	Repair	Repair	Repair	Replace	Replace	Replace	Repair	Repair	Repair		

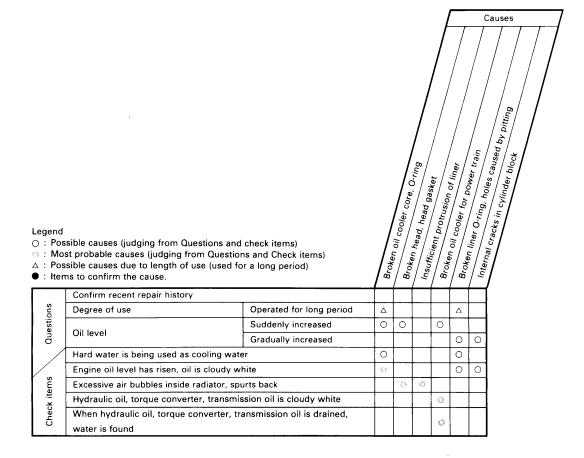
S-9 Oil becomes contaminated quickly

General causes why oil becomes contaminated quickly

- · Intake of exhaust gas due to internal wear
- · Clogging of lubrication passage
- · Improper combustion
- · Improper oil used
- · Operation under excessive load

S-10 Fuel consumption is excessive

General causes why fuel consumption is excessive

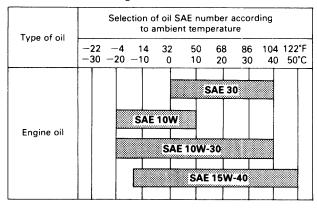

- · Leakage of fuel
- · Improper condition of fuel injection
- · Excessive injection of fuel

: Mo △ : Po	ssible causes (judging from Questions and st probable causes (judging from Questions sible causes due to length of use (used fom to confirm the cause.	ns and Check items)		Defens	Defen: Injection Pum.	Defection noss	Impro-	Extern.	Leakase from t	Defense of fuel inside L	Defects Def	Tuve adjustment of fuel lever linkage
	Degree of use	Operated for long period	-d		Δ	Δ				Δ	-	
,,	Degree of use	More than for other made				-23				Δ		
Questions		of same model					0					
nesi	Condition of fuel consumption	Gradually increased			0	0						ı
0		Suddenly increased						0	0			
	5.h	Black			0		0				0	
	Exhaust gas color	White							0			
	Seal on injection pump has come off			÷								
	There is irregular combustion				45							
su	When exhaust manifold is touched imme	ediately after starting engir	ne,		0)						
je.	temperature of some cylinders is low				10.7	0						
Check items	Match mark on injection pump is misalig	ned					C					
5	There is external leakage of fuel from en	gine						e)y				
	Engine oil level rises and smells of diese	l fuel		0					ĝ.	Ö,		
	Engine low idling speed is high			0							0	I
	Injection pump test shows that injection	amount is excessive		•					l	Ι		
	Speed of some cylinders does not change		ced	_				-				ı
l _	cylinders				•							
ooting	When control rack is pushed, it is found to	o be heavy, or does not ret	urn			•						
) ye	When check is made using delivery meth										\Box	1
ples	to be incorrect						•					
Troublesh	Remove head cover and check directly								•			
[Remove feed pump and check directly									•		
	When engine speed is measured, low idl	ing speed is found to be h	igh								•	!
		Re	medy	Adjust	Replace	Replace	Adjust	Repair	Repair	Repair	Adjust	

S-11 Oil is in cooling water, or water spurts back, or water level goes down

General causes why oil is in cooling water

- · Internal leakage in lubrication system
- · Internal leakage in cooling system


	Pressure-tightness test of oil cooler shows there is leakage		•			•		
ible-	Pressure-tightness test of cylinder head shows there is leakage			•				
Trouble- shooting	Remove cylinder head and check directly				•			
l ⊢ s	Remove oil pan and check directly						•	•
		Remedy	Replace	Replace	Replace	Replace	Replace	Replace

S-12 Oil pressure lamp lights up (drop in oil pressure)

General causes why oil pressure lamp lights up

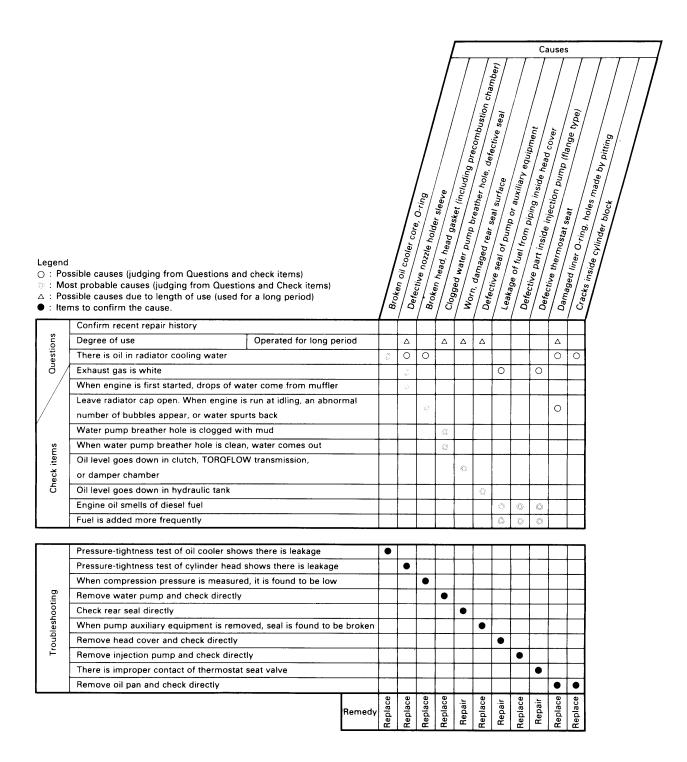
- · Leakage, clogging, wear of lubricating system
- · Defective oil pressure control
- · Improper oil used (improper viscosity)
- · Deterioration of oil due to overheating

Standards for engine oil selection

Legend

- : Possible causes (judging from Questions and check items)
 : Most probable causes (judging from Questions and Check items)
 △ : Possible causes due to length of use (used for a long period)

: Mos △ : Pos	sible causes (judging from Questions and st probable causes (judging from Questior sible causes due to length of use (used fo ns to confirm the cause.	ns and Check items)		Clours	Worn there	Closs	Cloons	Broken oil ping	Defection pipe branch	Ι,	Defent oil in oil no	Defense regulator val.	Leakin relief valve	Defect	Defection oil level senso	Water Oil pressure	cuer, fuel in oil
	Confirm recent repair history Degree of use	Oncorted for long pari	: a al		ļ											\vdash	
	Replacement of filters has not been carri-	Operated for long peri	loa	Δ	Δ				Δ		<u> </u>					-	
suo	operation manual	ed out according to															İ
Questions	Caution lamp lights up					_					-	0				\vdash	
ő	Non-specified fuel has been used			0	0						-					H	ĺ
		Lights up at low idling										0			<u> </u>		l
/	Condition when oil pressure	Lights up at low, high	idling			Ą.	- 1	20	71	0	0	0				\vdash	l
	lamp lights up	Lights up on slopes												<u> </u>		Н	ĺ
/	, ,	Sometimes lights up									D)	4,		0	0	\vdash	l
/ .	There is clogging, leakage from hydraulic	piping (external)											1		<u> </u>		İ
Check items	Oil level sensor lamp lights up									4.5				1.5			İ
¥.	When oil level in oil pan is checked, it is	found to be low								140							1
Shec	Metal particles are found when oil is drai	ned			10												
	Metal particles are stuck to oil filter elem-	ent			47				0								
	Oil is cloudy white or smells of diesel oil																
	When oil filter is inspected directly, it is f	ound to be cloaged		•	•											6	
_	Remove oil pan and check directly	ound to be clogged					•	•			-					otin	
ting	Oil pump rotation is heavy, there is play					Ť	_		•		 		-			esho	İ
hoc	There is catching of relief valve or regul	ator valve, spring or							_					 	\vdash	oubl rise	1
ples	valve guide is broken										•	•				ut tr	
Troubleshooting	When oil level sensor is replaced, oil pre-	ssure sensor lamp goes	out								 	 		•		Carry out troubleshooting for "Oil level rises".	
	When oil pressure is measured, it is foun	d to be within standard	value												•	ç ğ	
-		F	Remedy	Clean	Clean	Clean	Clean	Repair	Replace	Add	Adjust	Adjust	Repair	Replace	Replace		


Causes

S-13 Oil level rises

★ If there is oil in the cooling water, carry out troubleshooting for "Oil is in cooling water".

General causes why oil level rises

- · Water in oil (cloudy white)
- · Fuel in oil (diluted, and smells of diesel fuel)
- · Entry of oil from other component

S-14 Water temperature becomes too high (overheating)

General causes why water temperature becomes too high

- · Lack of cooling water (deformation, damage of
- · Drop in heat dissipation efficiency
- · Defective cooling circulation system
- · Rise in oil temperature of power train
 - **★** Carry out troubleshooting for chassis.

			/					(Caus	es		
			[/	/	/	/	<i>T</i>		7	/	
		//			(ha)	, ,						by pitting
	de de la companya de	radia	Corp	Stat (d.	emper	9 Wat	Worn	oil cools	e value	d gast.	ring	nverter oil tempe
Broker	Cloace Water Pump	Cloops Crushed radios	Defect	Defects thermostat (4)	Insuffic	Fan hei.	Clogosia Worn &	Defection of Cool	Broken Broken Value	Damas, head gast	Rise is	in forque converter oil temperature
	i .	۱ .	ı	1			ì	1				l

- : Possible causes (judging from Questions and check items)
 : Most probable causes (judging from Questions and Check items)
 △ : Possible causes due to length of use (used for a long period)
- : Items to confirm the cause.

				-	\leftarrow		-					-	-	_
	Confirm recent repair history													
	Degree of use	Operated for long period		Δ	Δ							Δ	Δ	
		Suddenly overheated	27					0	0					l
	Condition of overheating	Always tends to overheat		\$	â	0			0					Ĺ
Questions		Rises quickly				Q		0						
lest	Water temperature gauge	Does not go down from					æ							l
đ		red range					1 44							
1	Radiator water level sensor lights up							Ć						
	Fan belt whines under sudden load								Q					L
	Cloudy white oil is floating on cooling water									Ô				
	Cooling water flows out from overflow hose									<u> </u>	5			
	Excessive air bubbles inside radiate	Excessive air bubbles inside radiator, water spurts back										Ģ		
	Engine oil level has risen, oil is cloudy white								<u> </u>	0			rCv.	
V_{-}	There is play when fan pulley is rotated													
items	Radiator shroud, inside of underguard are clogged with dirt or mud			Ų					0					
ļ .≅	When light bulb is held behind radi	When light bulb is held behind radiator, no light passes through								<u> </u>				
Check	Water is leaking because of cracks	Water is leaking because of cracks in hose or loose clamps						ĸ.						
"	Belt tension is found to be slack								0					
1	Power train oil temperature enters rec	ower train oil temperature enters red range before engine water temperatur							I					-3

	Remed	Replace	Repair	Repair	Replace	Replace	Add	Repair	Replace	Replace	Replace	Replace	_
	Remove oil pan and check directly											•	
	When compression pressure is measured, it is found to be low		1	İ							•		ي [
	found to be low									•			3
_	When measurement is made with radiator cap tester, set pressure is												1
ē	When oil cooler is inspected directly, it is found to be clogged								•				Ę
ple	When water temperature is measured, it is found to be normal					•							1 4
Troubleshooting	even at the cracking temperature												troubleshooting
ġ	When a function test is carried out on the thermostat, it does not open												ığ.
6	When water filler port is inspected, the core is found to be clogged			•									
	slight		Ĺ										for c
	Temperature difference between top and bottom radiator tanks is												chass
	excessive	Ľ											SSIS
	Temperature difference between top and bottom radiator tanks is						ĺ						

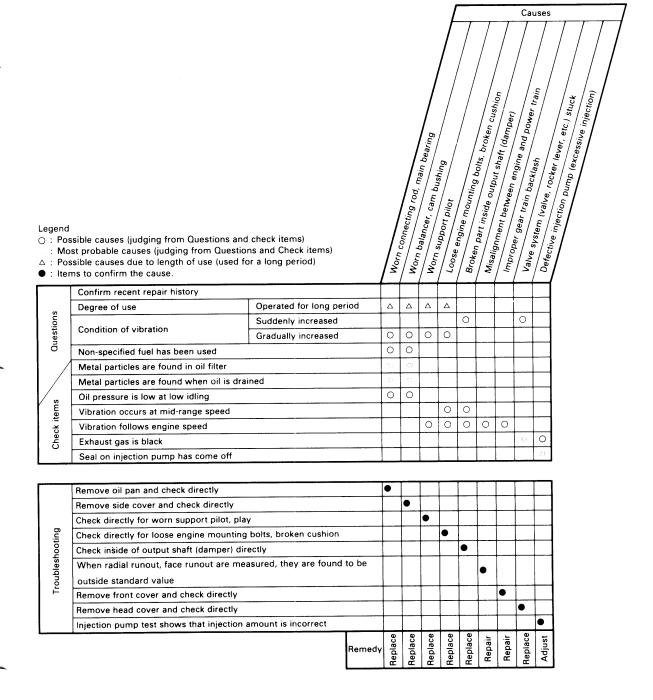
S-15 Abnormal noise is made

★ Judge if the noise is an internal noise or an external noise.

General causes why abnormal noise is made

- · Abnormality due to defective parts
- · Abnormal combustion noise

•	Abnormal combustion noise														
•	Air sucked in from intake system	ו										Caus	ses	-	
ு : Mo △ : Po	ssible causes (judging from Questions and ost probable causes (judging from Question ssible causes due to length of use (used for the causes.	ns and Check items)		Seize	Miss. Misser liner	Close Seized bush:	Syed, Seized injensi	Defe	Defo	Imed fan, interfes	Broke. Stephen of fan belt	Impro-	Leaks	Defen. Detween	Unside muffer (dividing board)
	Confirm recent repair history	4.													
	Degree of use	Operated for long period	Δ												l
Suc	Condition of abnormal noise	Gradually occurred	0						0						
Questions		Suddenly occurred		0	0						0				
ð	Non-specified fuel is being used				0	0									
ł	Engine oil must be added more frequent	ly	<i>ن</i> ،												
/	Color or exhaust gas	Blue under light load	631												
/	Table of omittee goo	Black		(C)						0			0		
	Metal particles are found in oil filter		Q		ίÜν										
	Blow-by gas is excessive		-C)												
/	Noise of interference is heard from arour	nd turbocharger		10v										П	
V	Engine pickup is poor and combustion is	irregular				(0)								П	
	When exhaust manifold is touched imme	diately after starting engine,												П	
S LL	temperature of some cylinders is low					(Q)	0		ĺ						
Check items	Seal on injection pump has come off							(Q)							
)eck	Abnormal noise is loud when accelerating	g engine				0	0	0	0	0		0		\Box	
5	Clanging sound is heard from around cyli	inder head								()	()			\dashv	
	Leakage of air between turbocharger and	I head, loose clamp										\neg	(0)	\dashv	
	Vibrating noise is heard from around mut	ffler											\neg	0	
	When compression pressure is measured	, it is found to be low	•											\neg	
	When trubocharger is rotated by hand, it	is found to be heavy		•										ヿ	
	Remove gear cover and check directly				•							•			
	Speed of some cylinders does not change	e when operating on				•									
otinç	reduced cylinders														
shoc	o be heavy or does not return					•									
ple	Injection pump test shows that injection a	amount is incorrect						•							
Troubleshooting	Fan is deformed, or belt is loose								•						
	When valve clearance is checked directly	, it is found to be outside										\neg		\neg	
	standard value											[_	
	Remove cylinder head cover and check d									•					
	When muffler is removed, abnormal noise	e disappers	1]						\neg				$\overline{}$		


Adjust Repair Adjust

S-16 Vibration is excessive

★ If there is abnormal noise together with the vibration, carry out troubleshooting for "Abnormal noise is made".

General causes why vibration is excessive

- · Defective parts (abnormal wear, breakage)
- · Improper alignment
- · Abnormal combustion

ENGINE 13 DISASSEMBLY AND ASSEMBLY

Overall	disassembly	13-002
Overall	assembly	13-014

- ★ The description of overall engine disassembly and assembly given in this section is based on the SA6D108-1 engine, assuming the use of an overhaul stand.
- ★ The work procedure may differ slightly from that given here depending upon the machine in which the engine is mounted, engine accessories and also the particular stand used, however it is fundamentally the same.
- \star Use the correct service tools when performing disassembly and assembly.

OVERALL DISASSEMBLY

Special tools

	Part No.	Part Name	Q'ty
Α	-	Engine stand	1
В	790-501-2000	Engine overhaul stand	1
	790-345-1070	Bracket	1
С	795-102-2101	Spring washer	1
D	795-100-2800	Piston ring tool	1
E	790-472-2000	Liner puller	1

Preparatory work

- · Clean of all mud and dirt.
- Drain cooling water and engine oil.

Engine oil : Approx. 22 ℓ (S6D108)

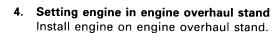
: Approx. 25 & (SA6D108)

 Prepare a stable engine stand A so that the engine will not overturn, and set the engine securely on the stand.

Engine assembly : Approx. 700 kg (S6D108)

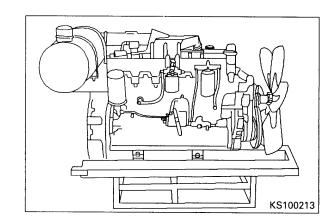
: Approx. 770 kg (SA6D108)

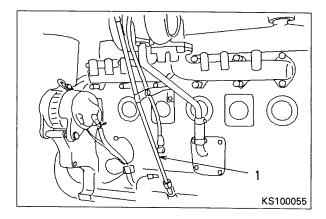
(Differs according to machine)

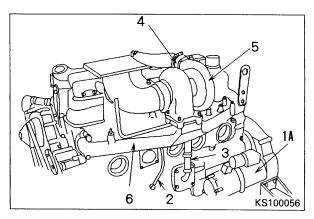

Remove dipstick guide (1).

2. Remove starting motor

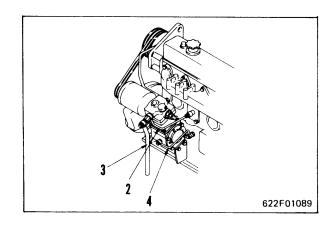
Remove starting motor (1A).

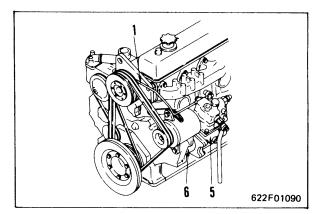

3. Turbocharger, exhaust manifold assembly


- Disconnect turbocharger inlet tube (2) and outlet tube (3).
- Disconnect intermediate connector (4) between turbocharger and aftercooler. (SA6D108)
- 2A) Disconnect intermediate connector (4) from intake manifold. (S6D108)
- 3) Remove turbocharger (5) and exhaust manifold assembly (6).



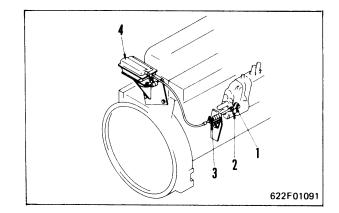
Engine assembly: Approx. 700 kg (Differs according to machine)





4-1. Air compressor

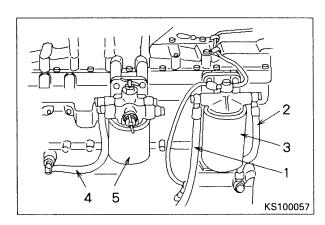
- 1) Disconnect water tubes (1),(2) and drain hose (3).
- 2) Disconnect oil tube (4).



- 3) Remove air compressor assembly (5).
- 4) Remove drive case assembly (6).

4-2. Engine stop motor (when equipped)

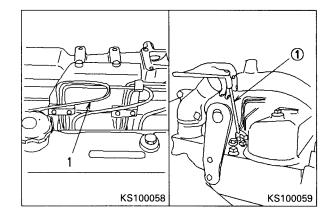
- 1) Remove rod end (1) of engine stop motor cable from stop lever (2) of fuel injection pump.
- 2) Remove cable from bracket (3).
- 3) Remove engine stop motor (4).



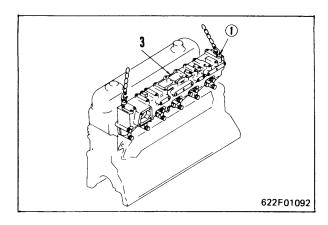
5. Fuel filter

Disconnect fuel filter inlet hose (1) and outlet hose (2) at fuel injection pump end, then remove fuel filter (3).

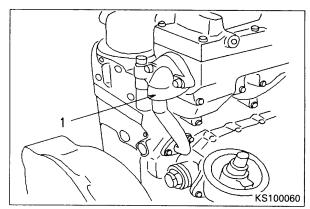
6. Corrosion resistor (when equipped)


Disconnect water hose (4) and corrosion resistor (5).

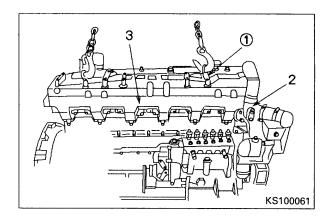
7. Fuel injection pipe


Remove fuel injection pipe (1).

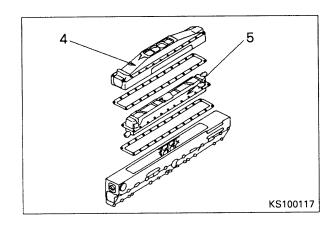
★ Remove sleeve nuts at nozzle holder side using tool ①.


8. Intake manifold (S6D108)

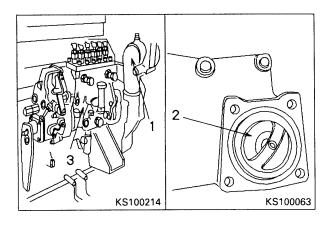
Using eyebolts 1 (Dia. = 8 mm, Pitch = 1.25). Sling intake manifold assembly (3).



8-1. Aftercooler, intake manifold (SA6D108)

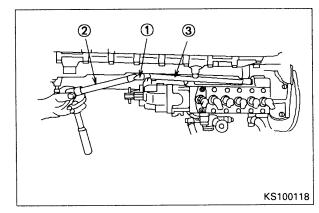

1) Disconnect aftercooler inlet tube (1).

- 2) Disconnect aftercooler outlet tube (2).
- 3) Using eyebolt ① (8 mm, Pitch = 1.25), sling inlet manifold assembly (3).

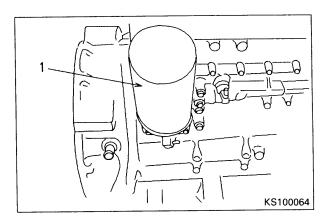


4) Remove cover (4), then remove aftercooler (5).

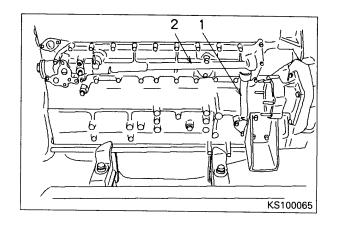
9. Thermostat


- 1) Remove connector (1).
- 2) Remove thermostat (2).

10. Fuel injection pump


Remove fuel injection pump (3).

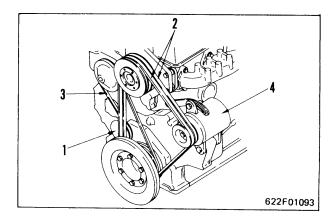
- ★ Loosen these two nuts from pump rear using socket wrench, universal joint ① and extensions ② and ③.
 - Extension ② : 300 mm • Extension ③ : 100 mm


11. Oil filter

Remove oil filter (1) together with bracket.

12. Oil cooler

- 1) Remove oil cooler tube (1).
- 2) Remove oil cooler (2).

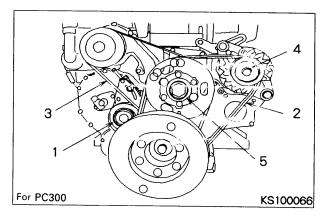


13. Tension pulley

Remove tension pulley (1).

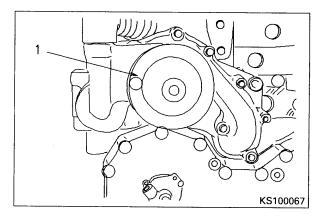
14. Fan belt, water pump belts

- 1) Loosen mounting bolt of alternator, move alternator to inside, and remove fan belt (2).
- 2) Remove water pump belt (3).


15. Alternator

Remove alternator (4).

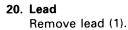
16. Fan pulley drive assembly


Remove fan pulley drive assembly (5).

★ Insert tool from peeping holes and loosen mounting bolts.

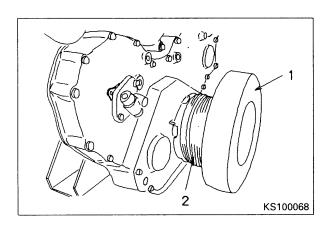
17. Water pump

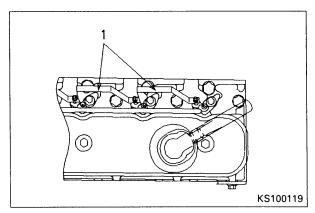
Remove water pump (1).

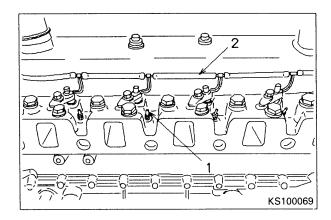


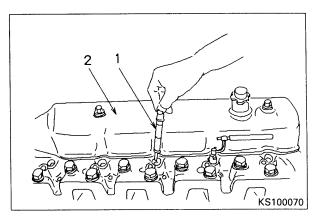
18. Vibration damper

Remove vibration damper (1).

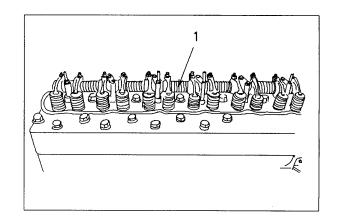

19. Crankshaft pulley

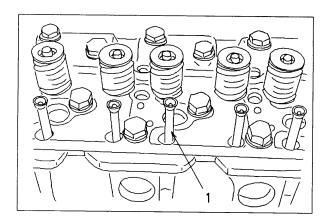

Remove crankshaft pulley (2).



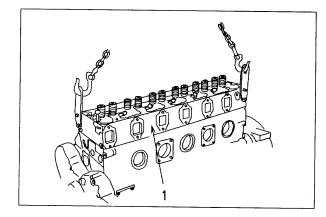

- 21. Glow plug Remove glow plug (1).
- 22. Spill hose Remove spill hose (2).

- 23. Nozzle holder Remove nozzle holder (1).
- 24. Cylinder head cover Remove cylinder head cover (2).

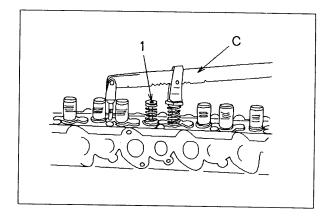



25. Rocker arm assembly

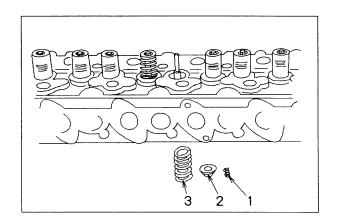
- 1) Loosen lock nut of adjustment screw, then loosen each adjustment screw 2 to 3 turns.
 - ★ Loosen the adjustment screw at this step to avoid excessive pressure being brought to the push rods when installing the rocker arm assembly.
- 2) Remove rocker arm assembly (1).

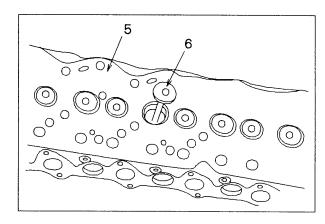

26. Push rods

Remove push rods (1).

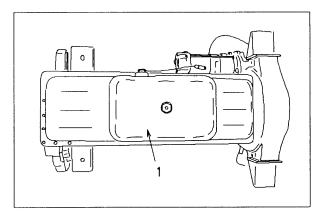


27. Cylinder head

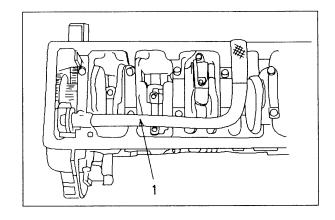

- 1) Remove mounting bolts of cylinder head.
- 2) Remove cylinder head (1).
- kg Cylinder head assembly : 63 kg
- 3) Remove cylinder head gasket.


- Disassemble cylinder head assembly as follows.
 - 1) Using spring pusher **C**, compress valve spring and remove valve cotter (1).

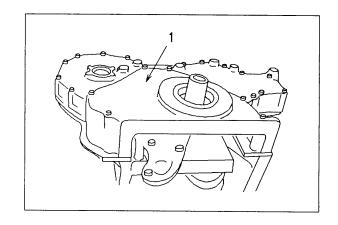
2) Slowly release spring tension and remove spring guide (2), valve spring (3).


3) Lift up cylinder head (5) and remove valves (6).

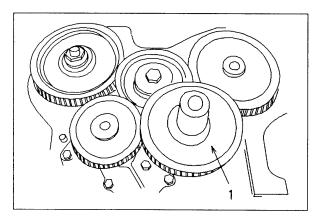
28. Oil pan


Remove oil pan (1).

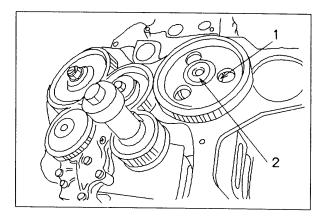
★ Be careful not to deform or damage the oil pan when removing, as this will cause oil leakage.


29. Suction tube

Remove suction tube (1).


30. Gear case cover

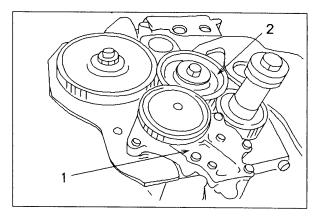
Remove gear case cover (1).


31. Drive gear for oil pump

Remove drive gear for oil pump (1).

32. Camshaft

- 1) Remove thrust plate (1).
- 2) Remove camshaft (2).



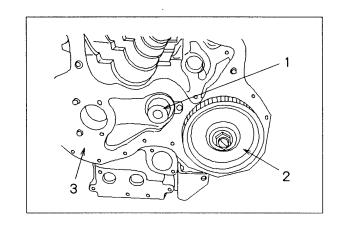
33. Oil pump

Remove oil pump (1).

34. Idler gear

Remove idler gear (2).

35. Idler shaft


Remove idler shaft (1).

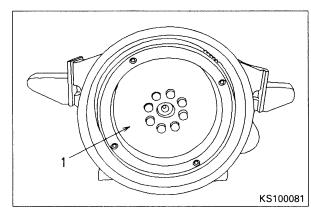
36. Drive gear for fuel injection pump

Remove drive gear (2) for injection pump.

37. Front plate

Remove front plate (3).

38. Flywheel

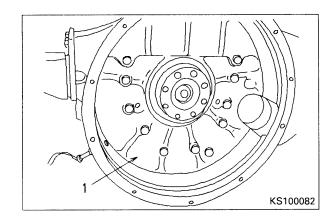

Remove flywheel (1).

Flywheel: 62.5 kg (S6D108)

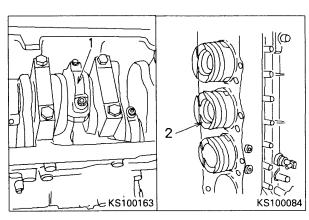
: 31.3 kg (SA6D108)

(Differs according to the machine)

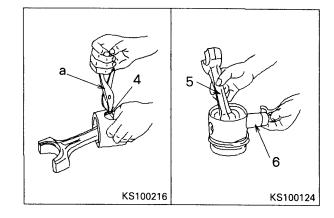
39. Flywheel housing


Remove flywheel housing (1).

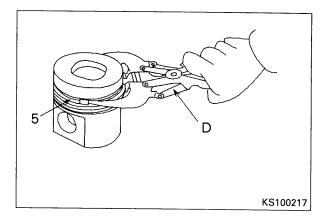
Flywheel housing: 41.0 kg (S6D108)


: 46.5 kg (SA6D108)

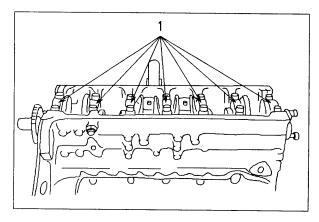
(Differs according to the machine)



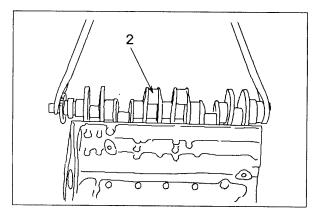
40. Piston, connecting rod assembly


- ★ To avoid damage when removing the piston, remove carbon sludge from the upper inside surface of the liner with fine emery paper.
- Rotate crankshaft so that piston to be removed comes to bottom dead center.
- 2) Remove connecting rod cap (1).
- 3) Using wooden bar, push piston and connecting rod from oil pan side. Support piston (2) at cylinder head side and remove.
- ★ When removing, be careful not to damage the inside surface of the liner with the corners of the connecting rod.
- 4) Remove remaining pistons and connecting rods in the same way.
- ★ Keep the pistons and connection rods in a safe place and be careful not to damage the sliding surface of the piston or the bearing.

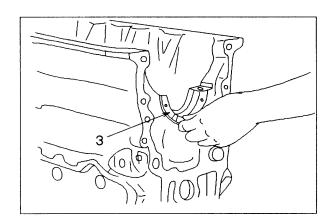
- ★ Disassemble piston and connecting rod as follows.
 - 1) Using plier (a), remove snap spring (4).
 - 2) Hold connecting rod (5) by hand, and tap out piston pin (6) from the opposite side.
 - 3) Disconnect piston assembly and connecting rod.
 - 4) Remove snap ring in the opposite side.

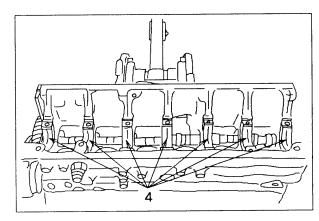


- 5) Using piston ring tool **D**, remove rings in turn, starting with top ring (5).
 - Keep piston, connecting rod, bearing, piston rings and piston pin in sets according to cylinder number.

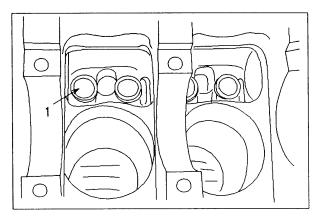


41. Crankshaft

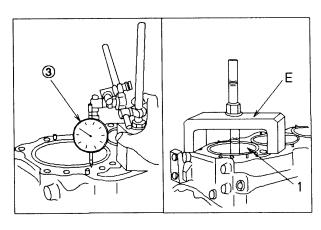

- Turn over engine so that crankshaft side is at top.
- 1) Remove main bearing caps (1).
 - The lower thrust bearings are assembled on both sides of the No. 7 main bearing cap, so after removing, mark the position for assembly.


- 2) Using a nylon sling, remove crankshaft (2).
 - ★ When raising the crankshaft, be careful not to damage by letting it hit the cylinder block.
 - ★ Keep the crankshaft in a safe place, and be careful not to damage the sliding surface.

3) Remove upper thrust bearings (3) for crankshaft side.



- 4) Remove upper bearings (4).
 - ★ Mark the positions for assembly of the main bearing cap, main bearing and thrust bearing with a tag or felt pen. Keep in sets according to the cap number. Keep them in a safe place and be careful not to damage them.


42. Tappets

Remove tappets (1).

43. Cylinder liner sleeve

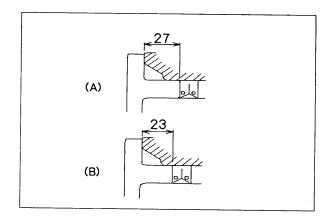
- Before removing the cylinder liner sleeve if necessary using a dial gauge (3), measure the protrusion of the liner sleeve.
- Using liner puller E, remove cylinder liner sleeve (1).

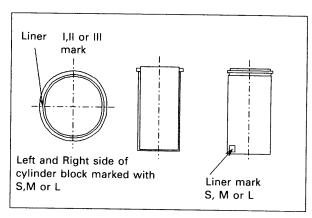
OVERALL ASSEMBLY

Special tools

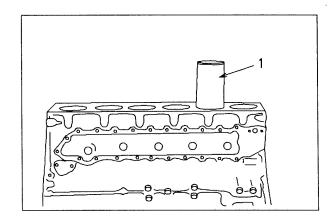
	Part No.	Part Name	Q'ty
A		Engine stand	1
	790-501-2000	Engine overhaul stand	1
В	790-345-1070	Bracket	1
С	795-215-1711	Liner driver	1
D	_	Expander	1
E	795-102-2101	Valve pusher	1
F	_	Feeler gauge	1
G	-	Push tool for rear seal (A)	1
Н	_	Push tool for rear seal (B)	1

Preparatory work

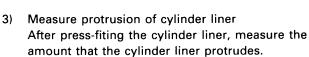

Install adapter plate on cylinder block, raise and set on engine overhaul stand ${\bf B}.$

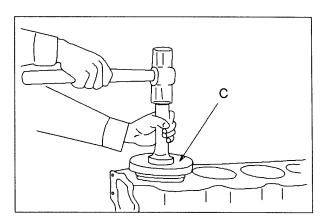

1. Cylinder liner sleeve

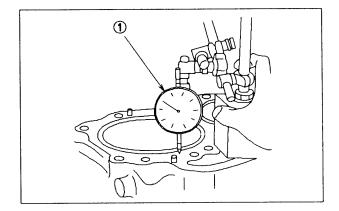
- When cylinder liners are disassembled, follow the next procedure.
- ★ For each cylinder, check that the mark of the cylinder liner and the stamped mark (S or M,L) on the top face of right side of the cylinder block are correctly coincide.


Block mark	Liner Part No.	Liner mark		
Diook mark	Liner Fait No.	Bottom	Top	
S	6222-21-2210	S	ī	
M	6222-21-2220	М	II	
L	6222-21-2230	L	III	

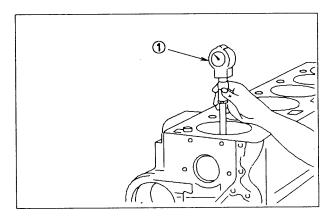
- ★ Clean the press-fit surface of the cylinder liner and cylinder block thoroughly. (Completely remove the rust preventive oil from the liner)
- ★ Coat the press-fit surface of the cylinder liner and cylinder block thinly with engine oil (EO-30).

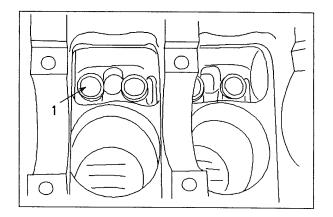



- 1) Set cylinder liner (1) on cylinder block.
 - ★ Set cylinder liner (1) with its mark facing to the front of the engine.

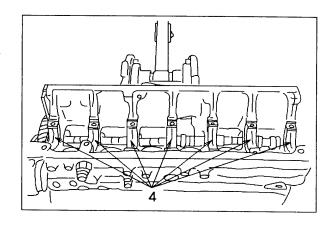


- 2) Using tool C, press fit liner in block.
 - ★ Press-fit slowly for the first 10 20 mm stroke and make sure that the liner is not inclined.
 - ★ If the liner is inclined, there is a danger that it will crack. Use a pulling tool to remove it and press-fit from the beginning again.
 - If there is any dust or dirt on the press-fit surface of the liner or the bottom surface of the liner flange, the liner will be deformed or the protrusion will not be even. Never try to install the liner by putting a wooden block on top of the liner and hammering the liner into the block.

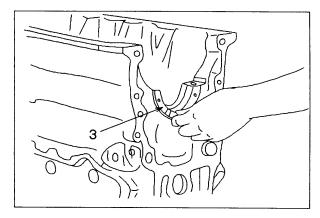

★ Protrusion of cylinder liner: 0.05 to 0.13 mm


4) Measure inside diameter of cylinder liner After press-fitting the cylinder liner, measure the inside diameter of the cylinder liner and check that it is within the standard value.

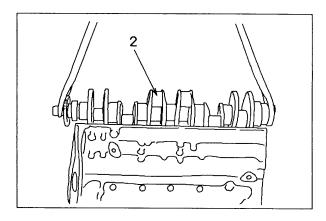
Inside diameter ; \emptyset 108 $^+$ 0.0320 $^-$ 0.0004


2. Tappets

- 1) Turn over engine so that crankshaft side is at top.
- 2) Assemble tappets (1).
 - Check that tappets move up and down smoothly.

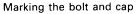


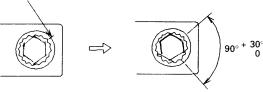
3. Crankshaft


- Align lug of upper main bearings (4) with slot in cylinder block, and install.
 - ★ After installing the bearing, coat the sliding surface with engine oil.

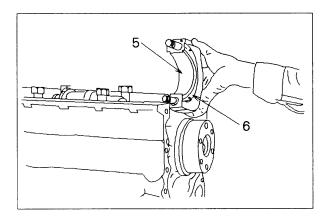
- 2) Install upper thrust bearing (3) for crankshaft side.
 - ★ Check that the protrusion of the roll pin is 1.5 to 1.9 mm.
 - ★ Install the thrust bearings with the grooved face to the outside.
 - ★ Coat the sliding surface of the thrust bearings with engine oil.

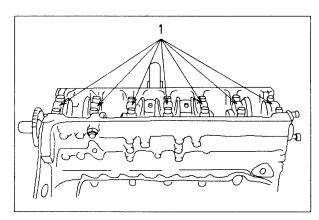
- Using a nylon sling, raise crankshaft (2) and set in position in cylinder block.
 - ★ When installing the crankshaft, be careful not to damage by letting it hit the cylinder block.

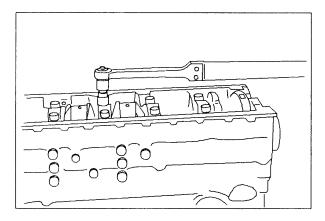


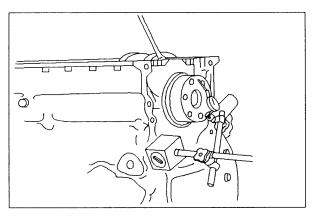

- 4) Align lug of lower main bearing (5) with slot in main bearing cap and install bearing in cap.
- 5) Assemble lower thrust bearings (6) on both sides of No. 7 main cap bearing.
 - ★ Check that the protrusion of the roll pin is 1.5 to 1.9 mm.
 - ★ Install the thrust bearing with the grooved face to the outside.
- 6) Assemble main bearing cap (1).
 - ★ Coat the sliding surface of the bearing with engine oil before installing.
 - ★ Match bearing No. and block No., and install the main bearing cap with the raising letter "F" facing the front of the engine.
- 7) Tighten bolts of main bearing cap as follows.
 - ★ Coat the threads of the bolts and the seat face with engine oil (EO-30) before tightening the bolts.
 - ★ Tighten bolts beginning from the center cap and continue to the outside caps in turn.
 - ★ Tighten according to the next steps as follows.

√ Main bearing cap

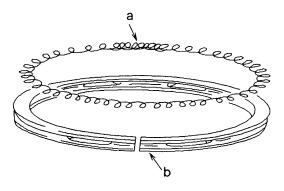

Unit: kgm

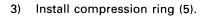

Order	Target	Range
1st step	8	7 – 9
2nd step	16	15.5 – 16.5
3rd step	After marking the	e bolts and cap by felt pen.
	Turn over the bo	olt more 90°–120°

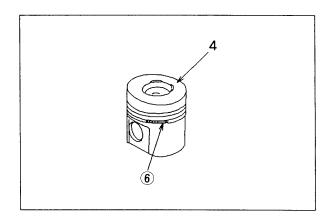


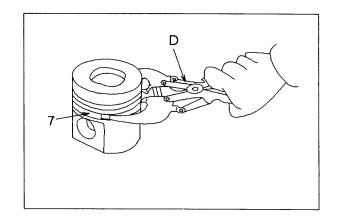


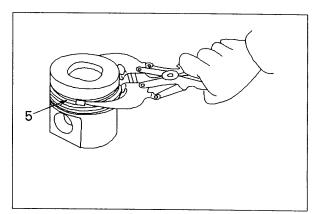
- ★ After tightening the bolts, put one mark on the bolt head with the pointer. If the No. of mark exceeds 5, discard the old bolt and replace with the new bolt.
- ★ After tightening the bolts, check that the crankshaft rotates smoothly.
- 8) Measure end play of crankshaft. After tightening the main bearing cap, measure the end play of the crankshaft.
 - ★ End play of the crankshaft: 0.14 to 0.315 mm



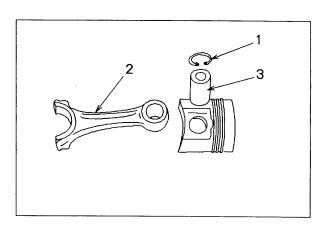



4. Piston connecting rod assembly


- ★ Assemble piston rod and connecting rod assembly as follows.
 - 1) Install expander 6 on piston (4).
 - 2) Using tool **D**, install oil ring (7).
 - ★ Install the piston ring with the stamped mark at the opening facing up.
 - ★ When fitting the oil ring, check that the expander is fitted completely inside the oil ring.
 - ★ Position the expander and oil ring as shown in the diagram.



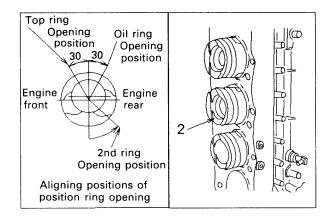
a: Join of coil b: End gap

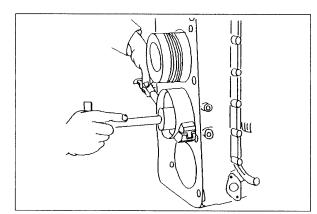


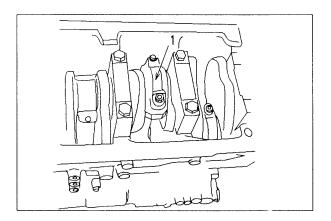
- 4) Set "FRONT" mark on piston head and raised number on connecting rod facing to the same direction. Insert piston pin (3) and assemble connecting rod (2) with piston pin
 - ★ If the piston pin will not go in easily, warm the piston in hot water before installing.
 - ★ Match the cylinder numbers on the piston and the connecting rod.
 - ★ Use an electric pen to mark the cylinder number on the connecting rod.
- 5) Install snap ring (1) in both sides.

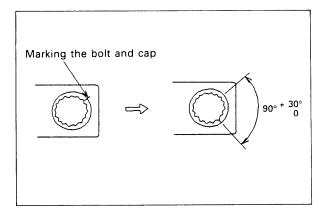
Raise up cylinder block putting flywheel housing underside.

- Set the crankshaft pin at the bottom dead center in the cylinder where the piston and connecting rod assembly is to be installed.
- ★ Assemble the upper bearing with the connecting rod aligning the bearing lug with the slot in the connecting rod.
- ★ Coat the inside surface of the cylinder, the surface of the piston rings and connecting rod bearing surface with engine oil (EO-30).
- 1) Align openings of piston rings as shown in diagram.
- Insert piston and connecting rod assembly (2) from cylinder head side as far as piston ring position.
 - ★ Assemble the piston with the raised mark "FRONT" facing the front of the engine.
- 3) Using piston holder F, compress piston rings and push piston head with a wooden bar. Then pull big end of connecting rod and fit on crankshaft pin.
- Align slot in connecting rod cap with lug in lower bearing of connecting rod and assemble bearing.
- 5) Match cylinder number stamped on connecting rod cap with cylinder number stamped on connecting rod.

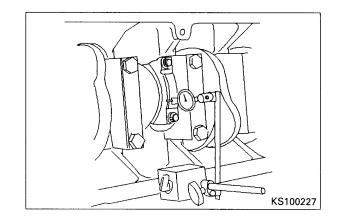

Install connecting rod cap (1) so that stamped number is for cam side.


- ★ Coat connecting rod cap bearing with engine oil.
- 6) Assemble connecting rod cap as follows.
 - ★ Coat the threads of the bolts and the seat face with engine oil (EO30-CD) before tightening the bolts.
 - ★ Tighten the bolts uniformly in turn.

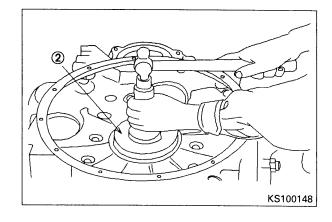

Skgm Connecting rod cap bolt


1st step	Target 7.5 Range 7.3 – 7.7 kgm
	After marking the bolts and cap by
	felt pen, turn over the bolt more
	90° – 120°.

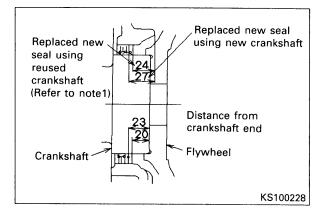
- ★ After tightening the bolts, put one mark on the bolt head with the pointer. If the No. of marks exceeds 5, discard the old bolt and replace with the new bolt.
- ★ After tightening the bolt, check that the crankshaft rotates smoothly. There must be no abnormality.



- 7) Measure side clearance of connecting rod cap. After installing the piston and connecting rod assembly, measure the side clearance between the cap and the side face of the crankshaft.
 - ★ Side clearance of cap: 0.16 to 0.33 mm.

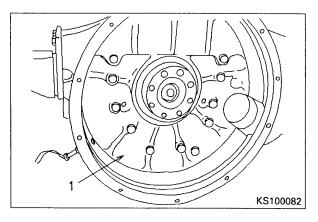


5. Flywheel housing


1) Using push tool ② (O.D. 150 mm), press fit rear seal in housing.

Note 1: If there is any wear on the lip contract surface (over 0.1 mm deep enough for fingernails to scratch) or if it is worn as mirror surface, move the rear seal about 3 mm toward engine rear when assembling.

Note 2: When double lip seal is installed.

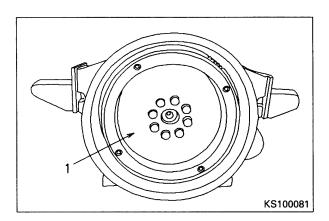


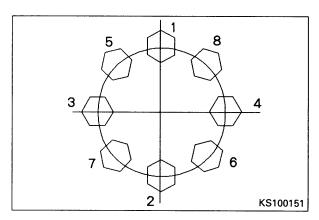
- 2) Align dowel pin holes and install flywheel housing (1).
- Coat lip surface of rear seal with grease (G2-LI).(about 3 cc)
- Coat front surface of housing with gasket paste (LG-7)
- Flywheel housing mounting bolt : 10 12.5 kgm
- ★ Measure face and radial runout of flywheel housing.

Face runout: within 0.35 mm Radial runout: within 0.3 mm

6. Flywheel

- 1) Install flywheel (1) on crankshaft.
- 2) Tighten flywheel mounting bolts as follows.
 - ★ Coat the threads of the bolts, the seat face, and the washers with engine oil (EO30-CD).
 - ★ Tighten the bolts in the order given in the diagram, and to the following tightening torques.

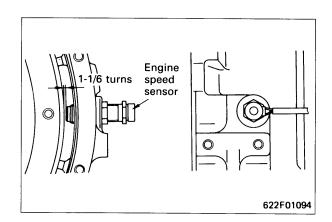

Skgm Flywheel mounting bolt:

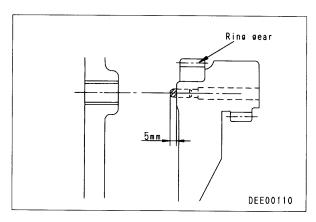

Unit: kgm

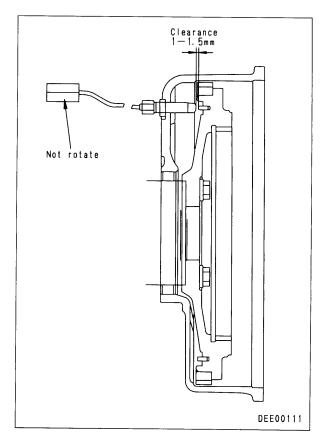
Order	Target	Range
1st step	9	6 12
2nd step	19	18 - 20

- After installing the flywheel, measure the face runout and radial runout.
- ★ Repair limit of face runout : 0.2 mm
- ★ Repair limit of radial runout : 0.15 mm

6-1 Engine speed sensor (when equipped)


 Screw in the speed sensor until it contacts the ring gear, then turn 1-1/6 turns and lock in position. (PC300-5)


Skgm Locknut: 6 ± 1 kgm

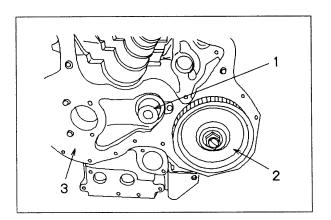

 Put the speed sensor in contact with the flywheel pin, then turn back 1 turn. (WA320, 380, 420-3)

Skgm Locknut: 5 ± 0.5 kgm

Coat the thread with hydraulic sealant.

7. Front plate

Install the front plate (3).

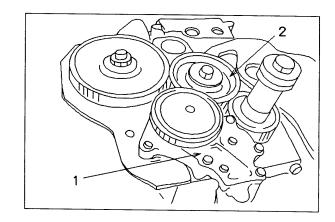

8. Drive gear for fuel injection pump with drive case assembly

Install drive gear (2) for fuel injection pump with drive case assembly.

Skgm Nut: 16 – 18 kgm

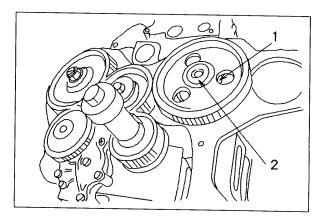
9. Idler shaft

Install idler shaft (1).

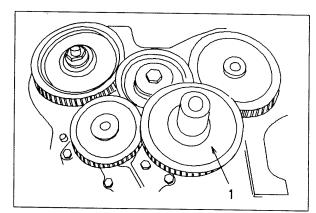

10. Idler gear

Install idler gear (2).

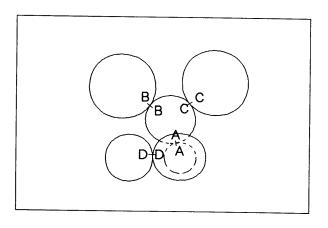
Gear mounting: 14 - 18 kgm


11. Oil pump

Install oil pump (1).

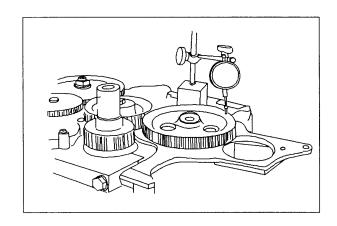

12. Camshaft

- 1) Assemble camshaft (2).
 - ★ Be careful not to damage the cam bushings when installing.
 - ★ Push camshaft center softly. Must not knock the gear with hammer.
- 2) Install thrust plate (1).

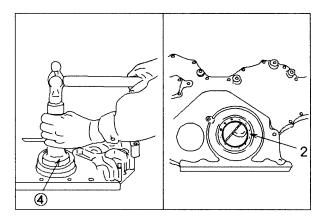

13. Drive gear of oil pump

Install drive gear (1) of oil pump.

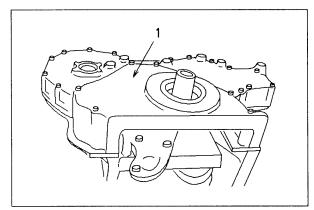
- ★ Check that the match marks of all drive gears and idler gears are correctly aligned.
- ★ Measure the backlash and end play of each gear.
 - a) Backlash


Position	Gears	Range (mm)
Α	Crankshaft gear and idler gear	0.085 - 0.307
В	Injection pump gear and idler gear	0.054 - 0.380
С	Camshaft gear and idler gear	0.075 - 0.359
D	Oil pump gear and idler gear	0.102 - 0.332

b) End play


End play of camshaft: 0.15 to 0.35 mm

End play of idler gear: 0.08 to 0.14 mm

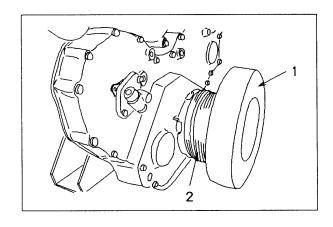

14. Gear case cover

1) Using push tool ④ (O.D. 90 mm), press-fit oil seal (2) in case.

2) Fit gasket and install gear case cover (1).

Coat lip surface of front seal with grease (G2-LI), (about 2 cc).

15. Crankshaft pulley

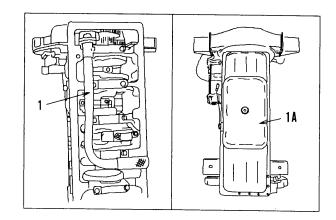

Install crankshaft pulley (2).

Skgm Mounting bolt: 43 – 49 kgm

16. Vibration damper

Install vibration damper (1).

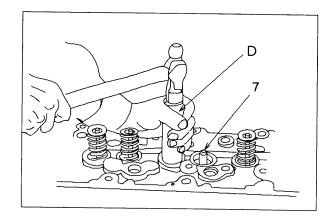
Skyrn Mounting bolt: 6 - 7.5 kgm

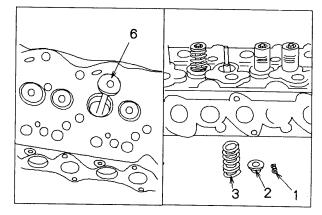


17. Suction tube

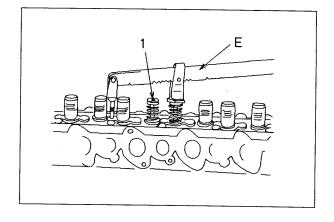
Install suction tube (1).

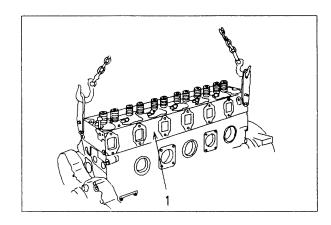
18. Oil pan


Cut gasket so that it is flush with cylinder block, front cover and flywheel housing lower face. Install oil pan (1A).

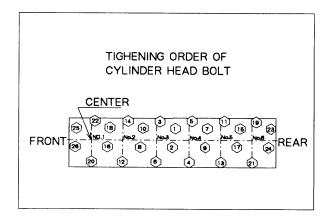

19. Cylinder head

Assemble cylinder head as follows.


★ If the valve guide has been removed, use push tool **D** to install valve guide (7).


- 1) Install valve (6).
 - ★ Coat the stem of the valve with engine oil (EO30-CD).
- 2) Install valve spring (3) and valve spring guide (2).

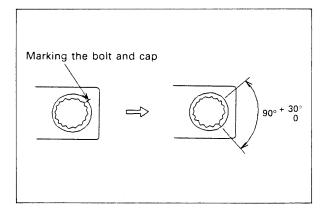
- 3) Using valve pusher **E**, compress valve spring and fit valve cotter (1) on valve stem.
 - ★ Remove tool E and tap the valve stem with a plastic hammer to check that the cotter is completely fitted.



- ★ Check that the respective mounting surface of the cylinder head and cylinder block are clean and that there is no dirt or foreign material inside the cylinder.
- Fit cylinder head gasket.
 Install cylinder head assembly (1) on the cylinder block

 Coat thread of mounting bolts and washer seats with antifriction compound or engine oil. Tighten mounting bolts in order shown in diagram to the following tightening torques.

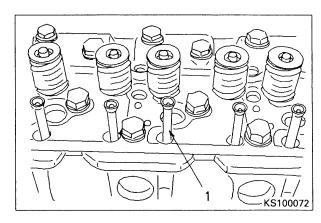
Mounting bolts : Antifriction compound (LM-P)



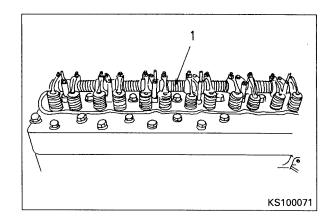
Skgm Cylinder head:

Unit: kgm

Order	Target	Range
1st step	10	9 – 11
2nd step	15	14.5 - 15.5
3rd step	more 90° turn	90° – 120°

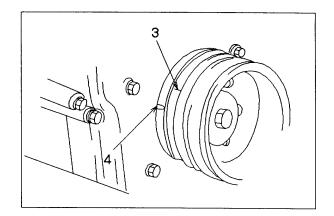

★ After tightening the bolts put one mark on the bolt head with the pointer. If the number of marks exceeds 5, replace with the new bolt.

20. Push rods

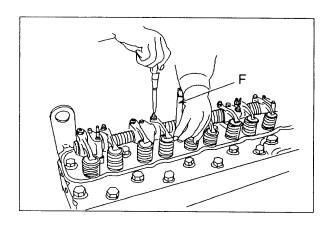

Assemble push rod (1).

★ Check that the push rod is properly fitted into the tappet.

21. Rocker arm assembly

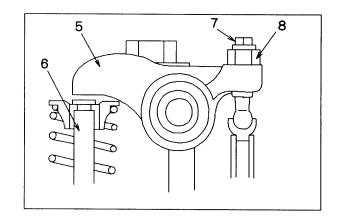

- 1) Position rocker arm assembly (1).
 - ★ Check that the ball end of the adjustment screw is properly fitted into the socket of the push rod.
 - ★ If the spring is pushing the rocker arm, loosen the adjustment screw.
- 2) Tighten mounting bolts.
- When the rocker arm shaft is disassembled, assemble it putting the V grooves of the shaft underside.

- 4) Adjust valve clearance as follows.
 - ★ Adjust the clearance between valve and rocker arm as follows (cold).


Intake valve : 0.34 mm Exhaust valve : 0.66 mm

- ★ Firing order: 1 5 3 6 2 4
- a) Rotate the crankshaft in the normal direction to align pointer (4) with the "1.6 TOP" mark on the crankshaft pulley (3). When rotating, check the motion of the valves.
 - ★ When No.1 cylinder is at compression top dead center, adjust the valves marked
 - When No. 6 cylinder is at compression top dead center, adjust the valves marked

۸	Cylinder No.		1	2	2	3	3	4	ŀ	į	5	e	;
X=	Intake valve		•		•		0		•				0
V	Exhaust valve	•		0		•		0		•		0	

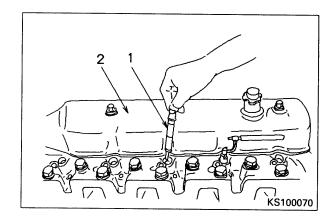

b) To adjust clearance, insert feeler gauge F between rocker arm (5) and valve stem (6) and turn adjustment screw (7) to the degree that the gauge moves narrowly.

c) Tighten lock nut (8) to hold adjustment screw in position.

2 kgm Lock nut: 4 – 5 kgm

 After tightening the lock nut, check the clearance again.

22. Cylinder head cover

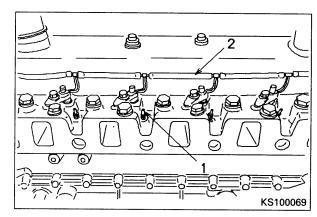

Fit O-ring and install cylinder head cover (2).

Head cover mounting bolt : 0.8 - 1.0 kgm

23. Nozzle holder

★ Check that there is no dirt or damage inside the holder sleeve or on the contact surface of the nozzle holder. Install nozzle holder (1) in cylinder head.

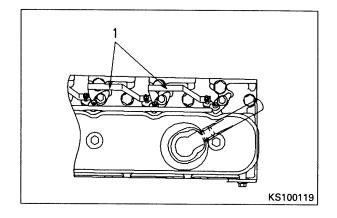
Mounting bolt: 4.0 - 5.0 kgm



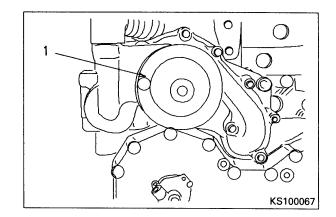
24. Spill pipe

Install spill pipe (2).

25. Glow plug


Install glow plug (1).

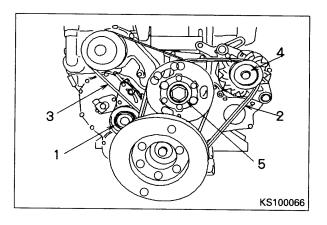
26. Lead


Install lead (1).

Skgm Nut: 0.1 – 0.2 kgm

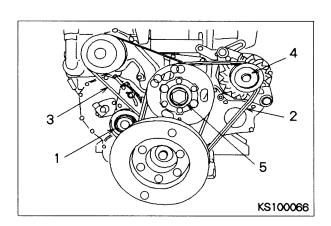
27. Water pump

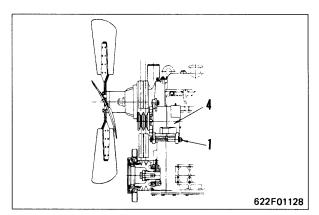
Fit gasket and install water pump (1).



28. Fan pulley drive assembly Install fan pulley drive assembly (5).

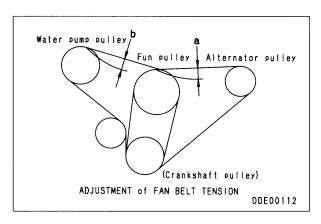
Significant Mounting nut: 22 - 26 kgm

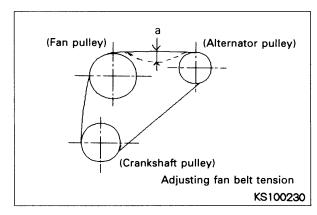

29. Alternator


Temporarily install alternator (4).

30. Fan belt, water pump belt (PC300-5)

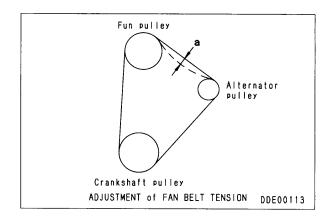
- 1) Install water pump belt (3).
- 2) Install fan belt (2).
- 3) Adjust fan belt tension as follows.
 - Watch fan belt tension and move alternator to outside. Tighten alternator mounting bolts and plate mounting bolts temporarily so that belt tension is not loose.
 - ii) After adjusting, tighten all bolts fully.
 - iii) After adjusting, check deflection of belt when point midway between crankshaft pulley and alternator pulley is pressed with a finger force of approx. 6 kg.
 - ★ Standard belt deflection (a), (b)
 - a: 3 mm (PC300-5)
 - b: 6 mm (PC300-5)


30-1.Fan belt (water pump belt) (WA320, 380-3, WA420-3) (AUSTOFT)


- 1) Install fan belt (water pump belt).
- 2) Insert bar between alternator and cylinder block, then watch fan belt tension and move alternator to outside to adjust belt tension.

Be careful not to get your fingers caught.

Adjust deflection of belt when point midway between fan pulley (water pump pulley) and alternator pulley is pressed with a finger force of approx. 6 kg.

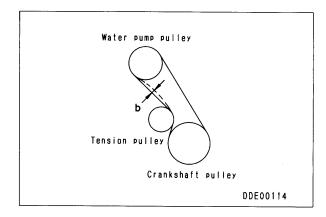

- ★ Fan belt deflection (a): 7.5 mm
- 3) After adjusting, tighten all bolts fully.

30-2. Fan belt (D57S-1B)

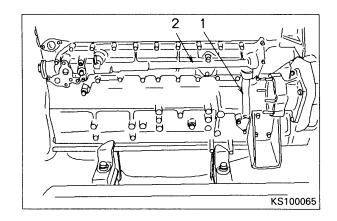
- 1) Install water pump belt (3).
- 2) Install fan belt (2).
- Adjust fan belt tension as follows.
 - Watch fan belt tension and move alternator to outside. Tighten alternator mounting bolts and plate mounting bolts temporarily so that belt tension is not loose.
 - ii) After adjusting, tighten all bolts fully.
 - iii) After adjusting, check deflection of belt when point midway between crankshaft pulley and alternator pulley is pressed with a finger force of approx. 6 kg.
 - ★ Standard belt deflection (a): 6 mm

31. Tension pulley (PC300-5) (AUSTOFT)

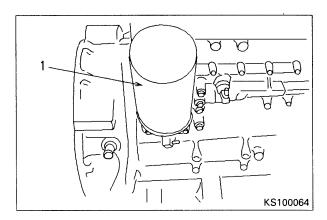
- 1) Install tension pulley (1).
- Adjust water pump belt tension as follows.
 - Watch water pump belt tension and tighten adjustment screw to inside. Tighten lock bolt temporarily so that belt tension is not loose.
 - ii) After adjusting, tighten all bolts fully.
 - iii) After adjusting, check deflection of belt when point midway between fan pulley and water pump pulley is pressed with a finger force of approx. 6 kg.
 - ★ Standard belt deflection (b):


6 mm (PC300-5)

5 - 10 mm (AUSTOFT)

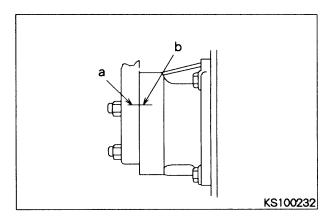

31-1. Tension pulley (D57S-1B)

- 1) Install tension pulley (1).
- 2) Adjust water pump belt tension as follows.
 - Watch water pump belt tension and tighten adjustment screw to inside. Tighten lock bolt temporarily so that belt tension is not loose.
 - ii) After adjusting, tighten all bolts fully.
 - iii) After adjusting, check deflection of belt when point midway between fan pulley and water pump pulley is pressed with a finger force of approx. 6 kg.
 - ★ Standard belt deflection (b): 6 mm

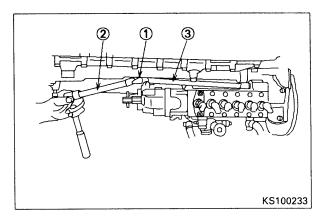

32. Oil cooler

- 1) Fit gasket and install oil cooler (2).
- 2) Fit O-ring and install oil cooler inlet tube (1).

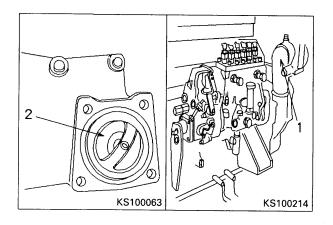
33. Oil filter


Fit O-ring and install oil filter (1) together with bracket.

34. Fuel injection pump

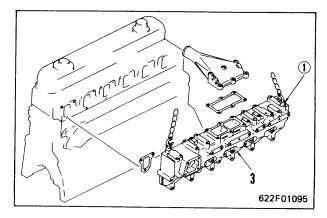

Install fuel injection pump (1) to the drive case.

★ When installing the injection pump, align line (a) of the injection pump flange and line (b) of the injection pump drive case.

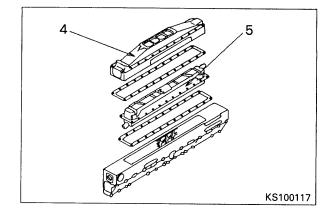

- ★ Tighten these two nuts from pump rear using socket wrench, universal joint ①, and extensions
 ② and ③ .
 - Extension 2: 300 mmExtension 3: 100 mm

∑ kgm Nut : 6 − 7.5 kgm

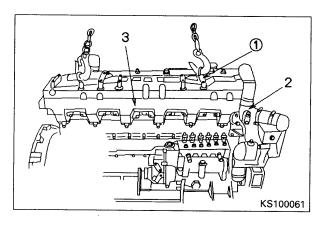
35. Thermostat


- 1) Fit gasket and install thermostat (2).
- 2) Install connector (1).

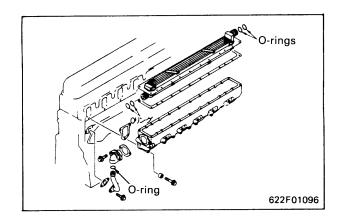
36. Intake manifold (S6D108)


- 1) Install cover.
- 2) Usinig eyebolts ① (Thread dia. = 8 mm, Pitch = 1.25 mm), sling intake manifold (3).
- 3) Fit gasket and install intake manifold (3).

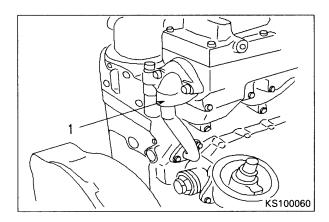
 Signature Mounting bolt: 1.5 3.5 kgm


36-1.Aftercooler, intake manifold (SA6D108)

- Fit gasket and assemble aftercooler (5) to intake manifold.
- 2) Install cover (4).


- 3) Using eyebolts ① (Thread dia. = 8 mm, Pitch = 1.25 mm), sling intake manifold.
- 4) Fit gasket and install intake manifold (3).

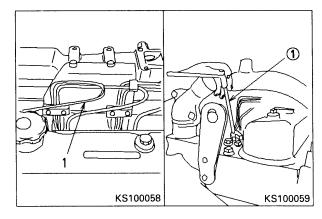
 Skem Mounting bolt: 1.5 3.5 kgm
- 5) Fit O-ring and install aftercooler outlet tube (2).



★ Coat the O-ring and O-ring groove with soapy water or vegetable oil.

Never use mineral oil (engine oil) as this will cause swelling and deterioration.

6) Fit O-ring and install aftercooler inlet tube (1).

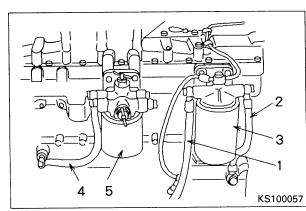

37. Fuel injection pipe

Install fuel injection pipe (1).

★ Using tool ①, install sleeve nut for nozzle holder.

Sleeve nut: 2.0 – 2.5 kgm (flat width 17 mm)

Injection pump side sleeve nut : 2.5 – 3.5 kgm


38. Corrosion resistor (When equipped)

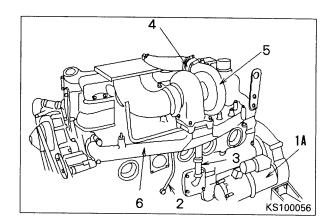
Install corrosion resistor (5) and connect hose (4).

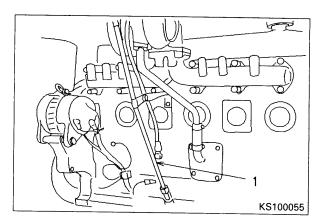
39. Fuel filter

- 1) Install fuel filter (3).
- 2) Connect fuel filter inlet hose (1).
- 3) connect fuel outlet hose (2).

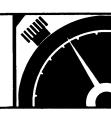
40. Resetting engine in engine stand

41. Turbocharger and exhaust manifold assembly

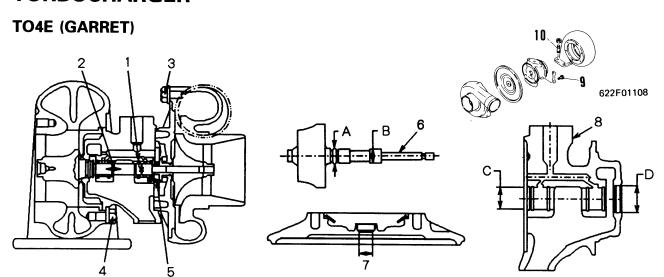

- 1) Install turbocharger (5) and exhaust manifold assembly.
- 2) Connect intermediate connector (4) between turbocharger and aftercooler. (SA6D108)
- 2A) Connect intermediate connector (4) of intake manifold. (S6D108)
- 3) Connect inlet tube (2) and outlet tube (3) between turbocharger and cylinder block.


42. Starting motor

Instal starting motor (1A).


43. Oil dipstick guide

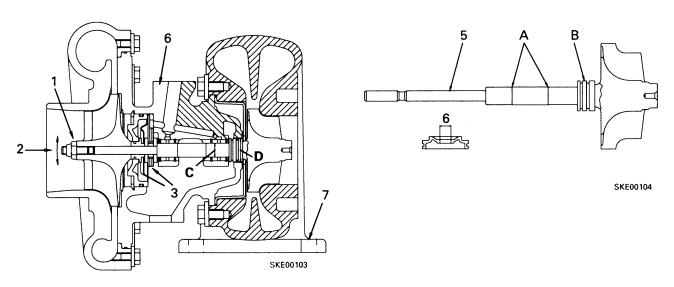
Install oil dipstick guide (1).


ENGINE 14 MAINTENANCE STANDARD

INTAKE AND EXHAUST SYSTEM	
Turbocharger	14-002
ENGINE BODY	
	14-004
Cylinder head	
Valve and valve guide	
Rocker arm, push rod and tappet	
Cylinder liner	14-009
Cylinder block	14-010
Crankshaft	
Camshaft	
Piston, piston ring and piston pin	
Connecting rod	
Timing gear	
Flywheel and flywheel housing	
LUBRICATION SYSTEM	
Oil pump	14-018
Regulator valve	
Safety valve	
·	
COOLING SYSTEM	
Water pump and thermostat	14-020

TURBOCHARGER

14F036A



14F036-1A

14F036-2A

		.	· • • · · · · · · · · · · · · · · · · ·				Unit: mm	
No.	Check item			С	riteria		Remedy	
		St	andard val	ue		Repair limit		
1	Play of rotor in side direction	0	0.076 - 0.150		0.15	Correct or replace		
2	Play of rotor in axial direction	0.026 – 0.076				0.076		
	Timber in the second of the		Target			Range		
3	Tightening torque of blower housing bolt	16.7	Nm (1.7 k	gm)	15 (1.!	.3 – 18.6 Nm 56 – 1.9 kgm)	Tighten	
4	Tightening torque of turbine housing mounting bolt	19.6	Nm (2.0 k	gm)	17 (1.	.7 – 21.6 Nm 8 – 2.2 kgm)		
		S	tandard siz	:e	F	Repair limit		
5	Thickness of thrust bearing	4.36				4.35		
			Position	on	Standard size	Repair limit		
	0	Qutside	А		17.31	17.25		
6	Outside diameter, curvature of wheel shaft	diameter B			10.155	10.15		
		Curvature Re		Repa	ir limit: 0.010	Replace		
7	Inside diameter of back plate		12.70			12.71		
		Posit	tion	Stan	dard size	Repair limit	_	
8	Inside diameter of center housing	С			15.80	15.81		
		D)		18.03	18.06		
9	Tightening torque of back plate mounting bolt	13.2	Nm (1.35 k	gm)		12.1 – 14.0 Nm (1.27 – 1.43 kgm)		
10	Tightening torque of turbocharger mounting bolt (stud)		29.4 – 44.1 Nm (3.0 – 4.5 kgm)					

S2B (SCHWITZER)


Unit:mm

No.	Check item	Criteria					Remedy
1	Play of rotor in radial		Standard siz	e	R	epair limit	
'	direction		0.400 - 0.56	5		0.840	
2	Play of rotor in axial direction		0.051 - 0.09	0		0.142	Correct or replace
3	Thickness of thrust bearing	4.35				4.30	
			Position St		andard size	Repair limit	
	Outside diameter,	Outside diameter	A 1		10.152	10.130	
4	curvature of wheel shaft		В		17.32	17.25	
		Curvature Repair limit: 0.0076 (total runout of indicator)					
	Inside diameter of	Standard size		Repair limit			
5	insert	12.71				12.71	Replace
		Po	sition	Stand	ard size	Repair limit	
6	Inside diameter of center housing		С	15	5.80	15.82	
			D		3.06	18.06	
7	Tightening torque of turbocharger mounting bolt (stud)						

Unit:mm

Remedy

CYLINDER HEAD

Criteria

105°

Standard size Repair limit Correct by grinding 0 - 0.090.12 or replace Engine No Standard Replace nozzle or 10001- 3.12 ± 0.39 gasket Coat with molybdenum disulphide Tighten in order in **Target** Range diagram above. If any bolt has 5 punch 88.3 – 107.9 Nm (9 – 11kgm) 142.2 – 152.0Nm (14.5 – 15.5 kgm) 98.1Nm (10kgm) marks, replace with new bolt. 147.1Nm (15kgm)

90° - 120°

Tighten

Range

39.2 - 49 Nm (4 - 5 kgm)

No.

1

2

3

Check item

Distortion of cylinder

Protrusion of nozzle

Tightening torque of

(Plastic range turning

Tightening torque of

Order

Target

44.1 Nm (4.5 kgm)

1st pass

2nd pass

3rd pass

cylinder head

mounting bolt

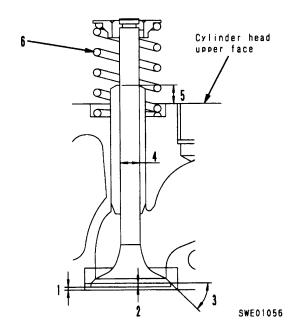
molybdenum

disulphide.)

nozzle holder

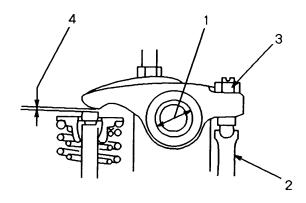
mounting bolt

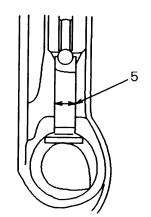
method)


(Coat thread with

angle tightening

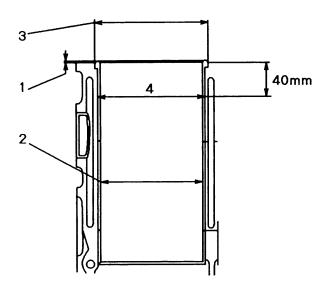
head mounting


surface


VALVE AND VALVE GUIDE

Unit: mm Criteria Remedy Check item No. Repair limit Standard size Tolerance Valve Replace 0.0 Sinking of valve valve or ± 0.1 1.1 Intake, exhaust valves 112 valve seat Repair limit Valve Standard size Thickness of 1.7 2.0 Intake valve Replace valve lip valve 1.50 1.2 Exhaust valve **Exhaust valve** Repair or Intake valve Angle of replace valve Standard 30° 45° valve seat or valve seat Valve Standard size Tolerance -0.030 9 O.D. of valve Intake valve -0.045 Replace stem -0.060 valve 9 Exhaust valve -0.075+0.025 Replace valve I. D. of valve Intake, exhaust valves 9 -0.010 guide guide Clearance limit Valves Standard clearrance Replace valve Clearance 0.040 - 0.0700.22 Intake valve between valve valve guide guide and stem 0.25 Exhaust valve 0.070 - 0.100Curvature of Repair limit: 0.02 (total variation of indicator, per 100mm) Replace valve stem Height of valve Standard Tolerance Repair guide when 14 ± 0.2 knocked in Standard size Repair limit Free length of 62.69 61.2 valve spring Standard load Repair limit Installed length Replace valve Installed length of 254 ±12.8N 227.5N spring valve spring 51.1 $(25.76 \pm 1.3 \text{kg})$ (23.2kg)Out-of straight of Repair limit 2°(at both ends) valve spring

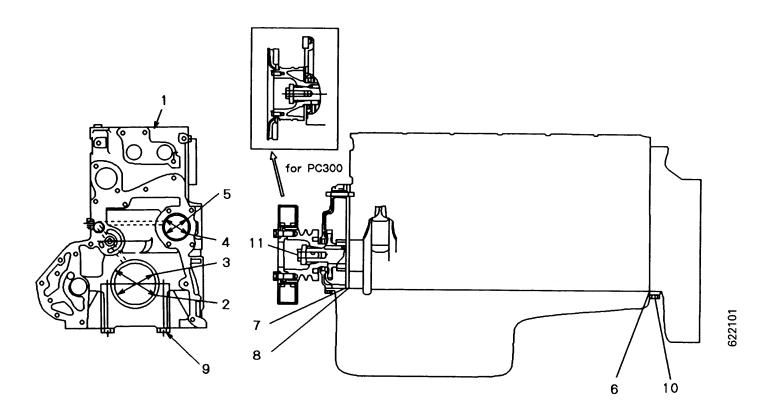
ROCKER ARM, PUSH ROD AND TAPPET



KS100098

Unit:mm

No.	Check item	Crit	teria		Remedy		
	O.D. of rocker arm	Standard size	Repai	ir limit	B. I		
	shaft	19	0 -0.020		Replace rocker arm shaft		
	I.D. of rocker arm	O of rocker arm Standard clearance Clearance limit		nce limit	Panlana analan		
1	shaft hole	19		.030 .010	Replace rocker arm		
	Clearrance between	Standard clearance	Clearar	nce limit	Replace rocker		
	rocker arm shaft and rocker arm shaft hole	0.010 - 0.050	0.13		arm or rocker arm		
	Curvature of rocker arm shaft	Repair limit : 0.20 (tota	al variation of inc	Replace rocker arm shaft			
2	Curvature of push rod	Repair limit : 0.30 (tota	al variation of inc	Replace push rod			
3	Tightening torque or loke nut for rocker arm adjustment screw	Tightening torque or Target		Rai	nge		
		44.1 Nm (4.5kgm)	39.2 – 49.0 Nm (4 –5 kgm)		Tighten		
		Valve	Standard	Tolerance			
4	Valve clearance	Intake side	0.34	± 0.02	Adjust		
	(when cold)	Exhaust side	0.66	± 0.02			
		Standard size	Toler	ance			
	O.D. of tappet	18	- 0.0 - 0.0		Replace tappet		
5	I.D. of tappet hole	18	+ 0.0	018	Replace cylinder head		
	Clearance between	Standard clearance	Clearan	ce limit	D. 1		
	tappet and tappet hole	0.020 – 0.056	0.2	20	Replace tappet or cylinder head		

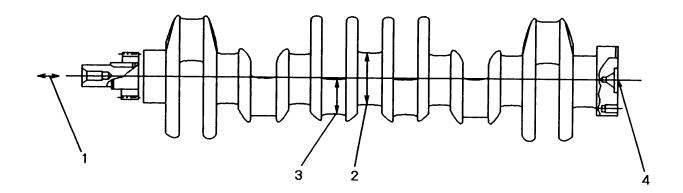


KS 100209

- 1	1-	i÷۰	_	_

								Unit:mm
No.	Check item			Crit	eria			Remedy
1	Protrusion of cylinder liner		Permissible range : 0.05 - 0.13					Replace cylinder linn- er or cylinder block
-	Inside diameter of	Standard size		Tole	rance	Re	pair limit	
	cylinder liner	108		+ 0.032 0			108.20	
2	Roundness of cylinder liner			Repair li	mit : 0	.15		Replace cylinder
	Cylinder of cylinder liner		Repair limit : 0.08					linner
	Outside diameter of	Standard size Tolerance				nce		
	cylinder liner	120			0			
3	(Counter bore)				-0.08			
3	Clearance between cylinder block and cylinder liner (Counter bore)	Standard clearance : 0.10 – 0.28					Replace cylinder liner or cylinder block	
-	Interference between	Standard	Mark		Toler	rance	Standard	
	cylinder liner and cy-	size	IVIAIK	Liner	O.D.	Block I.D.	interference	Replace cylinder liner
	linder block		S	+ 0.	029	+ 0.012		or cylinder block
4	(The average value		3	+ 0.	017	+ 0.006		(Selection of size)
4	in the front-rear and	111.4	М	+ 0.	042	+ 0.024	0.005 –	(Assemble a part of
	left-right dirsctions	111.4	IVI	+ 0.	029	+ 0.012	0.030	the same mark)
	at a point 40mm		1	+ 0.	053	+ 0.030		the same mark/
	from the top surface)		L	+ 0.	042	+ 0.04		

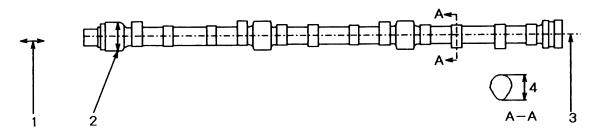
CYLINDER BLOCK



KS100210

KS100211

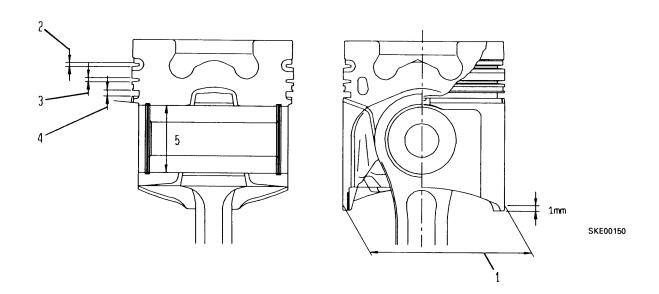
No.	Check item		Criteria			Remedy	
	Distortion of cylinder	Standard siz	:e		Repair limit	Repair by grinding	
1	head mounting surface	0 - 0.080		0.1		or replace	
	Inside diameter of	Standard siz	:e	Tolerance			
	main bearing	101			+ 0.022		
	mounting hole	101			0		
	Straightness of main					Replace main	
2	bearing mountig		Repair lir	nit : 0.010		bearing cap	
	hole					4	
	Roundness of main		Popoir lir	nit : 0.005			
	bearing mounting		nepaii iii	iiit . 0.005			
		Standard size	Toler	ance	Repair limit		
3	Inside diameter of			050		Replace main	
	main bearing	95	+ 0.	006	95.15	bearing	
	Inside diameter of	Standard siz	ze		Tolerance	311011010000000000000000000000000000000	
4	bushing mounting	62			+ 0.030	Replair or replace	
	hole			0			
	Inside diameter of	Standard size	 	ance	Repair limit	Replace camshaft	
5	camshaft bushing	59		+ 0.088 + 0.009		bearing	
	Difference between						
6	cylinder block lower						
Ü	face and flywheel						
	housing						
	Difference between					Repair by	
7	cylinder block lower		Repair li	mit : 0.11		reassembling	
	face and front cover					-	
0	Difference between	Domain limit	Plat	e protrusio	n : 0.04		
8	cylinder block lower face and front plate	Repair limit	Plat	e inset	: 0.22		
	Tightening torque of	Order	Tar	get	Range		
	main bearing cap		78.5		68.6 – 88.3 Nm		
	mounting bolt	1st step	(8 k	gm)	(7 – 9 kgm)		
9	(Coat bolt thread with engine oil)	2nd step	156.9	Nm	152.0 – 161.8 Nm		
	(Tightening using	Ziid step	(16 k	gm)	(15.5 – 16.5 kgm)		
	plastic range turning angle)	3rd step		105°	90° – 120°	Tighten	
	Tightening torque of		18 6	Nm	13.7 – 23.5 Nm		
10	oil pan mounting		1	kgm)	(1.4 – 2.4 kgm)		
	bolt		1 1.5		, Zi- Kgili/	_	
	Tightening torque of		451	Nm	421.4 – 480.2 Nm		
11	crankshaft pulley			kgm) (43 – 49 kgm)			
	mounting bolt					1	


CRANKSHAFT

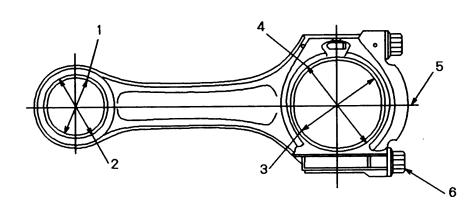
KS 100 103

Unit:mm

No.	Check item		Crit	eria		Remedy
		Stand	ard size	Repair limit		Replace thrust
1	End play	0.140 – 0.315		0.40		bearing or correct oversize
			Standard size	Tolerance	Repair limit	
		S.T.D	95		94.87	
	O.D. of main journal	main journal 0.25 U.S 94.7	94.75	- 0.050	94.62	
	O.D. or main journal	0.50 U.S	94.50		94.37	Correct
		0.75 U.S	94.25	- 0.065	94.12	under size
2		1.00 U.S	94.00		93.87	or replace
	Out-of roundness of main journal	Repair limi		nit : 0.020		
	Clearance at main	Standard	clearance	Clearar	nce limit	Danis
	journal	0.056 – 0.115		(0.28	Replace main bearing
			Standard size	Tolerance	Repair limit	
		S.T.D	70	70 69.87	69.87	
	O.D. of crank pin	0.25 U.S	69.75	0.050	69.62	
	journal	0.50 U.S	69.50	- 0.050	69.37	
	journal	0.75 U.S	69.25	- 0.065	69.12	Correct
3		1.00 U.S	69.00		68.87	under size
	Out-of roundness of crank pin journal		Repair lin	nit : 0.020		or replace
	Clearance at crank	Star	dard	Clearan	nce limit	
	pin journal	0.0)40	(0.28	Replace connecting rod bearing
4	Bend of crankshaft	Repai	r limit : 0.2 (total	variation of indi	icator)	Correct under-size or replace



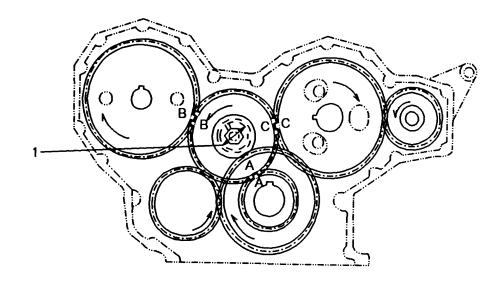
KS100212


Unit:mm

No.	Check item		Criteria					
		Stand	dard size	Repa	ir limit			
1	End play	0.15 – 0.35		0.50		Replace thrust plate		
2	O.D. of camshaft	Stand	dard size	Tole	rance			
			F0	- (0.03	Replace		
	journal	59		- 0.06				
	Clearance at camshaft journal	Standard clearance		Clearar	nce limit	Replace bushing		
		0.039	0 – 0.148	0.28				
3	Curvature of camshaft	Repa	ir limit : 0.03 (total	variation of inc	dicator)			
		Cam	Standard size	Tolerance	Repair limit			
4	Cam height	Intake	50.76235	± 0.10	50.26	Replace		
		Exhaust 49.87052		± 0.10 49.37				

PISTON, PISTON RING AND PISTON PIN

Unit:mm No. Check item Criteria Remedy Standard size **Tolerance** Repair limit Outside diameter of 1 Replace piston piston 107.830 ± 0.015 Standard size No. Measuring point Tolerance - 0.08 - 0.10 Thickness of piston 2 Top ring 2.5 Replace ring 3 Second ring 2.5 - 0.01 piston ring 4 Oil ring 4 - 0.03 2 Top ring Width of piston ring Judge using groove wear gauge 3 Second ring Replace piston groove + 0.04 4 Oil ring 4 + 0.02 Measuring point No. Standard clearance Clearance limit Clearance between 2 Top ring Replace piston or piston ring and Judge using groove wear gauge 3 Second ring piston ring piston ring groove 4 Oil ring 0.03 - 0.070.15 2 Top ring 0.30 - 0.452.0 Replace piston ring Piston ring gap 3 Second ring 0.30 - 0.451.5 or cylinder liner Oil ring 0.25 - 0.451.0 Standard size **Tolerance** Outside diameter of Replace piston pin piston pin 45 - 0.007 Inside diameter of + 0.011 45 Replace piston piston pin hole + 0.004 Standard clearance Clearance limit Clearance between Replace piston pin piston pin and piston 0.004 - 0.0180.05 Standard weight Pemissible range Weight of piston Replace 1,350 g ± 13 g

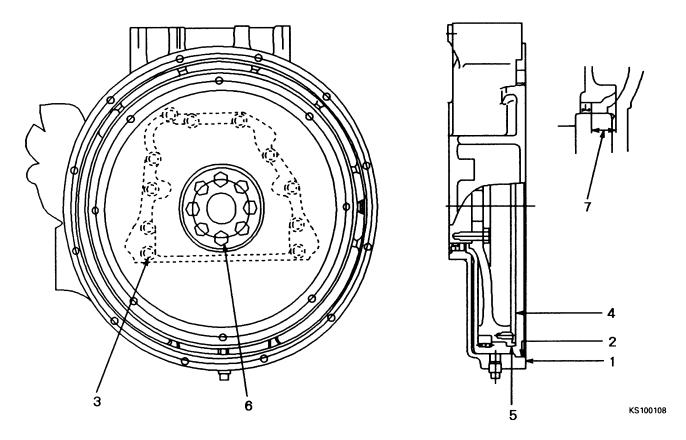

Unit:mm

6136F046

No.	Check item		Remedy			
	I.D. of bushing at	Standard siz	е		Tolerance + 0.041	Replace bushing
1	connecting rod	45			+ 0.025	Tropiade basimig
'	Clearance between	Standard clear	ance	CI	earance limit	Replace bushing or
	bushing and piston pin at small end of connecting rod	0.025 - 0.04	8		0.10	piston rod
	I.D. of bushing	Standard siz	e		Tolerance	Replace connecting
2	mounting hole at small end of connecting rod	49			+ 0.025 0	rod
	I.D. of bearing at big	Standard size	Tole	rance	Repair limit	
3	end of connecting rod (crank pin 70 journal)		+ 0.035 - 0.010		70.15	Replace bearing
4	I.D. of bearing mounting hole at big end of connecting	of bearing outling hole at big 74		.024	74.04	
	rod	Measure after tight	ening conne	ecting rod ca	p to specified torque.	Replace
5	Curvature and twist of connecting rod	Twist Co	⊙ <u>5</u>		d Repair limit : 0.25 et Repair limit : 0.35	connecting rod
	Tightening torque of	Order	Та	rget	Range	
6	connecting rod cap	1st	73.6 Nm	(7.5 kgm)	71.6 – 75.5 Nm	
O	mounting bolt (Coat bolt threads and nut seats with engine oil (Coat bolt threads 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd		10	(7.3 – 7.7 kgr 105° 90° – 120°		Tighten
7	Weight of connecting rod	Re	epair limit :	2,437 ± 70	(g)	Replace

622101

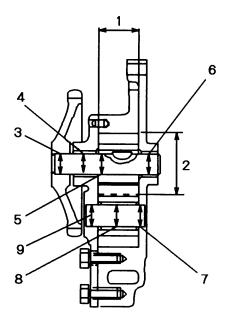
TIMING GEAR



6136F044

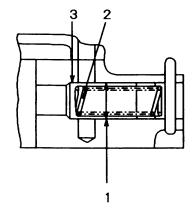
11	-	٠.		
u	n	T:	m	m

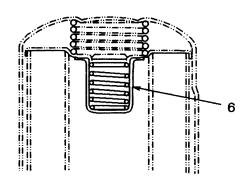
No.	Check item		Cri	Remedy		
			Measurement points	Standard	Repair limit	
Α		A Crank gear and idler ge		0.062 - 0.213		
C	Gear back lash	В	Idler gear and injection pump gear	0.057 - 0.280	0.6	Replace bushing or gear
		C Idler gear and cam gear		0.063 – 0.214		
	O.D. of idler gear shaft		Standard size	Toler	ance	
			45	0	016	Replace shaft
	I.D. of idler gear		45	+ 0.115		
	bushing		45	+ 0.027		Replace bushing
1	Clearance between		Standard clearance	Clearance limit		
	idler gear bushing and shaft 0.027 – 0.131		0.027 – 0.131	0.20		
			Standard	Repai	r limit	
	ldler gear end play		0.08 – 0.14	0.	0.3	


FLYWHEEL AND FLYWHEEL HOUSING

Unit:mr	~
1,1111111111	n

No.	Check item		Remedy			
1	Face runout of flywheel housing		Repair lir	mit : 0.35		Correct and
2	Radial runout of flywheel housing		Repair lir	mit : 0.30		reassemble
	Tightening torque of	Target			Range	
3	flywheel housing mounting bolts	107.9Nm (11kgm) 98.1 - 122.6Nm (10 - 12.5k			.6Nm (10 - 12.5kgm)	Tighten
4	Face runout of flywheel		Correct and			
5	Radial runout of flywheel	Repair limit : 0.15				reassemble
6	Tightening torque of flywheel mounting bolts Coat thread, seat and washer with engine oil.		Target 88.3Nm (9kgm) 186.3Nm (19kgm)		Range 58.8 - 111.7Nm (6 - 12kgm) 176.5 - 196.1Nm (18 - 20kgm)	Tighten
7	Installation position for rear seal Double lip oil seal Single lip oil seal	present crankshaft (Dimension ne		When installing the seal on a new crankshaft (dimension when oil seal is not moved) 27		-

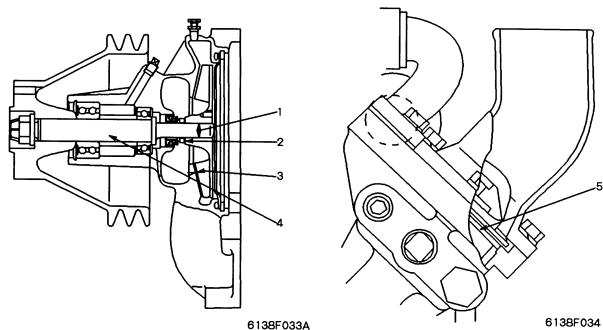

LUBRICATION SYSTEM OIL PUMP



KS100109

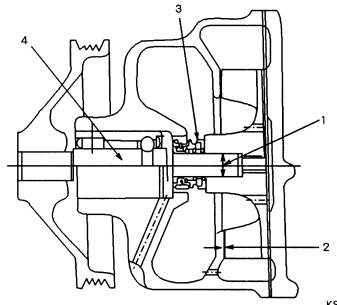
Unit:mm

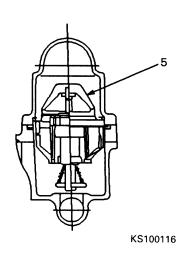
		T					Unit:mm
No.	Check item			Criteria	a		Remedy
1	Axial clearance of pump gear	Standard size	Toler Thickness of gear	Depth of body	Standard clearance (End play)	Clearance limit (End play)	
	, J. 3	32	0 - 0.025	+ 0.067 + 0.040	0.04 - 0.092	0.10	D. A
2	Radial clearance of pump gear	Standard size	O.D. of gear - 0.15	I.D. of body + 0.06	Standard clearance	Clearance limit	Replace gear
3	Interference between pump drive gear and	Standard size	- 0.21 Toler Shaft	ance Hole	Standard clearance	Clearance limit	Replace
	drive shaft	19	+ 0.027 - 0.003	- 0.033 - 0.058	Interference 0.03 – 0.085	-	
4	Clearance between drive shaft and cover bushing	19	+ 0.027 - 0.003	+ 0.114 + 0.031	0.004 - 0.117	_	Replace bushing
5	Interference between pump gesr and drive shaft	19	+ 0.027 - 0.003	- 0.044 - 0.064	Interference 0.041 - 0.091	_	Replace
6	Clearance between drive shaft and body bushing	19	+ 0.027 - 0.003	+ 0.114 + 0.031	0.004 – 0.117	-	Replace bushing
7	Clearance between driven shaft and body	19	+ 0.027 - 0.003	+ 0.065 + 0.039	0.012 - 0.068	_	Replace
8	Clearance between driven shaft and gear bushing	19	+ 0.027 - 0.003	+ 0.114 + 0.031	0.004 – 0.117	-	Replace bushing
9	Interference between driven shaft and cover	19	+ 0.027 - 0.003	- 0.028 - 0.053	Interference 0.025 – 0.080	_	Replace


KS100110

KS100111

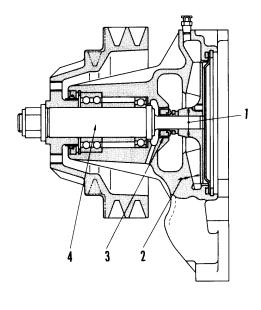
Unit:mm

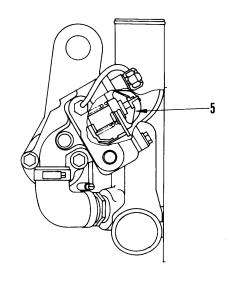

No.	Check item		Crit	eria		Remedy	
		Standard size	Tole	rance	Standard		
	Clearance between	Standard size	Shaft	Hole	clearance	Panlace	
ı	valve and body	18	- 0.040 - 0.060	+ 0.043 0	0.040 – 0.103	- Replace	
2	Regulator valve spring	Free length Standard size: Installed load Installed length 38.97	Standa	ird load (15.9 kg)	Repair limit 273.6 N (27.9 kg)	- Replace	
5	Operating pressure of regulator valve	1.	$1.0 \pm 0.05 \text{ MPa} (10.0 \pm 0.5 \text{ kg/cm}^2)$			Adjust	
6	Operating pressure of relief valve	0.2 ± 0.02 MPa (2 ± 0.2 kg/cm²)				Replace cartridge	


COOLING SYSTEM WATER PUMP AND THERMOSTAT (AUSTOFT)

			6138F033A			Unit: mm		
No.	Check item		Cri	teria		Remedy		
	Interference between	Standard size	Shaft O.D.	Impeller I.D.	Standard interference	Replace (usually re-		
1	impeller and shaft	15.9	+0.020 +0.005	-0.020 -0.050	0.025 - 0.070	place impeller shaft O.D. ra- rely changes)		
2	Abrasion of seal ring in water seal		14F035	A dimension r	epair limit: O			
3	Clearance between body and impeller		Standard clear	ance: 0.2-0.6		Replace		
4	Curvature of shaft	Repair limit: 0.1m	IIII	of indicator,meas	ure by face run-out fan pulley			
5	Full open lift of thermostat	Permissible range	Inspect at Min.10 water at	fter immersion fo	r 4-5minutes in			
3	Opening and closing of thermostat		ully closed after im ly open (90°C) to fu		min	Replace		

WATER PUMP AND THERMOSTAT (D75S-1, PC300-5)





KS100115

			KS10	00115		Unit:mm	
No.	Check item		Crit	teria		Remedy	
	Interference between	Standard size	Shaft O.D.	Impeller I.D.	Standard interference	Replace(usual -ly replace	
1	impeller and shaft	12	0 -0.013	- 0.030 - 0.055	0.017-0.055	impeller,shaft O.D.rarely changes)	
2	Clearance between body and impeller		Standard clear	ance: 0.3-1.3			
3	Abrasion of seal ring in water seal		L. _{14F035}	A dimension re	pair limit: O	Replace	
4	Curvature of shaft	Repair limit: 0.1	mm	n of indicator,meas	ure by face run – out pulley		
5	Full open lift of thermostat	Permissible range	I Min.10	: after immersion at 85℃	for 4-5minutes in	Replace	
5	Opening and closing of thermostat						

S6D108 (WA300,350-3)

622F01110

622F01111

Unit: mm

						Unit: mm		
No.	Check item		Crit	teria		Remedy		
	Interference between	Standard size	Shaft O.D.	Impeller I.D.	Standard interference	Replace (usual- ly replace		
1	Interference between impeller and shaft	15.9	+0.020 +0.005	-0.020 -0.050	0.025 – 0.070	impeller shaft O.D. rarely changes)		
2	Clearance between body and impeller		Standard clear	ance: 0.2 – 1.47				
3	Abrasion of seal ring in water seal	_	JA 14F0	A dimension r	repair limit: 0	Replace		
4	Curvature of shaft	Repair limit: 0.1	mm (Total val	riation of indicato run-out at point 4 f pulley	or, measure 0 mm from			
5	Full open lift of thermostat	Permissible range	Min. 10 (Insp	ect after immersi 5 minutes in wate	on for er at 90°C)	Replace		
	Opening and closing of thermostat	Valve should be in water from fu	e fully closed afte ully open (90°C)	er immersion for to fully closed (71	4 – 5 min. I°C).	періасе		

ENGINE REPAIR AND REPLACEMENT OF PARTS

Repairing mounting face of cylinder	
head by grinding	15-002
Replacing valve seat insert	15-003
Pressure test	15-007
Replacing valve guide	15-008
Grinding the valve	15-009
Replacing cam bushing	15-010
Replacing crank gear	15-012
Replacing cam gear	15-012
Replacing flywheel ring gear	15-013
Replacing main bearing cap	15-014
Grinding crankshaft	15-015
Replacing engine rear seal	15-020

622101

REPAIRING MOUNTING FACE OF CYLINDER HEAD BY GRINDING

1. Grinding

- Remove the valve seat inserts. For details, see REPLACING VALVE SEAT INSERTS.
- 2) When grinding within the repair limit for cylinder head height (H) to remove deformation of corrosion from the cylinder head, stamp an (R) mark on the left side face of the cylinder head.
 - ★ Repair limit of cylinder head height (H): 99.5mm

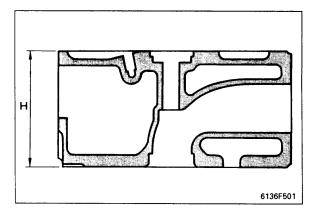
(Standard size 99.8 - 100.2 mm)

- ★ Amount to remove per grinding : 0.10 to 0.15 mm
- ★ Surface roughness of grinding surface: Within 6S
- **★** Flatness (deformation):

0.05mm max.

- ★ Grinding limit: 0.3mm
- Press-fit the valve seat inserts. For details, see REPLACING VALVE SEAT INSERTS.

2. Check after grinding


Check the amount of sinking of the valve to confirm that it is within the standard value. Carry out further modification and adjustment if necessary.

★ Standard sinking of valve:

1.12 ± 0.18 mm

★ Allowable protrusion of nozzle:

2.73 to 3.51mm

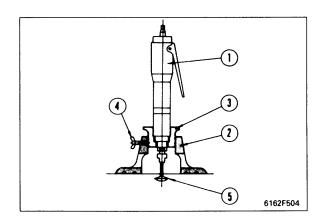
REPLACING VALVE SEAT INSERTS

Special tools

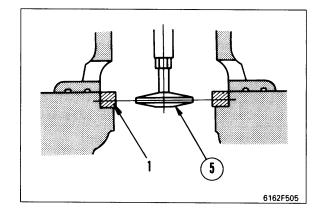
		Part No.	Part Name	Q'ty
	1	795-100-4800	Puller (Valve seat)	1
E	3	790-471-1150	Push tool (for intake valve)	1
(;	790-470-1160	Push tool (for exhaust valve)	1
		795-100-3003	Seat cutter (kit)	1
		795-100-3100	Body assembly	1
	_	795-100-3200	Micrometer	1
	1	795-100-3300	Gauge	1
		795-100-3400	Tool head	1
		795-100-3601	Head support	1
D	2	795-100-3710	Cutter	1
	3	795-100-3720	Cutter (for 30°)	1
	4	795-100-3730	Cutter (for 45°)	1
		795-100-4110	Pilot (9.00 mm)	1
	_	795-100-4120	Pilot (9.01 mm)	1
	5	795-100-4130	Pilot (9.02 mm)	1
		795-100-4140	Pilot (9.03 mm)	1

1. Pulling out the valve seat insert

Before using the grinder, run it for a minute to test it.

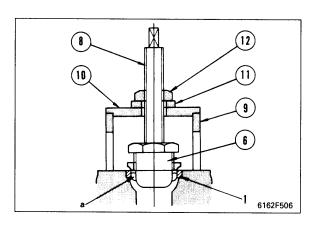

 After replacing the grindstone, run the grinder for three minutes to test it.

Confirm that the grindstone is not damaged, then install it to the shaft of the grinder without applying excessive force.

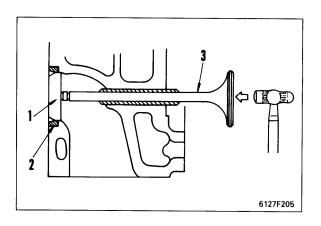

Confirm that there is no play between the grindstone and shaft.

When using the grinder, wear safety goggles.

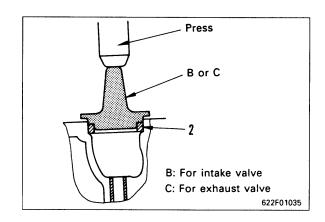
- When using a valve seat puller to remove the valve seat
 - 1) Install grindstone 5 to grinder 1.
 - 2) Align the groove of sleeve ③ with holder ②, then insert.
 - ★ Adjust the position of the grinder with set screw ④.



- 3) Adjust the position of the grinder so that the center of grindstone (5) will be at the center of seat insert (1), then tighten the set screw to secure the grinder.
- 4) Rotate the grindstone and move slowly until it contacts insert (1).

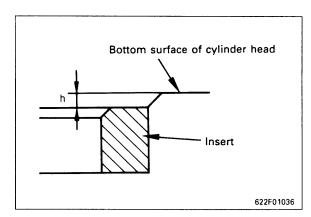

- 5) Press the grindstone against the inside of the insert, move it in a circular pattern, and make a groove about 1 mm deep.
- 6) Push in the three claws (a) on puller head 6 of tool **A** by hand to insert it inside insert (1).
- 7) Tighten screw (8) to press the three claws against the groove on the inside surface of the insert.
- ★ When the claws contact the groove completely, stop tightening.
- 8) Place bridge (9) over the puller head, then place plates (10) and (11) on the bridge.

 Tighten nut (12) to pull out the insert

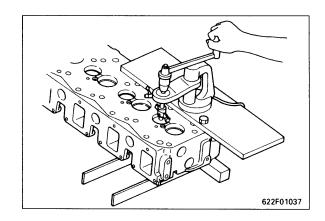

When welding a bar to the insert to remove the seat insert

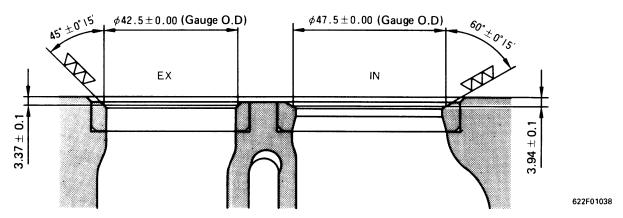
- Weld bar (1) of radius approx. Ø 10, that is 0.1 - 0.5mm shorter than the inside diameter to the inside diameter of insert (2).
 - ★ Be careful not to let the welding metal stick to the head itself.
- 2) when the temperature of the weld goes down to around room temperature, insert an old valve (3) in the reverse direction, and tap the head of the valve with a small hammer to knock out the insert.
 - ★ if the valve is hit too hard, the weld may break.

2. Press fitting the valve seat insert

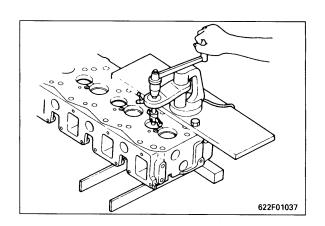

- When not grinding and correcting the press fitting surface for the valve seat insert
 - 1) Using tool **B** or **C** press fit standard valve seat insert (2).
 - ★ Do not use a hammer to press fit.
 - ★ Press-fitting force for valve seat (intake, exhaust sides): Approx. 9.8KN (1 ton)

- 2) Check the depth of the insert from the bottom surface of the cylinder head.
 - ★ Depth of the insert h


Intake side $: 3.12 \stackrel{+ 0.2}{\scriptscriptstyle{-0.1}} \, \text{mm}$

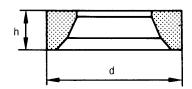

Exhaust side : $2.62^{+0.2}_{-0.1}$ mm

3. Finishing insert seat surface


- 1) Using tools D_1 , D_3 , and D_4 , finish the insert seat surface to the dimensions shown in the diagram.
 - ★ When inserting the pilot **D**₅ into the valve guide, select a pilot that will enter and leave no clearance.

4. Machining valve seat insert mounting hole to oversize

- 1) Using tools **D**₁ and **D**₂, grind the hole to a one size larger oversize.
 - ★ Machine within a range of 1.0 mm oversize.
 - If it is more than 1.0mm, replace the cylinder head.



• Dimensions of insert and mounting hole

Unit: mm

Insert	Valve	Valve		Mounting hole for valve seat insert					
	Valve	1	d		h) 1	D2	Н
STD	Intake	51.5	+ 0.105 + 0.095	8.5	0 - 0.1	51.50	+ 0.020 0	57.39 ± 0.2	11.62 ± 0.1
	Exhaust	45.5	+ 0.080 + 0.070	9.0	0 - 0.1	45.50	+ 0.020 0	48.50 ± 0.2	11.62 ± 0.1
0.25	Intake	51.75	+ 0.105 + 0.095	8.5	0 - 0.1	51.75	+ 0.020 0	57.64 ± 0.2	11.62 ± 0.1
0.8	Exhaust	45.75	+ 0.080 + 0.070	9.0	0 - 0.1	45.75	+ 0.020 0	48.75 ± 0.2	11.62 ± 0.1
0.50	Intake	52.0	+ 0.105 + 0.095	8.62	0 - 0.1	52.00	+ 0.020 0	57.89 ± 0.2	11.74 ± 0.1
0.8	Exhaust	46.0	+ 0.080 + 0.070	9.12	0 - 0.1	46.00	+ 0.020 0	49.00 ± 0.2	11.74 ± 0.1
0.75	Intake	52.25	+ 0.105 + 0.095	8.75	0 - 0.1	52.25	+ 0.020 0	58.14 ± 0.2	11.87 ± 0.1
0.S	Exhaust	46.25	+ 0.080 + 0.070	9.25	0 - 0.1	46.25	+ 0.020 0	49.25 ± 0.2	11.87 ± 0.1
1.00	Intake	52.25	+ 0.105 + 0.095	8.88	0 - 0.1	52.50	+ 0.020 0	58.39 ± 0.2	12.00 ± 0.1
0.S	Exhaust	46.5	+ 0.080 + 0.070	9.38	0 - 0.1	46.50	+ 0.020 0	49.50 ± 0.2	12.00 ± 0.1

Insert

622F01039

622F01040

- ★ Inside surface roughness : 6.3S max.
- ★ Mounting hole bottom roughness:

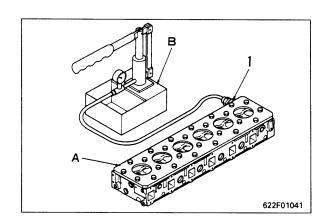
12.5S max.

★ Concentricity of valve guide hole and insert: 0.05 mm (T.I.R) max.

PRESSURE TEST

 If the area round the head has been corrected, test as follows.

Special tools


	Part No.	Part Name	Q'ty
A	790-553-1800	Coolant tester kit	1
В	79A-471-1050	Pump ass'y	1

1. Water pressure test

- 1) Tighten the nozzle holder assembly to the specified torque.
- 2) Assemble tool **A** and tool **B**, and connect a hose to flange (1).
- Apply water pressure [0.34 0.4Mpa (3.5 4.0 kg/cm²)] for approx. 10 minutes, and check for any leakage from around the head.
- ★ It is preferable to warm the whole cylinder head and carry out the test with hot water (82 93°C).

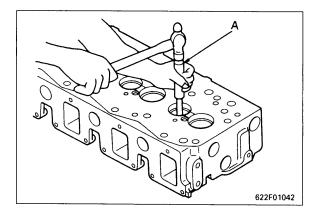
2. Air pressure test

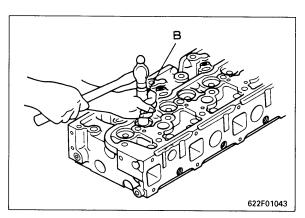
- 1) Tighten the nozzle holder assembly to the specified torque.
- 2) Connect the pump hose to flange (1).
- 3) place the head in a water bath, apply air pressure 0.3 0.34 Mpa (3.0 3.5 kg/cm²) for approx. 30 seconds, and check for any air leakage in the water.
- ★ If the above test shows that there are cracks around the nozzle holder and plugs, replace the cylinder head.

REPLACING VALVE GUIDE

Special tools

	Part No.	Part Name	Q'ty
A	790-100-1531	Valve guide remover	1
В	790-472-1361	Valve guide driver	1


1. Removing valve guide


Put tool A in contact with the valve guide from the bottom of the cylinder head, and knock it out with a hammer.

2. Press fitting valve guide

- 1) Press fit the valve guide until the tip of tool **B** contacts the cylinder head.
 - ★ After press fitting, insert the valve. If the valve dose not enter smoothly, modify with a reamer (ø90+0.025)
- 2) Confirm that the protrusion of the valve guide is within specification.
 - ★ Protrusion of valve guide:

 $14.0 \pm 0.2 \text{ mm}$

GRINDING THE VALVE

Special tools

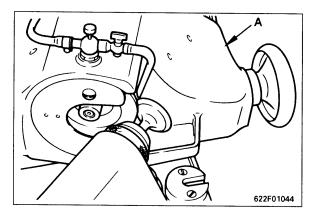
	Part No.	Part Name	Q'ty
_ A	– (Purchase)	Valve refacer	1

1. Grinding the seat surface

Grind the seat surface with valve refacer A.

★ Angle of valve seat
• Intake valve : 30°
• Exhaust valve : 45°

2. Checking after grinding


Confirm that the thickness of the valve head, protrusion of the valve, and the contact surface of the valve seat are within specification.

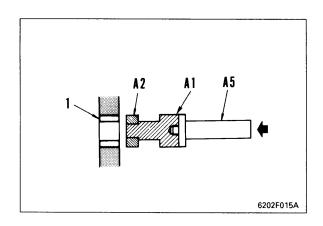
★ Allowable thickness of valve head

Intake valve : 2 ± 0.1 mmExhaust valve : 1.5 ± 0.1 mm

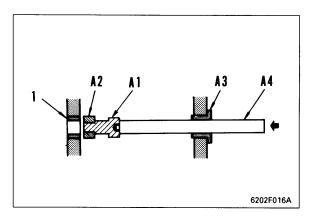
★ Sinking distance of valve: 1.12 ± 0.18 mm

Contact width of valve seat
Intake valve: 3.20 mm
Exhaust valve: 2.01 mm

REPLACING CAM BUSHING

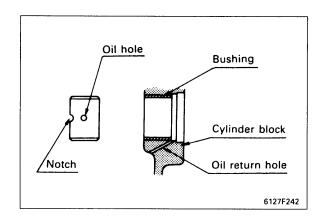

Special tools

				I
		Part No.	Part Name	Q'ty
,	4	790-472-1100	Push tool assembly	1
	1	790-472-1170	Push tool	1
	2	790-472-1180	Collar	1
Α	3	790-472-1110	Guide	1
	4	795-102-2610	Push bar	1
	5	792-103-0400	Grip	1

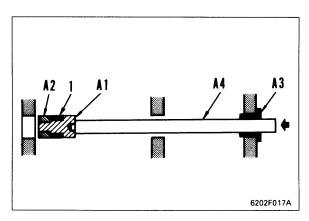

1. Removing cam bushing

★ After removing the bushing, remove any burrs and clean any dirt or dust from the busing mounting hole.

1) Removing front and rear bushings Assemble push tool A1, A2, and grip A5, then hit with a hammer to remove bushing (1).



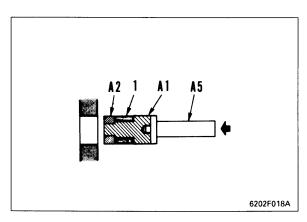
 Removing center bushing Assemble push tool A1, A2, guide A3, and push bar A4, then hit with a hammer to remove bushing (1).

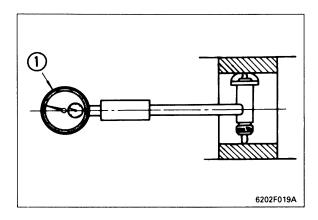

2. Press fitting cam bushing

★ Align the oil hole in the bushing with the oil hole in the cylinder block, and press fit the bushing.

1) Press fitting center bushing

Assemble push tool A1, guide A3, push bar A4, bushing (1), and collar A2, then hit with a hammer to press fit bushing (1) to a point where the oil hole in the cylinder block is aligned with the oil hole in the bushing.


2) Press fitting front and rear bushings


Assemble push tool A1, grip A5, bushing (1), and collar A2, then hit with a hammer to press fit bushing (1) to a point where the oil hole in the bushing is aligned with the oil hole in the cylinder block.

3) After press fitting bushing

- Using inside gauge ①, measure the inside diameter of the bushing.
- Check the clearance between the bushing and shaft. If the clearance is not within the permissible range, or the shaft does not pass through smoothly, correct the inside diameter of the bushing with a reamer.
 - ★ After correcting the inside diameter of the bushing with a reamer, clean out all metal particles from the oil hole and oil groove.
 - ★ Inside diameter of cam bushing: Ø 59 +0.009 ## 50.009
 - Camshaft journal clearance :

0.039 - 0.148

REPLACING CRANK GEAR

1. Removal of gear

- Grind a line in the surface of the gear tooth root with a grinder, then break it with a chisel and remove the gear.
- ★ Be careful not to damage the shaft.

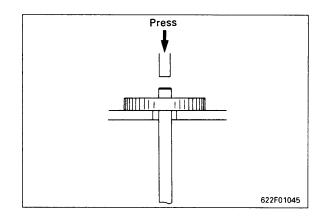
2. Press fitting gear

- Check the gear mounting face, key groove, and flange surface, and if there are any scratches, correct with an oilstone.
- 2) Knock the key into the key groove of the shaft.
- Heat the gear to the specified shrinkfitting temperature for the specifid period of time.
- ★ Heating temperature for crank gear : 230 - 250°C

Heating time: within 60 minutes

- 4) Set the timing mark on the outside, then use a driving tool to press fit until the outside surface of the the gear is in tight contact with the shaft flange.
 - ★ Drive the gear in quickly before it cools.

REPLACING CAM GEAR


1. Removal of cam gear

Set the camshaft assembly on a press stand, then push the camshaft out with press.

2. Press fitting cam gear

- ★ Use the same procedure as when shrink fitting the crank gear.
- ★ Heating temperature for cam gear : 220 - 240°C

Heating time within 60 minutes

REPLACING FLYWHEEL RING **GEAR**

Take care not to let the flywheel fall.

1. Removal of ring gear

- 1) Prepare a flywheel support stand, then set on the stand with the ring gear surface facing down.
- 2) Heat around the ring gear with a torch lamp, then hit with a hammer to remove.

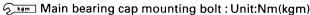
2. Press-fitting the ring gear

- 1) Check the fitting surface of the ring gear. If any flaw is found, repair it with an oilstone.
- 2) Heat the ring gear at the specified temperature for the specified time for shrinkage fitting.
- ★ Heating temperature for ring gear : 200°C max.
 - Heating time: 50 minutes.
- 3) With the chamferred side of ring gear facing the flywheel, fit it until its side contacts the flywheel.

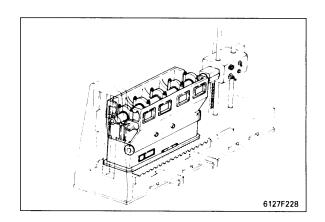
REPLACING MAIN BEARING CAP

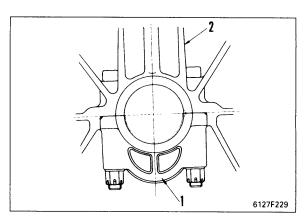
★ When replacing the main bearing cap, machine the semi-finished product as follows, then install.

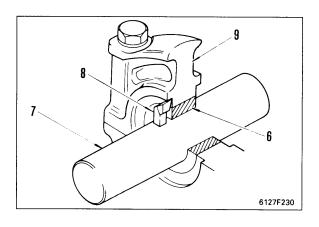
1. Machining inside diameter of main bearing cap


- 1) Remove the cylinder liner.
- 2) Install the replacement main bearing cap to the cylinder block, and tighten to the specified torque.
 - ★ Align the cylinder block and the notch in the cap.
- 3) Set a cylinder block mounting jig on the table of a horizontal boring machine, fit the cylinder liner mounting hole of the cylinder block to the standard line on the jig, and install the block.
- 4) Of the main bearing caps to be used again, take the one with the longest pitch and put a dial gauge in contact with the inside diameter at two places to align the center of the boring machine arbor.
- 5) Check the machined inside diameter of bearing cap (1) and grind a little at a time.
 - ★ Grind until the bit touches the inside surface of cylinder block (2).
 - ★ Inside diameter of main bearing cap Tolerance: ø101⁺0.022 mm
 - ★ Finishing roughness: Within 12.5 S
 - ★ Do not grind the inside face of the cylinder block.

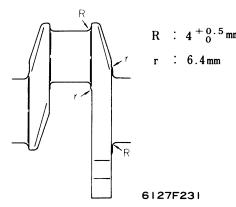
2. Machining width of main bearing cap

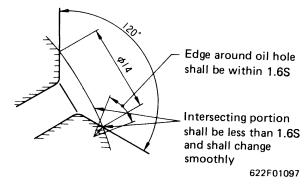

- 1) Insert cast iron bushing (6), then pass arbor (7) through.
- 2) Install facing bit (8) to the arbor.
- 3) Grind cap (9) until the bit touches the cylinder block face.
- 4) Grind the opposite side in the same way.
- ★ Width of main bearing cap Tolerance:


35 ₋ 0.025 mm

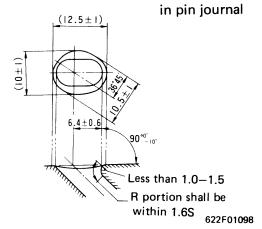

- ★ Roughness of thrust bearing mounting surface: Within 12.5 S
- ★ Do not grind the cylinder block.

Order	Target	Range
1st step	78.4(8)	± 9.8(± 1)
2nd step	156.8(16)	± 4.9(± 0.5)
3rd step	90°	+ 30°





- When grinding the crankshaft to correct wear, light seizure or damage, grind to any of the following undersize dimensions. Undersize: 0.25, 0.50, 0.75, 1.00 mm
- If there is curvature or uneven wear of the crankshaft, it is preferable to replace the crankshaft and not to repair it. (A high level of skill is required.)
- When correcting the plating of a damaged surface, correct only the following surfaces.
 - 1. Rear seal journal portion
 - 2. Crankshaft gear mount
- Be particularly careful when finishing the crankshaft fillet portion R, shoulder r, and R around the hole.
 - ★ Necessary equipment and jigs for grinding
 - 1) Magnet flaw detector
 - 2) Shore hardness gauge
 - 3) Etching kit
 - 4) Crankshaft mill
 - 5) Crankshaft polisher
 - 6) Roughness gauge
 - 7) Fillet R measurement ball gauge For minimum value : 795-500-1140 For maximum value : 795-500-1150


· Finishing dimension for fillet

 Finishing dimensions for oil holes in main journal

· Finishing dimensions for oil holes

1. Inspecting before grinding

1) Visual inspection

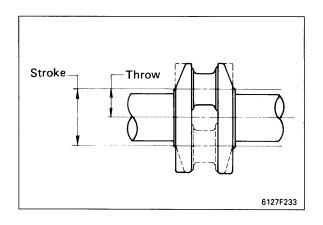
Check for cracks, damage, discoloration caused by seizure, and wear, and judge if it is possible to correct by grinding.

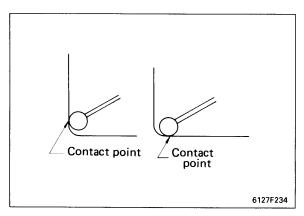
 Inspecting hardness of journal surface Hardness of journal surface (Shore hardness)

Standard range: 60 - 67 Hs

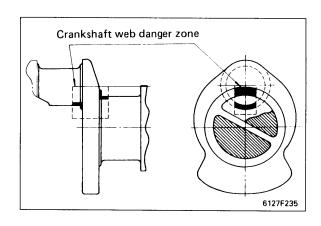
Repair limit: 60 Hs

If it is below the repair limit, discard the part.


3) Inspection for twisting
Throw tolerance: ± 0.05 mm
Horizontal displacement (difference between throw of No.1 cylinder and rearmost cylinder) repair limit: 0.94 mm
Variation in throw between cylinders:
Less than 0.20 mm
If it is outside the repair limit, discard


2. Inspection during grinding and after grinding

1) Inspecting fillet R


the part.

- Check that the fillet R is connected smoothly to the shoulder of the journal.
- ii) Use a fillet R measurement ball gauge to check that the R dimension is between the dimension for the minimum value gauge and the dimension for the maximum value gauge.
- Checking for traces of seizure using etching
- After grinding, carry out an etching test to confirm that there is no grinding seizure.
- If any traces of seizure are found, grind approx. 0.02 mm and correct again to the next undersize dimension.
- After inspection, neutralize and wash the inspection surface, then coat with rust prevention oil.
- 3) Magnetic flaw detection
- Carry out a magnetic flaw detection of the corrected crankshaft before use and check that there are no cracks.
- Be particularly careful when checking the journal fillet portion entering each web danger zone of the crankshaft.

Fillet R Min. radius: 4.00 mm Max. radius: 4.50 mm

- Measuring curvature (measuring alignment)
- Measure the curvature of the crankshaft after grinding and check that it is within the standard value.
- Check the curvature (alignment) at the following four places.
 - i) Total length alignment Tolerance: Within 0.09 mm
 - ii) Neighboring alignment Tolerance: Within 0.05 mm
 - iii) Tip alignment Tolerance:

Within 0.04 mm

iv) Rear end alignment Tolerance: Within 0.03 mm

3. Grinding main journal

- ★ Grind each main journal to the same undersize dimension.
- ★ When grinding, leave a tolerance of 0.007 0.008 mm for finishing.
- Roundness, cylindricity (TIR) of main journal

Tolerance: Max. 0.010 mm Repair limit: 0.015 mm

4. Grinding thrust surface

- ★ There is no particular need to grind the front and rear thrust surface to the same undersize dimension.
- ★ If the thrust surface has been ground, check that the end play of the crankshaft is within the permitted range. (For details, see the overall assembly.)
- Squareness of thrust surface (TIR)

Tolerance: 0.04 mm

Repair limit: Within 0.035 mm

· Main journal undersize dimension

Unit: mm

Size	Standard size	Tolerance
S.T.D	ø 95.00	- 0.050 - 0.065
0.25US	ø 95.25	- 0.050 - 0.065
0.50US	ø 95.50	- 0.050 - 0.065
0.75US	ø 95.75	- 0.050 - 0.065
1.00US	ø 96.00	- 0.050 - 0.065

Thrust surface oversize dimension

Unit: mm

		Rear thrust surface			
			S.T.D	0.25 OS	
Front thrust surface	S.T.D	Standard size	40 + 0.050	40.25 ⁺ 0.050 0	
		Repair limit	47.060	40.310	
	0.25	Standard size	40 ^{+ 0.050}	40.50 ⁺ 0.050	
	0.8	Repair limit	40.310	40.560	

5. Grinding pin journal

- ★ Grind each pin journal to the same undersize dimension.
- ★ When grinding, leave a tolerance of 0.007 0.008 mm for finishing.
- ★ Roundness, cylindricity (TIR) of pin journal

Tolerance: Within 0.010 mm Repair limit: 0.015 mm

· Pin journal undersize dimension

Unit: mm

		<u> </u>
Size	Standard size	Tolerance
S.T.D	ø 70.00	- 0.050 - 0.065
0.25US	ø 70.25	- 0.050 - 0.065
0.50US	ø 70.50	- 0.050 - 0.065
0.75US	ø 70.75	- 0.050 - 0.065
1.00US	ø 71.00	- 0.050 - 0.065

6. Grinding main journal width and pin journal width

- When correcting the wear surface of the main journal and pin journal, correct using the minimum amount of grinding.
- Crankshaft pin journal width
 When grinding one side only

Standard: $42^{+0.28}_{+0.21}$ mm

Repair limit:

Squareness (TIR) of thrust surface Repair limit: 0.04 mm

7. Correcting grindstone

- Carry out dressing for the grindstone for each journal.
- Grindstone dresser

Bevel angle: 75° ±1°

Radius of tip: 0.38±0.25 mm

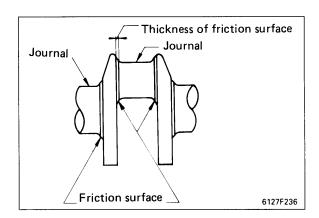
Use a grindstone dresser with an industrial diamond embedded in the tip of the cone.

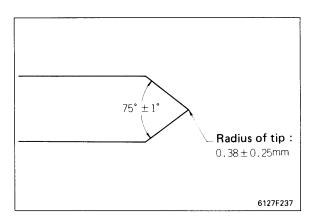
- Adjust the grindstone correction device and correct the grindstone to a dimension matching the claws of the fillet.
- When checking and correcting the grindstone edge, grind a wooden test piece and check with a ball gauge.

8. Prevention of grinding seizure

- 1) Use the plunge grind method when grinding
- Use the whole width of the grindstone Avoid grinding the boss surface as far as possible. .pa
- 3) Direct an ample supply of cooling oil on the grinding surface.
- 4) When the crankshaft speed is 50 rpm, make the standard grinding speed at the circumference of the grindstone 2000 m/ min.

9. Finishing surface


 Surface roughness standard Journal face: Within 0.8 S Thrust surface: Within 1.6 S


Tip taper portion, pin, main journal boss

portion

Fillet portion: Within 3.2 S Allowance for polish finishing:

0.007 - 0.008 mm

10. Action after grinding

- Check again that each dimension is as specified
- Wash each part thoroughly and coat it with rust prevention oil.
- When storing for a long period, support at three points or fit a lifting tool and stand upright.

11. Balancing (reference)

(As far as possible, do not carry out repairs that will affect the balance of the crankshaft.)

- Service limit for imbalance: 100 g.cm
- Limitations for accurate reading of balance Crankshaft curvature: 0.05 mm (TIR) Crankshaft rotation speed: Max. 325 rpm
- Carry out balancing with the crankshaft gear installed, or fit a weight equivalent to the gear mounting key to the key groove.
- To correct the balance, make a drill hole in the counterweight or carry out grinding.
 Limit to amount of correction of counterweight:

No. of holes: Max. 5

Hole diameter: 10 or 12 mm Hole depth: Max. 35 mm

Clearance between hole and side

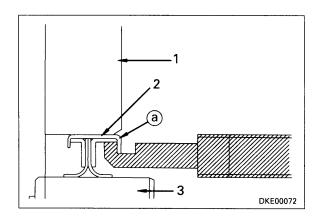
face: Min. 3 mm

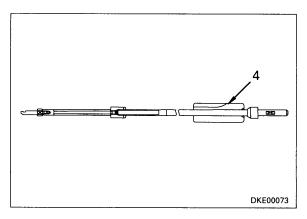
Clearance between holes: Min. 5 mm

REPLACING ENGINE REAR SEAL

Special tools required

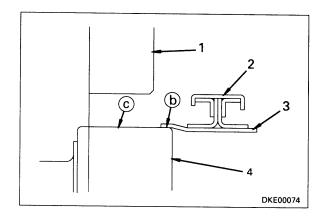
No.	Part No.	Part Name	Q'ty
A	795-931-1100	Seal puller assembly	1
В	795-931-1310	Sleeve jig (for assembly)	1

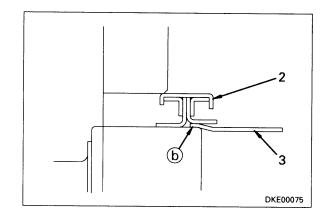

[•] Remove the flywheel. (See DISASSEMBLY AND ASSEMBLY)


1. Removing seal

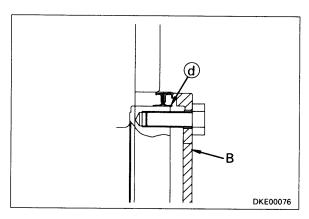
- 1) Hook tip (a) of tool A under metal ring (a) of seal ②, then remove it with the impact force of slide hammer (4).
- ★ Before pulling out, knock seal ② in slightly to free it from flywheel housing
 ② and make it easy to remove.
- ★ Be careful not to scratch or damage crankshaft (3).
- ★ Do not use a drill. If a drill is used, metal particles will get inside the engine.

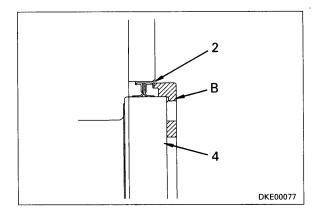
2. Checking wear of shaft


2) If the wear is only seen as luster (when touched with the flat of the finger, the wear cannot be detected; wear depth: approx. 10 μm or less) and there are no scratches or other damage, the part can be used again.



3. Installing seal


- 1) Put large inside diameter end (b) of plastic inner tube (3) in contact with crankshaft (4).
- Be careful not to mistake the direction.
- Before assembling the seal, remove all scratches, burrs, flashes, and rust from flywheel housing (1), the end face corner of clutch shaft (4), and sliding face (c) of the lip.
- Wipe off all the oil from the shaft.
- Do not coat the shaft and seal lip (2) with oil or grease.


- 2) Push in metal ring (2) of the seal uniformly with both hands until it feels that it has passed inside large diameter end (b) of plastic tube (3).
- 3) Remove plastic tube (3), taking care not to damage the lip.

- Put tool B in contact as shown in the diagram on the right, then tighten with the bolts.
- Be careful not to damage the tip of lip (d).

- 5) Press fit until tool **B** contacts crankshaft (4).
- ★ Wipe off all the gasket sealant that is squeezed out from the outside circumference.

